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Abstract—This paper provides a general framework for utility
maximization of a wireless network with energy harvesting nodes.
The focus is on applying this framework to the single-link
problem with an energy harvesting transmitter and an energy
harvesting receiver. For the general utility maximization problem,
it is shown that if the utility of a network can be expressed
instantaneously as a function of the powers of the nodes, then
the maximum utility achieving power policy for each node can
be found using a water-filling approach for each user. This is
achieved by expressing the general utility maximization problem
as a pair of nested problems focusing on energy efficiency and
adapting to energy harvests separately. The framework extends
the previous results on offline optimization of energy harvesting
transmitters to networks with all energy harvesting nodes includ-
ing receivers and relays as well as any network utility, provided
that the achieved utility is instantaneous and additive in time.
The implications of the energy efficiency problem on the energy
harvesting problem are demonstrated over an energy harvesting
transmitter-receiver pair, and simulation results are presented to
exhibit the performance of the optimal policy along with some
alternatives for a range of storage capacities.

Index Terms—Energy harvesting, utility maximization, wire-
less networks, optimal scheduling, battery limited nodes.

I. INTRODUCTION

With the recent advances in energy harvesting devices
and an increasing demand for environment friendly mobile
communications, energy harvesting is emerging as a desirable
alternative as a means for wireless networks to function.
Whether the objective is to decrease the carbon footprint of
wireless communications or to make nodes energy-wise self-
sufficient, harvesting energy from external sources is promis-
ing. On the other hand, the availability of ambient energy
is time-varying and limited in most applications. Therefore,
utilizing this energy efficiently becomes an important problem
to match the performances of their battery or grid powered
counterparts. Recently, there has been a substantial research
effort on optimal scheduling for energy harvesting transmitters
in single and multiple user settings [1]–[12]. In this paper, we
present a generalized solution that applies to many scenarios
and problems considered in the previous work, and beyond.

An offline scheduling problem with a discrete energy
harvesting model was first introduced in [1], solving the
transmission completion time minimization problem for a
transmitter with infinite energy storage. This work was later

extended in [2] to transmitters with limited energy storage,
also showing the duality between transmission completion
time minimization and short-term throughput maximization
problems in the energy harvesting setting. A directional water-
filling algorithm that also considers channel variations was
developed in [3], focusing on a Gaussian fading channel
with an energy harvesting transmitter. This approach was
subsequently extended to other network models including the
broadcast channel [4], [5], multiple access channel [6], and
interference channel [7]. A common theme in these papers
was the achieved instantaneous rate being a function of the
instantaneous transmission power of the nodes.

More involved models also emerged for energy harvesting
networks in the offline setting, such as the two-hop model with
energy harvesting transmitter and relay [8], and models with
inefficient energy storage [9], [10]. Parallel to these efforts,
online approaches with causal energy and state information
were also considered with a queueing theoretic approach in
[11], and a Markovian energy model approach in [12].

The aforementioned previous work has focused on an en-
ergy harvesting transmitter, ignoring other computational or
operational power costs on both sides of a channel. It is argued
in [13] that receiver decoding power can be significant in
specific applications, and that there is a fundamental trade-off
between transmitter and decoding power. Arguably receiver
power consumption is even more critical in the energy har-
vesting setting.

In this paper, we provide a general solution to the collection
of offline optimization problems maximizing the integral of
any instantaneous utility, for any network model such as in
[1]–[7]. The formalization presented enables handling possible
transmitter-receiver power tradeoffs, as well as transmitter
and receiver side practicalities including storage inefficiency
and practical transmission schemes, e.g., adaptive modulation
techniques [14], [15]. This is achieved by decoupling the
overall optimization problem to two nested problems focusing
on two different aspects of the problem, energy efficiency and
adapting to energy harvests. The energy harvesting and net-
work models and the general solution is presented in Section II
and Section III respectively. The special case with an energy
harvesting transmitter and an energy harvesting receiver is
considered in Section IV. Numerical results to demonstrate



Fig. 1: Energy harvesting model for the jth network node.

the performance for the energy harvesting transmitter-energy
harvesting receiver pair are presented Section V. The paper is
concluded in Section VI.

II. SYSTEM MODEL

We consider M energy harvesting network nodes, each har-
vesting and storing their own energy throughout the operation
of the network. These nodes can be sensors, transmitters,
relays and receivers, each operating within their own energy
budget to improve the utility of the network. For simplicity,
we assume a time slotted model of slot duration τ , where the
channel can be assumed constant throughout each time slot.
The state of the channel is represented by the vector αi in time
slot i. This vector can, for instance, correspond to the fading
state, in which case our assumption would require that the
coherence time of the channel is longer than a time slot. We
study a system with an information delivery deadline T = Nτ .

As the setting suggests, the energy harvesting process is
varying and different for each user. The jth energy harvesting
node harvests an energy packet of Ej,i ≥ 0 at the beginning
of the ith time slot, i.e., at time iτ , available immediately for
consumption. The arrival scenario is depicted in Figure 2. Each
network element is assumed to have a battery or high energy
density capacitor of capacity Emax

j for storage. Any arrival
exceeding this capacity is truncated at Emax

j for simplicity,
since the overflowing energy is certainly lost.

The offline scheduling problem is considered in this paper,
indicating that the energy arrivals Ej,i and the channel param-
eters αi are assumed to be known prior to transmission. The
purpose of this assumption is to quantify the benchmark per-
formance, provide insights in development of online policies,
and apply to practical cases where these parameters can be
estimated in an accurate manner.

Each energy harvesting node utilizes its harvested energy
towards the network objective, aiming to improve the overall
utility of the network. The rate of energy consumption at
each node is limited by its harvesting process and storage
capacity. Denoting the instantaneous power consumption of
node j with the non-negative integrable function pj(t), the
cumulative energy consumed by node j at any time t falling
in the ith time slot is upper bounded by the harvested energy
as ∫ t

0

pj(t) dt ≤
i∑

k=0

Ej,k (1)

Fig. 2: The generalized network model with M nodes and
utility f(p,αi) at time slot i.

and lower bounded due to the battery capacity as
i∑

k=0

Ej,k −
∫ t

0

pj(t) dt ≤ Emax
j (2)

for all time instants 0 ≤ t ≤ T and users j = 1, ...,M . The
constraint in (2) follows from the observation that allowing any
arriving energy to overflow is undesirable. The unlikely case
where discarding energy at a node is better for the network
will be handled alternatively in the sequel by manipulating the
utility function instead.

We wish to formulate the problem in a general fashion
in order to cover a larger set of optimization problems. In
previous work [1]–[7], the utility to be optimized has been
the reliable communication rate, or the closely related trans-
mission completion time. The achievable rates and capacity
for most channels considered in these papers are well-known,
allowing customized solutions to the problem. However the
capacity of an arbitrary network model with M users is an
open problem. We define a general utility function,

f(p,α) = f(p1, p2, ..., pM ,α) (3)

which yields the instantaneous utility of the network given the
instantaneous powers of nodes as pj and the related channel
parameter as the vector α. This utility can be replaced with
any instantaneous and additive performance metric depending
on the application, some examples of which are instantaneous
rate, average distortion, or successful transmission probability.
There is no restriction on the utility function in (3) other than
being integrable, since the problem will aim to maximize the
integral of this function. Hence the model is applicable to a
wide range of scenarios, due to the freedom of choice in both
the network topology and objective function.

With the instantaneous utility and energy constraints defined
above, the average utility maximization problem is expressed
as

max
p(t)≥0

1

T

∫ T

0

f(p(t),αi)dt, i =
⌊
t
τ

⌋
(4a)

s.t. pj(t) ∈ Pj , j = 1, ...,M (4b)



where i represents the time slot in which t falls, and Pj is the
set of energy-feasible power policies pj(t) for the jth user,

Pj =

{
p(t) ≥ 0

∣∣∣∣∣0 ≤
i∑

k=0

Ej,k −
∫ iτ

0

pj(t)dt ≤ Emax
j , i ≤ N

}
(5)

Note that verifying the energy feasibility constraints at the
beginning and end of time slots is sufficient. This is due
to consumed powers pi(t) being non-negative by definition,
causing the stored energy to reach its local extremum at the
beginning and end of the time-slots. Since harvested energy
remains constant within a time slot, feasibility at iτ+ and
(i + 1)τ− implies feasibility throughout time slot i. We next
present a general solution to the utility maximization problem
in (4).

III. DECOUPLED PROBLEM AND ANALYSIS

In this section, we show that the problem defined in (4) can
be decoupled into two nested problems that can be solved
independently, with the two resulting problems separately
targeting the aspects of energy efficient communication and
adapting to the energy harvests. We begin by defining the
energy consumed by node j in time slot i as

ϵj,i =

∫ (i+1)τ

iτ

pj,i(t) dt. (6)

and the collection of ϵj,i’s for all nodes at time slot i as the
vector ϵi. This variable can be added to the parameters of the
maximization in (4) with the definition in (6) as an equality
constraint without altering the optimal solution, yielding the
expanded problem

max
p(t)≥0,ϵi

1

T

∫ T

0

f(p(t),αi)dt, i =
⌊
t
τ

⌋
(7a)

s.t. ϵj,i =

∫ (i+1)τ

iτ

pj,i(t) dt, (7b)

pj(t) ∈ Pj , j = 1, ...,M. (7c)

We present the following observation in order to decouple
the maximization over the two set of variables.

Lemma 1: The optimal total consumed energy values ϵi in
the ith time slot is sufficient to determine the power policy
within the time slot in consideration, i.e., p(t) for t ∈ [iτ, (i+
1)τ ]. The optimal policy within this time slot can be found as
the solution to the total energy constraint problem,

max
p(t)

∫ (i+1)τ

iτ

f(p(t),αi)dt, (8a)

s.t. ϵj,i ≥
∫ (i+1)τ

iτ

pj,i(t) dt, i = 1, ...,M, (8b)

which will be referred to as the energy efficiency problem or
the inner problem in the sequel.

The proof of above lemma follows from the fact that unless
the power policy maximizes the achieved utility within the
said time slot for a given total energy ϵi, it can be replaced

with a better one within [iτ, (i + 1)τ ] without violating the
energy constraints of the original problem given in (5).

We denote by U(ϵ,α) the result of the maximization in (8),
i.e., the maximum utility that can be achieved in a time slot
with total energy constraint vector ϵ and channel parameter
α. Since we know that this will be the achieved utility for the
optimal policy and that it satisfies the constraints in (7b), we
can restate the problem in (7) as

max
ϵi≥0

1

T

N∑
i=1

U(ϵi,αi), (9a)

s.t. 0 ≤
i∑

k=0

Ej,k − ϵj,k ≤ Emax
j , (9b)

i = 0, ..., N − 1.

We will refer to this problem as the energy allocation
problem or the outer problem on account of being dependent
on the values of U(ϵ,α). Note that the energy feasibility
constraints on the consumed power vector in (7c) are now
replaced with an equivalent set of constraints on ϵi in (9b).
This is possible due to ϵi being sufficient to determine the
available energy values at iτ for any i.

In order to gain insight on how the energy allocation
problem in (9) can be solved, we focus on characterizing its
objective function. We start by pointing out that U(ϵ,α) is
concave in ϵ for a fixed α. This is a direct consequence of
(8); any point violating concavity of U can be improved by
time-sharing, concavifying the function without violating the
total energy constraint since the constraint is linear. Another
property is that U(ϵ,α) is non-decreasing in ϵ, which follows
from the inequality in (8b), indicating that an energy vector ϵ1
must perform at least as good as any ϵ < ϵ1. This means that
if any energy is to be discarded in the optimal policy, this will
be handled by the inner problem by choosing a policy that is
not on the boundary of (8b), justifying the storage capacity
constraint in (2).

Together with (9b) yielding a convex constraint set, it can be
stated that the energy allocation problem is convex, and the
solution satisfies the KKT conditions. As found for special
cases in the previous work [4], [6], [7], the solution to this
problem in each dimension can be obtained by generalized
directional water-filling algorithm, with water-levels varying
throughout the transmission period with

vj,i =
∂

∂ϵj
U(ϵ,αi)

∣∣∣
ϵj,i

=
N∑
k=i

(λj − µj)− ηi (10)

where λ, µ, and η are the non-negative Lagrangian multipliers
for the energy constraints, taking positive values when the
stored energy is 0 or Emax

j , and the non-negativity constraint
on ϵi respectively. The water-levels are found by a constrained
water-flow, the details of which can be found in [3] for a single
link Gaussian fading channel. This is extended to the multi-
node case by alternating the maximization between the energy
allocation of each node, which is known to converge due to
the convexity of the problem, as done in [7].



Fig. 3: A single link energy harvesting transmitter and receiver
model.

IV. EXAMPLE: ENERGY HARVESTING TRANSMITTER AND
RECEIVER

An immediate application of the framework described is a
two-node network with an energy harvesting transmitter and
energy harvesting receiver, shown in Figure 3. This case has
not been studied to date, primarily due to the lack of general
analytical models on receiver power consumption. Owing to
the ability to handle arbitrary utility functions, our approach
in Section III extends to this setting.

Consider the average communication rate as the utility of
this system. Unlike the previous single-link work with rate-
based utility such as in [2], [3] where achieved rate depends
on the number of bits departed by the transmitter, we also need
to consider how many bits the receiver can decode, process and
possibly store within its own energy budget. Although the rate
dependent power consumption of a receiver is not explicitly
studied, recent work on decoding energy has shown that there
is a trade-off between transmitter and receiver power when
achieving a predetermined probability of error [13]. This is due
to better channel coding requiring more energy for decoding,
and simpler channel coding requiring more bits to transmit
the same amount of information. Therefore the rate achieved
can be modeled as a function of both transmitter and receiver
powers reflecting this tradeoff. Furthermore, transmitters and
receivers might have additional concerns that affect the utility,
or in our case the rate of the system; such as power consumed
for sensing, pre-processing and compressing the data on the
transmitter side, and decompressing, processing, and storage
on the receiver side. These factors together yield the utility
or rate that can be achieved with a certain set of powers
at the nodes, denoted by the utility function f(pT , pR,α) in
Figure 3.

For demonstration purposes, we assume a wireless sensor
transmitter and a data center as receiver in a static AWGN
channel. Consider the following power requirements by the
nodes for successful operation: For device operation, a con-
stant power of ponT and ponR is needed by the transmitter and
receiver respectively to transmit or receive at any nonzero
rate. Otherwise the node is assumed to be in a sleep state
with negligible power consumption producing zero utility. To
successfully depart bits at rate rt, the transmitter requires a
transmission power Px satisfying rt = B · log(1+kPx) where
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Fig. 4: Plots of the utility function r(pT , pR) and the solution
to the inner problem U(ϵT , ϵR).

k depends on received noise at the receiver and the path loss
of the channel. On the receiver side, let the receiver require a
decoding power exponential in the desired rate, and a circuit
power linear in the rate of processing and storage in addition
to ponR . The resulting transmitter power-rate function rT (pT )
and receiver power-rate function rR(pR) with some arbitrary
parameters is shown in Figure 4a in blue and red respectively,
along with the achieved rate-based utility r(p1, p2) given as
the minimum of the two achieved rates for a given power
vector (pT , pR).

Next, we solve the inner problem for the utility given in
Figure 4a for a time slot of unit length. The inner problem
essentially requires finding a possibly infinite set of points
on r(p1, p2) and corresponding weights that, when linearly
combined, consume no more energy than the given energy
pair (ϵT , ϵR) while achieving the maximum rate on aver-
age. Conversely, this requires any point on U(ϵT , ϵR) to be
achievable by a linear combination while the overall function
is concave. Thus, if we plot the naively achievable utilities
as the bits communicated with constant power transmissions,
τ ·r(ϵ1/τ, ϵ2/τ), the solution is the convex hull of this function
as seen in Figure 4b. The darker region in this plot represents
the values of U(ϵT , ϵR) for which constant power transmission



is sufficient to solve the inner problem, while the lighter region
denotes utilities achieved by time-sharing. In effect, this means
that when the allocated energy in a slot falls on the light
colored region, the nodes are required to transmit with a power
corresponding to a higher rate for some fraction of the time
slot, and sleep in the remaining fraction to achieve the energy
efficient utility.

With the optimal in-slot behavior of transmitter and receiver
nodes described by the maximum utility function U(ϵT , ϵR),
what remains is to solve the outer problem using generalized
directional water-filling alternatingly for the two nodes. This
part of the problem allows the network to adopt to energy
harvests by optimally allocating energy to slots, yielding the
average rate maximizing power allocation policy. The solution
requires alternating between the transmitter and receiver on
finding the water levels vT and vR for both users given as,

vT,i =
∂

∂ϵT
U(ϵT , ϵR)

∣∣∣∣
ϵT,i

=

N∑
k=i

(λT,k − µT,k)− ηT,i

(11)

vR,i =
∂

∂ϵR
U(ϵT , ϵR)

∣∣∣∣
ϵR,i

=

N∑
k=i

(λR,k − µR,k)− ηR,i

(12)

where U(ϵT , ϵR) is the concavified function in Figure 4b and
λ, µ and η are non-negative Lagrangian multipliers for each
node, satisfying the complementary slackness conditions

λj,i(
i∑

k=0

Ej,k − ϵj,k) = 0, ηj,i · ϵj,i = 0, (13a)

µj,i(
i∑

k=0

Ej,k − ϵj,k − Emax
j ) = 0 j ∈ {T,R}. (13b)

The two water-filling algorithms interact through U(ϵT , ϵR),
since the partial derivative of this function for one node
changes with the allocated energy of the other node. The
alternating algorithm converges to yield the optimal policy,
for which the water levels for both nodes satisfy equations
(11) and (12) simultaneously.

V. SIMULATIONS

In this section, we provide simulation results to account
for the performance of the optimal and some alternative
suboptimal transmitter and receiver policies. We simulate an
energy harvesting transmitter receiver pair in a static AWGN
channel for 1000 slots and a slot length of τ = 1 sec. Both
the transmitter and the receiver require a constant operating
power of ponT = ponR = 50mW for being awake. Additionally,
the transmitter performs adaptive modulation for power control
[14], [15] with a rectangular M-QAM constellation, achieving
a discrete set of rates; while the receiver is required to
process and store the received data, modeled with a constant
energy cost of 5mJ/bit, yielding the following individual rates
achieved:
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Fig. 5: Average rates achieved using optimal and proposed
suboptimal policies for varying energy storage capacity.

rT (p) =



0, [p− ponT ]+ < 1mW (OFF )

1, p− ponT ∈ [1, 2)mW (BPSK)

2, p− ponT ∈ [2, 6)mW (QAM)

3, p− ponT ∈ [6, 10)mW (8−QAM)
...

...

bits/s/Hz

(14)

rR(p) =

[
p− 50mW

5

]+

bits/s/Hz. (15)

We define the system utility as min(rT , rR) when the two
nodes achieve rates rT and rR simultaneously. In other words,
the utility of this system is the average rate of successfully
transmitted, processed and stored bits. The energy harvesting
process is assumed to be an i.i.d. process, with ET,i and
ER,i distributed uniformly in [0, 100]mJ , yielding an average
harvesting rate of 50mW per node.

The system is simulated with various power allocation
policies, and the average utility achieved against the storage
capacity of the nodes (Emax

T = Emax
R ) is plotted in Figure 5.

The blue lines correspond to algorithms that consume the
harvested energy as it is received, labeled Harvested. The
red lines represent a constant power algorithm that waits for
an energy threshold and transmits with the optimal constant
power whenever threshold is reached, indicated with Constant.
Additionally, the two dashed plots labeled with an additional
TS term are allowed to use the time-sharing rates, i.e., can
achieve the utility suggested by the output of the Inner
problem. The performance of the nested optimization in this
problem is shown by the green plot, with label Iter. Gen.
WF representing iterative generalized water-filling used in the
outer problem. Finally, an upper-bound on average rate derived
using a non-energy harvesting model with an average power
of 50mW per node is shown in magenta.

As expected, policies without optimal power allocation in
each time-slot, i.e., without utilization of the time-sharing
results of the energy efficiency problem, perform particularly



worse for smaller storage capacities, since they rarely accumu-
late enough energy to just turn their circuitry on for an entire
time-slot. When these algorithms start employing optimal
time-sharing within the slots, shown in dashed lines, the
performance is significantly increased. The optimal algorithm,
using both time-sharing and optimal energy allocation with
iterative water-filling, performs notably better than all alterna-
tives, allowing the system to yield a utility close to the upper-
bound, especially when the storage is limited. With increasing
storage capacity, the constant power transmitter is expected
to further approach the proposed optimal policy; however the
proposed policy allows using much smaller storage for the
same performance.

VI. CONCLUSION

This paper analyzes an energy harvesting transmitter energy
harvesting receiver pair, and provides a method of developing
optimal power policies by demonstrating that the optimization
problem is an instance of a utility maximization framework
for energy harvesting networks whose solution is provided.
In particular, we provide a framework for optimizing energy
harvesting networks with packet energy arrivals by decoupling
the problem into two nested problems: an inner problem
addressing energy efficiency and an outer problem addressing
energy allocation for energy harvesting nodes. This approach
yields a solution that can be extended to any network topology
with an instantaneous, i.e., memoryless, utility function. For
the application of this framework on the transmitter-receiver
pair where both nodes are energy harvesting, numerical results
reveal that the optimal policy performs notably closer to the
upper bound, which is the utility of the non-energy harvesting
system, i.e., when the nodes have the total energy available to
them at the commencement of the session.
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