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Abstract—We consider a binary energy harvesting channel
(BEHC) where the encoder has unit energy storage capacity. We
first show that an encoding scheme based on block indexing is
asymptotically optimal for small energy harvesting rates. We then
present a novel upper bounding technique, which upper bounds
the rate by lower-bounding the rate of information leakage to
the receiver regarding the energy harvesting process. Finally, we
propose a timing based hybrid encoding scheme that achieves
rates within 0.03 bits/channel use of the upper bound; hence
determining the capacity to within 0.03 bits/channel use.

I. INTRODUCTION

The binary energy harvesting channel (BEHC) with finite
energy storage is introduced in [1], where an energy harvesting
encoder with a finite battery communicates with a receiver
over a binary channel using only the harvested energy. It was
shown in [1] that this channel model is analogous to a finite
queue which communicates with the receiver by timing the
departures of the arriving packets, where arriving packets are
the harvested energy units. Even in its simplest form, i.e.,
with a unit-size battery and a noiseless binary channel, the
exact capacity of this channel is still unknown, as the single-
letter capacity expression found in [1] involves an auxiliary
variable. In this paper, we present an encoding scheme that
is asymptotically optimal at low harvesting rates, develop a
tighter upper bound by quantifying and minimizing the infor-
mation leakage from the transmitter to the receiver regarding
the energy harvesting process, and propose a timing based
hybrid encoding scheme that yields achievable rates within
0.03 bits/channel use of the upper bound; hence determining
the capacity of this channel to within 0.03 bits/channel use.

The capacity of additive white Gaussian noise (AWGN)
energy harvesting channel was studied in [2] with an infinite-
sized battery, and in [3] with no battery. Reference [2] showed
that the capacity with an infinite-sized battery is equal to the
capacity of an average power constrained channel with aver-
age power constraint equal to the average energy harvesting
rate. With no energy storage, the problem is a time-varying
stochastic amplitude constrained communication problem with
causally known amplitude constraints, which was treated in [3]
by combining Shannon strategies for channels with causally
known states [4] and Smith’s approach to constant amplitude
constrained channels [5]. Concurrent to [1], reference [6]

This work was supported by NSF Grants CNS 09-64364 and CNS 09-
64632.

Encoder
ŴW
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Fig. 1. The binary energy harvesting channel (BEHC) model.

considered a finite-storage energy harvesting communication
problem and specified a multi-letter capacity expression for a
general discrete memoryless channel. This expression required
n-letter Shannon strategies, where each channel input depends
on the entire energy harvesting history, thus making evaluation
difficult. It was conjectured in [6] that instantaneous strategies,
where only the current energy state is considered in each chan-
nel use, are sufficient to achieve the capacity. A related work
where similar discrete channel/discrete energy abstraction is
also used for communication can be found in [7].

II. CHANNEL MODEL AND PREVIOUS RESULTS

We consider the binary energy harvesting channel in [1], [6]
shown in Fig. 1. The model consists of an energy harvesting
encoder which harvests energy into its finite-sized battery, and
a conventional decoder. In each channel use, the encoder first
sends a binary symbol Xi, which is 0 or 1, subject to the
energy available in its battery, and then harvests a unit of
energy with probability q and saves it in the battery if there
is space. Energy harvests over time are i.i.d. A channel input
of Xi = 1 consumes one unit of stored energy, while Xi =
0 does not require any energy. As in [1], we focus on the
case of unit-sized battery, i.e., Emax = 1. Hence, the encoder
can only send a 1 by consuming the unit of energy in its
battery. The communication channel is noiseless, i.e., Yi =
Xi. Battery state and energy arrivals are naturally causally
known to the transmitter, but unknown to the receiver. Battery
state determines the set of feasible channel inputs at any given
channel use. Even when energy arrivals are i.i.d., the battery
state is correlated over time due to energy storage, and is also
affected by the past transmitted symbols.

Although the channel is noiseless, finding the capacity of
this channel model is difficult, as the battery state is unknown
to the receiver, it is correlated over time, and also is affected by
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the past channel inputs. For the case of Emax = 1, reference
[1] shows the equivalence of this channel model to a timing
channel model where the information is conveyed through the
distances between consecutive 1s. In particular, [1, Lemma 1]
shows that BEHC is equivalent to the timing channel:

Ti = Vi + Zi (1)

where Ti ∈ {1, 2, . . .} is the number of channel uses between
the (i − 1)st and the ith 1s, Zi ∈ {0, 1, . . .} is the number
of channel uses the encoder has to wait for the next energy
arrival, and Vi ∈ {1, 2, . . .} is the number of channel uses the
encoder chooses to wait after receiving the energy, and thus
after observing Zi. Since energy harvests are i.i.d. Bernoulli
with q, Zi are i.i.d. geometric with parameter q, and thus the
channel model in (1) is memoryless. Every timing channel use
costs Ti channel uses in the BEHC. This equivalence yields
the capacity as follows as found in [1, Theorem 1]

C = max
p(u),v(u,z)

I(U ;T )

E[T ]
(2)

where U is an auxiliary variable with distribution p(u), and
v(u, z) is a mapping from the message carrying signal U
and state for the timing channel Z which is causally known
to the transmitter, to the channel input. This result is a
hybrid of Shannon’s channel with causal state information [4]
and Anantharam-Verdu’s bits through queues [8]. However,
although single-letterized, the capacity in (2) is still difficult
to evaluate due to the infinite cardinalities of U , V and Z.

III. ASYMPTOTICALLY OPTIMAL ENCODING

In [1], an achievable scheme based on block indexing is
proposed for the timing channel representation of the problem.
The transmission duration is divided into blocks of length N ,
and indexed within blocks in mod N . The channel input is
chosen in terms of U ∈ {0, 1, . . . , N − 1} and Z as follows

V = (U − Z mod N) + 1 (3)

The achievable rate with the v(u, z) selection in (2) is

RA = max
N

max
p(u)

H(U)

E[V ] + E[Z]
(4)

which involves optimization with respect to p(u) and the block
size N . In addition, the following is an upper bound that was
obtained in [1] by giving Z information to the receiver

CUB = max
p

qH(p)

q + p(1− q)
(5)

In the following theorem, we show that this encoding scheme
is asymptotically optimal as q goes to zero, i.e., when the
harvesting rate is small. We establish this by proposing specific
encoding parameters p(u) and N which yield achievable rates
that asymptotically equal the upper bound in (5).

Theorem 1 The encoding scheme for the timing channel with
auxiliary U ∈ {0, 1, . . . , N − 1} and the channel input given

in (3) is asymptotically optimal as energy harvest rate q → 0,

lim
q→0

CUB
RA

= 1 (6)

Proof: For a given q, the objective in (5) is a continuous, dif-
ferentiable and concave in p. This can be verified by observing
that the second derivative is always negative. Therefore, p∗

maximizing (5) satisfies

q(log(1− p∗)− q log(p∗))

(p∗ + q − p∗q)2
= 0 (7)

or equivalently for q > 0,

q =
log(1− p∗)

log(p∗)
(8)

As a result of (8), we observe that there exists a feasible
0 < p∗ ≤ 0.5 for all 0 < q ≤ 1, and that it satisfies

lim
q→0

p∗ = 0 (9)

At harvesting rate q, we choose N =
⌈

1
p∗

⌉
, and U uni-

formly distributed over {0, 1, . . . , N−1}, i.e., p(u) = 1/N for
0 ≤ u ≤ N−1. Note that N ≥ 2. Substituting these selections
into (4), the rate achievable with this scheme becomes

RA =
H(U)

E[V ] + E[Z]
=

log(N)
N+1

2 + 1−q
q

≥ q log(N)

Nq + 1− q
(10)

where E[Z] = (1− q)/q and E[V ] = (N + 1)/2 follows from
U being independent of Z and uniform on {0, 1, . . . , N − 1}.
The last term in (10) is increasing in N within the interval
[ 1
p∗ , d

1
p∗ e], which allows us to further lower bound RA as

RA ≥
q log(N)

Nq + 1− q
≥ −qp

∗ log(p∗)

q + p∗(1− q)
= R̄A (11)

We are now ready to show (6) as follows:

lim
q→0

CUB
RA

≤ lim
q→0

CUB
R̄A

(12)

= lim
q→0

qH(p∗)

q + p∗(1− q)
· q + p∗(1− q)
−qp∗ log(p∗)

(13)

= 1 + lim
p∗→0

(1− p∗) log(1− p∗)
p∗ log(p∗)

(14)

= 1 (15)

In addition, CUB ≥ RA by the definition of an upper bound,
concluding the proof of the theorem. �

The asymptotically optimal encoding scheme in Theorem 1
can be interpreted as sending a uniformly distributed symbol in
{1, . . . , N} with each harvested energy. In this case, the frame
length N poses a trade-off between sending more bits per
symbol and vacating the battery quickly to increase chances
of capturing more energy. The asymptotically optimal choice
for N in the proof of Theorem 1 gives us a provably optimal
encoding scheme, which is also simple to implement, for low
energy harvesting scenarios.
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IV. A TIGHTER UPPER BOUND

With every timing symbol Ti conveyed to the receiver, some
information about the energy arrival, Zi, is also leaked to the
receiver. Since Z and the message-carrying signal U are inde-
pendent, this implies that some of the information capacity of
the binary noiseless channel is occupied by information about
the energy arrival sequence. As an insightful example to this
phenomenon, we point to [9], which considers communication
through a queue with unit packet buffer. In [9], the departures
from the buffer are random, and the encoder chooses the arrival
sequence to convey its message to the receiver. In a similar
manner, we may consider energy harvested from nature to be
encoded in some way, achieving some positive rate between
the nature and the receiver. Clearly, the sum of the nature’s rate
and the message rate cannot exceed the entropy of the channel
output. We make use of this insight to obtain a tractable and
tighter upper bound for the capacity of the BEHC.

We begin with the following lemma, which provides an
upper bound for the conditional entropy H(Z|T = t, U = u),
which is the amount of uncertainty in Z at the receiver upon
observing T = t and successfully decoding U = u (message).
This bound will be useful in lower bounding the amount of
information leaked to the receiver about the Zn sequence.

Lemma 1 For the timing channel T = V + Z, where Z is
geometric with q, and V = v(U,Z) with U independent of Z,

H(Z|T = t, U = u) ≤ H(Zt) (16)

where Zt is a truncated geometric random variable distributed
on {0, 1, . . . , t− 1} with parameter q, i.e.,

pZt(z) =

{
q(1−q)z

1−(1−q)t , if z < t

0, otherwise
(17)

Proof: We first examine the joint distribution p(z, t|u). We
depict this discrete distribution as a two-dimensional matrix
in Fig. 2. First, observe that given z and u, the output of the
channel is deterministic, i.e., T = v(u, z) + z. Hence, for any
given z and u, p(z, t|u) can be non-zero only for a single
value of t, and consequently each row of the matrix in Fig. 2
consists of a single non-zero entry. Next, we write

p(z) = p(z|u) (18)

=

∞∑
t=1

p(z, t|u) (19)

= p(z, t = v(u, z) + z|u) (20)

where (18) is due to the independence of Z and U . This
implies that the single non-zero entry in each row of p(z, t|u)
is equal to p(z). Also note that

p(z, t|u) = 0, z ≥ t (21)

by the definition of the channel.
Let A ⊂ {0, 1, ..., t − 1} be the set of indices z ∈ A for

which p(z, t|u) = p(z). This allows us to write pA(z) =

Fig. 2. The joint probability matrix p(z, t|u) for a fixed strategy u. There is
only one non-zero term in each row, and the rows sum up to p(z). Shaded area
corresponds to t ≤ z, which is not possible by definition. When calculating
H(Z|T = t, U = u), only the values in the bold rectangle are relevant.

p(z|t, u) as

pA(z) =
p(z, t|u)∑∞
t=1 p(z, t|u)

(22)

=

{
q(1−q)z∑

a∈A q(1−q)a
, if z ∈ A

0, otherwise
(23)

We next prove that H(Z|T = t, U = u) is maximized
when A∗ = {0, 1, . . . , t− 1}, i.e., when all terms in the bold
rectangle in Fig. 2 are non-zero. We do this by showing that
the distribution pA∗(z) is majorized by pA(z) for all index sets
A = {a0, a1, . . . , ak−1} ⊂ {0, 1, . . . , t − 1}, k ≤ t. Without
loss of generality, we assume that a0 < a1 < . . . < ak−1,
which yields the decreasing ordering

pA(a0) > pA(a1) > ... > pA(ak−1) (24)

for all A. For 0 ≤ n ≤ k − 1 we write
n∑
i=0

pA(ai) =

∑n
i=0 q(1− q)ai∑k−1
i=0 q(1− q)ai

(25)

≥
∑n
i=0(1− q)an+i−n∑n

i=0(1− q)an+i−n +
∑k−1
i=n+1(1− q)ai

(26)

≥
∑n
i=0(1− q)an+i−n∑k−1
i=0 (1− q)an+i−n

(27)

≥
∑n
i=0(1− q)i∑t−1
i=0(1− q)i

=

n∑
i=0

pA∗(i) (28)

where we obtain (26) by subtracting

δ1 =

n∑
i=0

(1− q)ai −
n∑
i=0

(1− q)an+i−n (29)

from both the numerator and the denominator, and (27) is
obtained by adding

δ2 =

k−1∑
i=n+1

(1− q)an+i−n −
k−1∑
i=n+1

(1− q)ai (30)
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to the denominator. Note that both δ1 and δ2 are positive since
an − ai ≥ n− i for n ≥ i. Finally, (28) follows from k ≤ t.

The concavity of f(x) = −x log(x) and the majorization
shown in (25)-(28) implies that H(Z|T = t, U = u) is
maximized at A∗ = {0, 1, . . . , t − 1}. This yields the upper
bound H(Zt), with Zt in (17); concluding the proof. �

Next, we present an upper bound for the BEHC by using
the result of Lemma 1 in the following theorem.

Theorem 2 The capacity of the BEHC is upper bounded by

C ≤ max
pT (t)∈P

H(T )−
∑∞
t=1

H((1−q)t)
1−(1−q)t p(t)

E[T ]
(31)

where

P =

{
pT (t)

∣∣∣∣ n∑
t=1

p(t) ≤ 1− (1− q)n, n = 1, 2, . . .

}
(32)

and H(a) is the binary entropy function.

Proof: Since T = v(U,Z) + Z is a deterministic function of
U and Z, we rewrite the numerator of the capacity in (2) as

I(U ;T ) = I(U,Z;T )− I(Z;T |U) (33)
= H(T )−H(T |U,Z)− I(Z;T |U) (34)
= H(T )− I(Z;T |U) (35)

Note that the second term in (35) represents the information
leaked to the receiver about the energy harvesting process Z
after U is decoded. We lower bound this term as

I(Z;T |U) = H(Z|U)−H(Z|T,U) (36)
= H(Z)−H(Z|T,U) (37)

=

∞∑
t=1

∑
u

p(t, u) [H(Z)−H(Z|T = t, U = u)]

(38)

≥
∞∑
t=1

[H(Z)−H(Zt)]
∑
u

p(t, u) (39)

=

∞∑
t=1

[H(Z)−H(Zt)] p(t) (40)

where (37) follows from the independence of Z and U , and
(39) follows from Lemma 1. Substituting (35) and (40) in (2),

C ≤ max
p(u),v(u,z)

H(T )−
∑∞
t=1[H(Z)−H(Zt)]p(t)

E[T ]
(41)

The objective in (41) is only a function of pT (t). Hence,
we can perform the maximization over distributions pT (t) that
are achievable by some auxiliary pU (u) and function v(U,Z).
Note that since T = V + Z, we have T > Z, and therefore

n∑
t=1

p(t) ≤
n−1∑
z=0

p(z) = 1− (1− q)n, n = 1, 2, . . . (42)

Hence, the set of distributions P in (32) contains all pT (t)
that can be generated by some pU (u) and v(U,Z). We note

that relaxing the constraint pT (t) ∈ P gives an upper bound
as well, though it is strictly looser than that in the theorem.
We also note that for the geometrically distributed Z we have,

H(Z)−H(Zt) =
H((1− q)t)
1− (1− q)t

(43)

Substituting (42) and (43) in (41), we obtain the upper bound
in (31); completing the proof of the theorem. �

V. COMPUTING THE UPPER BOUND

We can rewrite the maximization problem in (31) as

C ≤ max
β

1

β
max

pT (t)∈P,E[T ]≤β
H(T )−

∞∑
t=1

∆tp(t) (44)

where we have defined ∆t = H((1−q)t)
1−(1−q)t . Note that the inner

objective is the sum of a concave and a linear function, and
the constraints are linear. Hence, the inner problem is convex,
for which we write the KKT optimality conditions as

p(t) = exp

(
−µt−∆t + λt −

t∑
n=1

γn − η − 1

)
, t = 1, 2, . . .

(45)

where λt ≥ 0, γn ≥ 0, µ ≥ 0 and η are the Lagrange multi-
pliers for the constraints p(t) ≥ 0,

∑n
t=1 p(t) ≤ 1− (1− q)n,

E[T ] ≤ β, and
∑
p(t) = 1, respectively. The complementary

slackness and dual feasibility conditions are

λtp(t) = 0, λt ≥ 0 (46)

γt

(
t∑

n=1

pT (n)− 1 + (1− q)t
)

= 0, γt ≥ 0 (47)

µ (E[T ]− β) = 0, µ ≥ 0 (48)

η

( ∞∑
n=1

pT (n)− 1

)
= 0 (49)

We note that for t with p(t) = 0, we need the exponent term
in (45) to go to −∞. In that case, the value of λt is redundant
in (45). Thus, without loss of generality, we assign λt = 0 for
all t, and rewrite the solution as

p(t) = A exp

(
−µt−∆t −

t∑
n=1

γn

)
(50)

where A = e−η−1. For all µ ≥ 0 and γi, using (49), we find

A =

( ∞∑
t=1

e−µt−∆t−
∑t

n=1 γn

)−1

(51)

The remaining parameters can be searched numerically, ob-
serving that due to (47), γt > 0 only when

∑t
n=1 pT (n) =

1−(1−q)t. In particular, for each µ > 0, there exists a unique
set of multipliers {γt} which satisfies (47) when substituted in
(50). Due to (48), each µ > 0 gives the solution of the second
maximization in (44) for a specific β = E[T ]. Hence, we solve
(44) by tracing µ in [0,∞) and finding the corresponding {γt}
and β in each case.
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Fig. 3. Encoding in the BEHC for N = 4. Circles indicate energy harvests
and triangles indicate a transmission of 1 using the harvested energy.

VI. AN IMPROVED ENCODING STRATEGY

As a new encoding strategy, we propose choosing U ∈
{0, 1, . . .} with distribution pU (u), and calculating the channel
input V = v(U,Z) as

V =

{
U − Z + 1, U ≥ Z
(U − Z mod N) + 1, U < Z

(52)

The interpretation of this scheme in the BEHC is demonstrated
in Fig. 3 for N = 4. If possible, the transmitter waits for
V = U − Z + 1 channel uses, so that T = U + 1, and U is
decoded perfectly, as in the case for U1 in the figure. However,
if Z > U , then the encoder immediately departs the energy
within N channel uses, making the battery available for new
energy harvests while providing partial information on U via

(T − 1) mod N = U mod N (53)

as seen in the figure for U2. The rates achievable with this
scheme are calculated by searching for N and pU (u) that
maximize R = I(U ;T )/E[T ].

Note that this scheme is a hybrid between the block indexing
scheme in [1] and choosing T as close to a desired value
as possible. Moreover, in this scheme, U is not limited to
{0, 1, . . . , N−1}. If we restrict the support set of U as U < N ,
then the new achievable scheme reduces to that in [1], and
therefore it performs at least as good as the one in [1], as will
be verified next.

VII. NUMERICAL RESULTS

Fig. 4 compares the achievable rate (4) and upper bound
(5) of [1], the rates achieved by the instantaneous Shannon
strategies proposed in [6], and the upper bound and achievable
rate found in Sections IV and VI of this paper. The improved
upper and lower bounds on the capacity of the BEHC are
significantly tighter than previous results. In particular, the
proposed upper bound, which considers the information leaked
to the receiver regarding the harvesting process, is especially
tight for large harvest rates q. The proposed achievable scheme
which performs encoding over the equivalent timing channel,
performs better than that of [6] with instantaneous Shannon
strategies for the zeroth and first order Markov cases. The
scheme proposed in [6] only observes the current battery state
in each channel use, while allowing a Markovian dependence
over time in the strategy. Our results show that at least in the
noiseless channel and with unit-sized battery, the history of
the battery state that our scheme is able to exploit is helpful.
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Fig. 4. Upper bounds and achievable rates for the BEHC.

VIII. CONCLUSION

We considered the noiseless BEHC with unit-sized battery.
We presented an achievable scheme which is asymptotically
optimal for small energy harvesting rates. We then developed
an upper bound by quantifying the information leakage to the
receiver regarding the energy harvesting random process at the
transmitter and by lower bounding it. Finally, we proposed
a new achievable scheme which outperforms the previous
achievable scheme in [1], and also the one in [6] for the zeroth
and first order Markovian inputs. The proposed achievable
scheme achieves rates within 0.03 bits/channel use of the
proposed upper bound, therefore, determining the capacity of
this channel to within 0.03 bits/channel use.
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