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Abstract—In this paper, we consider the energy allocation
problem for energy harvesting and energy cooperating nodes
with finite-sized batteries. In particular, we solve the sum-
throughput maximization problem in a two-way channel with
energy harvesting nodes that can also transfer energy to one
another. To do so, we non-trivially extend a class of policies
which originally rely on an infinite-sized battery to be optimal,
to the finite battery case. We observe that when we partition
transferred energy into immediately used and stored components,
an optimal policy has a non-zero stored component only when
the battery of the transferring user is full. This enables the
decomposition of the sum-throughput maximization problem
into separate energy transfer and power allocation problems.
Utilizing properties of this optimal class of policies, we solve the
power allocation problem using a two dimensional directional
water-filling algorithm with restricted transfers, where energy
transfers only take place at full battery instances. Numerical
results demonstrate that energy cooperation notably improves
sum-throughput as one node gets energy deprived.

Index Terms—Energy harvesting networks, energy coopera-
tion, partially procrastinating power policies, two-way channels.

I. INTRODUCTION

Recent findings on high efficiency medium range wireless

energy transfer [1], [2] enable energy cooperation as a viable

technology for future wireless networks. This option is partic-

ularly valuable in energy harvesting networks, where energy

available to each node is non-uniform among the nodes and

variable in time. Additionally, incorporating wireless energy

transfer to energy harvesting networks brings a new dimension

to the power allocation problem, calling for tailored energy

policies in order to fully utilize the potential of the network

[3]–[5].

Energy harvesting wireless networks are widely studied

in the past few years, particularly from the perspective of

transmission policies. In [6], the authors solve the transmission

completion time minimization problem for a single energy

harvesting transmitter with an infinite-sized battery. This is

extended to a finite-sized battery and the throughput maxi-

mization problem in [7], and to fading channels in [8] using

a directional water-filling algorithm. This is a variation of the

conventional water-filling algorithm where water is allowed to

flow only in the forward direction in time, in order to avoid
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consuming energy that is not yet harvested. Other channel

models, e.g., multiple access [9], broadcast [10], [11], and

relay channels [12], circuit power consumption models [13],

[14], and energy harvesting transmitters [15] are subsequently

considered. In common, these offline optimization problems

are solved with variations of the directional water-filling

algorithm.

Energy transfer adds a new dimension to wireless com-

munications with energy harvesting nodes by enabling the

possibility of energy cooperation, as proposed in [3]. Uni-

directional energy transfer in energy harvesting channels is

studied in [3] for various channel models. The authors develop

a two dimensional directional water-filling algorithm, where

water flow occurs both among the neighboring time slots of

each transmitter, and also between transmitters. This work

is extended to bi-directional energy transfers in [4], [5],

which also shows the optimality of so-called procrastinating

policies. With the help of procrastinating policies, the two

dimensional directional water-filling algorithm is reduced to a

single dimensional one. All of these references assume infinite-

sized batteries at all nodes. Some other work on energy transfer

in communications include inductively coupled models [16],

energy token exchange models [17], and joint data and energy

transfer over RF [18], [19].

In this work, we consider a two-way channel consisting of

energy harvesting and cooperating nodes. Different than pre-

vious work which assumed infinite batteries at the nodes [3]–

[5], we consider the practical case of finite-sized batteries. In

particular, we show that procrastinating policies defined in [4],

[5], which rely on infinite-sized storage for optimality, can be

modified to apply to nodes with finite-sized batteries. Namely,

we show that there exists an optimal partially procrastinating

policy, where energy wirelessly received in a time slot cannot

exceed energy consumed in that time slot unless the battery

of the transferring node is full. This yields a decomposition of

the sum-throughput maximization problem into energy transfer

and power allocation problems. The former problem is over

a single time slot, and is therefore solved directly. The latter

problem is solved using the two dimensional directional water-

filling (2D-DWF) algorithm in [3]. We further simplify the 2D-

DWF algorithm using properties of partially procrastinating

policies. Finally, we observe through simulations that energy

cooperation significantly increases sum-throughput, particu-
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Fig. 1. Two-way channel with energy harvesting transmitters, energy coop-
eration, and finite-sized batteries.

larly when one of the nodes is energy-deprived.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a two-way channel with two energy harvesting

transmitters that can also bi-directionally transfer energy to

one another. Unlike previous two-way models with energy co-

operation [3], [4], we consider finite energy storage capability

at both nodes. The channel model is shown in Fig. 1.

The time is slotted with unit slot length τ = 1 for simplicity,

while the extension to arbitrary slot lengths is straightforward.

In time slot i, the transmitters T1 and T2 harvest E1i and E2i

units of energy, and store the harvested energy in their batteries

of size Emax
1 and Emax

2 , respectively. The energy available in

the battery can either be used for transmission, or transferred

to the other user. In particular, Tk, k = 1, 2, transfers δki ≥ 0
units of energy to the other node in time slot i wirelessly.

This transfer has efficiency 0 ≤ αk < 1, i.e., node Tℓ, ℓ 6= k,

receives αkδki units of energy as a result of the transfer. In

addition, Tk transmits with power pki ≥ 0 throughout time slot

i, consuming pkiτ = pki units of energy. Hence, the energy

stored in the battery of Tk, k = 1, 2, at the end of time slot i
evolves as

Bki = min
{

Emax
k , Bk(i−1) + Eki + αℓδℓi − δki − pki

}

,
(1)

where ℓ = 1, 2, ℓ 6= k.

We consider additive white Gaussian noise (AWGN) at

both receivers, and noise powers are normalized through the

channel coefficients
√
hk from Tk to Tℓ. For full duplex

operation, the channel output at Tk is given by

Yk = Xk +
√

hℓXℓ + Zk, ℓ 6= k, (2)

where Zk ∼ N (0, 1) is the received noise. Note that each

receiver can cancel out the contribution from its own channel

input, Xk, and treat the channel as a single transmitter AWGN

channel. With the transmit powers p1i and p2i in time slot i,
the channel capacity from Tk to Tℓ is therefore given by [20]

Ck(pki) =
1

2
log(1 + hkpki). (3)

In this work, we are interested in maximizing the sum-

throughput of the system in a finite session length of N time

slots. For clarity of exposition, we consider the case with

h1 = h2 = 1, since the generalization to arbitrary h1, h2

is straightforward. Hence, we will use the sum-capacity CS

within each time slot, expressed as

CS (p1i, p2i) =
1

2
log (1 + p1i) +

1

2
log (1 + p2i) (4)

for transmit powers p1i and p2i in time slot i. However,

the analysis in this paper can be extended to weighted sum-

throughput functions by redefining CS (p1i, p2i) accordingly.

In order to maximize the sum-throughput of the system,

the transmitters choose the energy amounts allocated to trans-

mission and transfer in each time slot, i.e., pki and δki,
k = 1, 2, i = 1, . . . , N . We refer to the ensemble of these

variables as the power policy of the system. In accordance with

prior work [3]–[12], we consider the offline problem where

both transmitters are aware of the energy arrivals Eki for

the duration of the communication session. Hence, the power

policy is calculated from the entire energy arrival sequence,

Eki, k = 1, 2, i = 1, . . . , N .

For this case, we first observe that a transmitter cannot

consume more energy than it has available at any time.

Namely, for Tk, the transmit and transfer energy in any time

slot i is less than the stored, harvested, and received energy

combined, i.e.,

δki + pki ≤ Bk(i−1) + Eki + αℓδℓi, (5)

where ℓ 6= k. Note that this constraint can equivalently be

expressed as Bki ≥ 0. We refer to this constraint as the energy

causality constraint.

Next, we remark that a power policy yielding a battery

overflow at any time slot cannot be sum-throughput optimal.

This is the extension of [7, Lemma 2] to our two-way model

with energy cooperation, and follows from the sum-capacity

in (4) being increasing in p1i and p2i. In particular, if a power

policy allows the battery of Tk to overflow in time slot i by

an amount of ǫ, then increasing pki by ǫ avoids the overflow,

increases the sum-throughput, and does not affect the rest of

the transmission. Hence, without loss of generality, we restrict

our attention to power policies that do not yield a battery

overflow. With this constraint, we simplify (1) as

Bki = Bk(i−1) + Eki + αℓδℓi − δki − pki (6)

=

i
∑

j=1

(Ekj + αℓδℓj − δkj − pkj) , (7)

where (7) is obtained by telescoping (6) with initial battery

state1 Bk0 = 0. With this definition, a power policy that does

not yield a battery overflow satisfies Bki ≤ Emax
k . We refer

to this constraint as the battery capacity constraint.

The sum-throughput maximization problem for the energy

harvesting and energy cooperating two-way channel in a

1A non-zero initial battery state Bk0 can be equivalently represented in
this model by increasing Ek1, i.e., the first energy harvest, by Bk0.
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transmission session of N time slots is expressed as

max
{pki,δki}

N
∑

i=1

CS(p1i, p2i) (8a)

s.t. 0 ≤ Bki ≤ Emax
k (8b)

pki ≥ 0, δki ≥ 0 (8c)

k = 1, 2, i = 1, . . . , N, (8d)

where (8b) are the energy causality and battery capacity

constraints described above. In the next two sections, we

propose a decomposition of (8) and find its solution.

III. PARTIALLY PROCRASTINATING POLICIES FOR

FINITE-SIZED BATTERIES

Reference [4] introduces procrastinating policies, which

satisfy the condition

αkδki ≤ pℓi, k, ℓ = 1, 2, ℓ 6= k (9)

throughout the transmission. In the infinite-sized battery case

in [4], for any power policy, a procrastinating policy with

the same transmit powers can be found by postponing energy

transfers which are not immediately needed, i.e., which do

not satisfy (9). Hence, procrastinating policies are shown to

contain an optimal policy, allowing the decomposition of

the infinite-sized battery version of (8) into separate energy

transfer and power allocation problems. This decomposition

simplifies the analysis of the problem for two reasons: the

energy transfer problem is defined over a single time slot only,

and the power allocation problem is stripped from the energy

transfer variables.

By their nature, procrastinating policies rely on being able

to postpone energy transfers indefinitely without being limited

by a finite-sized battery. Clearly, with finite-sized batteries,

postponing transfers may yield a battery overflow which could

have been avoided by transferring energy at the expense of

violating (9). Hence, policies satisfying (9) do not necessarily

contain an optimal solution to (8). In this section, we adapt

procrastinating policies to the finite-battery case.

We decompose δki into two components, namely

δki = γki + ǫki, (10)

where γki and ǫki are both non-negative. As will be made clear

in the sequel, these components refer to transferred energy that

is immediately consumed and transferred energy that is stored

for future use, respectively. Note that by choosing γki and ǫki,
any δki ≥ 0 can be established. Hence, power policies defined

as {pki, γki, ǫki}, k = 1, 2, i = 1, . . . , N , include all feasible

power policies for (8). We now define partially procrastinating

policies for the finite-sized battery case as follows:

Definition 1 A partially procrastinating policy consisting of

{pki, γki, ǫki}, k = 1, 2, i = 1, . . . , N , satisfies

αkγki ≤ pℓi, k, ℓ = 1, 2, ℓ 6= k (11)

γ1iγ2i = 0 (12)

ǫki (Bki − Emax
k ) = 0, k = 1, 2 (13)

for i = 1, . . . , N .

In particular, for the finite-battery case, the procrastination

condition in (9) applies only to the immediately consumed

component of the transferred energy, γki, as in (11). Hence, we

refer to this as partial procrastination. The other component,

namely ǫki, can only be non-zero when the respective battery

is full, i.e., Bki = Emax
k , as dictated by (13). Next, we show

that there exists a procrastinating policy which solves (8).

Lemma 1 There exists at least one partially procrastinating

policy, as defined in Definition 1, for which the transferred

energy values {δki} found from (10) and the transmit powers

{pki} solve the problem in (8).

Proof: Let {p∗ki, δ∗ki}, k = 1, 2, i = 1, . . . , N , be a solution

to (8). To prove the lemma, we will construct a partially

procrastinating policy {p∗ki, γ∗ki, ǫ∗ki} which satisfies (10). Let

δk1 = δ∗k1, k = 1, 2. Starting from i = 1, calculate

γki = min{δki, p∗ℓi/αk} (14)

δk(i+1) = δ∗k(i+1) + δ∗ki − γki (15)

for k, ℓ = 1, 2 and i = 1, . . . , N . Note that by definition, {γki}
in (14) satisfy (11). Next, for i = 1, . . . , N , let

γ∗ki = max{0, γki − γℓi}, k, ℓ = 1, 2, ℓ 6= k, (16)

which ensures that {γ∗ki} satisfy both (11) and (12). Finally,

let ǫ∗ki = 0 for k = 1, 2, i = 1, . . . , N . Starting from i = 1,

calculate δki from (10) using {γ∗ki, ǫ∗ki}, Bki from (7) and

{δki}, and let

ǫ∗ki = max{0, Bki − Emax
k }. (17)

We remark that by definition, {ǫ∗ki} satisfy (13). Note that the

process in (14)-(15) postpones energy transfers to the next

time slot when αkδki ≥ pℓi, (16) eliminates cases where

energy is transferred in both directions simultaneously, and

(17) transfers any energy that is potentially overflowing to

the other transmitter. As a result, both constraints in (8b) are

satisfied for k = 1, 2 and i = 1, . . . , N by construction. Hence,

{p∗ki, γ∗ki, ǫ∗ki} is feasible; and since the transmit powers are

unchanged, this policy is also optimal. �

In Lemma 1, we show that by procrastinating energy

transfers γki, and choosing ǫki to avoid overflows, we can

find a partially procrastinating policy for any feasible transmit

power policy. This observation allows us to simplify the sum-

throughput maximization problem, as we will present in the

next section.

IV. OPTIMAL POWER POLICY

We next apply the optimality of partially procrastinating

policies to decompose and solve the problem in (8). We define
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consumed powers,

p̄ki = pki + γki − αℓγℓi, k, ℓ = 1, 2, ℓ 6= k (18)

for the entire transmission duration, i = 1, . . . , N . Substituting

in (7), this yields the battery state

Bki =
i

∑

j=1

(Ekj + αℓǫℓj − ǫkj − p̄kj) . (19)

For a partially procrastinating policy, we have p̄ki ≥ 0 from

(11). In addition, due to (11)-(12), the constraint pki ≥ 0
implies p̄ki ≥ γki. Given these two constraints on p̄ki,
all power policies {pki, γki, ǫki} can be represented with a

consumed power policy {p̄ki, γki, ǫki}. Therefore, without loss

of generality, we add (11)-(12) to the problem in (8) and

rewrite the sum-throughput maximization problem as

max
{p̄ki,γki,ǫki}

N
∑

i=1

CS

(

{p̄ki − γki + αℓγℓi}2k=1

)

(20a)

s.t. 0 ≤ Bki ≤ Emax
k (20b)

p̄ki ≥ γki ≥ 0, γ1iγ2i = 0 (20c)

p̄ki ≥ 0, ǫki ≥ 0 (20d)

k, ℓ = 1, 2, ℓ 6= k, i = 1, . . . , N. (20e)

Here,
(

{pk}2k=1

)

in (20a) represents (p1, p2) with ℓ 6= k, and

Bki is given in (19). In this problem, the objective in (20a)

and the constraints in (20c) are independent of ǫki, while the

remaining constraints are independent of γki. Furthermore,

the summation terms in the objective and the constraints in

(20c) are separable in i. Hence, the problem in (20) can be

decomposed into two parts as

f(p̄1, p̄2) = max
γ1,γ2

CS

(

{p̄k − γk + αℓγℓ}2k=1

)

(21a)

s.t. p̄k ≥ γk ≥ 0 (21b)

γ1γ2 = 0 (21c)

k, ℓ = 1, 2, ℓ 6= k, (21d)

and

max
{p̄ki,ǫki}

N
∑

i=1

f(p̄1i, p̄2i) (22a)

s.t. 0 ≤ Bki ≤ Emax
k (22b)

p̄ki ≥ 0, ǫki ≥ 0 (22c)

k = 1, 2, i = 1, . . . , N. (22d)

We refer to (21) as the energy transfer problem and to (22)

as the power allocation problem, since the former optimizes

energy transfers γki within each time slot, while the latter

considers the problem of allocating consumed power p̄ki
among time slots.

A. Solving the Energy Transfer Problem

Since (21) is uncoupled from the battery dynamics in (22b),

its solution is identical to the solution of the energy transfer

problem in [4]. In particular, it is observed in [4, Lemma 1]

that the solution to (21) without the constraint (21c) satisfies

(21c). Thus, this is also the solution to (21). Namely, the

optimal transferred energy values are

γ∗ki = max

{

1

2

(

1 + p̄ki −
1 + p̄ℓi
αk

)

, 0

}

(23)

for k, ℓ = 1, 2, ℓ 6= k, yielding the solution

f(p̄1i, p̄2i) =














CS(p̄1i, p̄2i), γ∗1i = γ∗2i = 0,

log
(√

α1

2

(

1 + p̄1i +
1+p̄2i

α1

))

, γ∗1i > 0,

log
(√

α2

2

(

1 + p̄2i +
1+p̄1i

α2

))

, γ∗2i > 0.

(24)

B. Solving the Power Allocation Problem

The power allocation problem in (22) is a generalized

version of (8). In particular, only the function f(p̄1, p̄2) in

the objective is different. The solution to (8) without the

battery capacity constraints and with uni-directional energy

transfer is found using a two dimensional directional water-

filling (2D-DWF) algorithm in [3]. However, for (22), we

also know that an optimal policy satisfies (13). This follows

from the optimality of partially procrastinating policies shown

in Lemma 1, and can be used to develop a simpler power

allocation algorithm for this model.

First, we remark that (22) is a convex program. We write

the Karush-Kuhn-Tucker (KKT) conditions

−df(p̄1i, p̄2i)

dp̄ki
+

N
∑

j=i

(λkj − βkj)− σki = 0, (25)

N
∑

j=i

(λkj − βkj)− αk

N
∑

j=i

(λℓj − βℓj)− µki = 0, (26)

for k = 1, 2, i = 1, . . . , N , where λki ≥ 0 and βki ≥ 0 are the

Lagrange multipliers for the constraints in (22b), and σki ≥ 0
and µki ≥ 0 are those for the constraints in (22c), respectively.

The complementary slackness conditions are

λkiBki = 0, βki(Bki − Emax
k ) = 0, (27)

σkip̄ki = 0, µkiǫki = 0. (28)

We define water-levels vki, k = 1, 2, i = 1, . . . , N , as

vki =

(

df(p̄1i, p̄2i)

dp̄ki

)−1

, (29)

which are found from (24) as

v1i =











2(1 + p̄1i), γ∗1i = γ∗2i = 0,

1 + p̄1i +
1+p̄2i

α1

, γ∗1i > 0,

α2(1 + p̄2i +
1+p̄1i

α2

), γ∗2i > 0,

(30)

for k = 1 and

v2i =











2(1 + p̄2i), γ∗1i = γ∗2i = 0,

α1(1 + p̄1i +
1+p̄2i

α1

), γ∗1i > 0,

1 + p̄2i +
1+p̄1i

α2

, γ∗2i > 0,

(31)
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Fig. 2. Two dimensional directional water-filling with restricted transfers, with (a) initial water-levels, (b) water-levels after flow within each node, and (c)
water-levels after flow between the two nodes. The flow from Tk to Tℓ is not allowed unless the battery of Tk is full, as seen at i = 2 in (b).

for k = 2. We make the following observations: From (27)-

(28), the Lagrange multiplier σki is zero if p̄ki is non-zero,

and λki and βki are non-zero only if the battery of Tk is empty

or full at time slot i, respectively. Hence, assuming non-zero

transmit powers, from (25), the water-level is found as

vki =





N
∑

j=i

(λkj − βkj)





−1

, (32)

which remains constant unless the battery is full or depleted,

increasing when depleted and decreasing when full. Finally,

from (26), whenever ǫki > 0, i.e., energy is transferred from

Tk to Tℓ, then the two water-levels must satisfy vℓi = αkvki.
Otherwise, we must have vℓi > αkvki and ǫki = 0, since

vℓi < αkvki cannot satisfy (26).

In order to find an optimal policy, we need to find water-

levels {vki} that satisfy the conditions outlined above, from

which we can calculate the Lagrange multipliers using (25)-

(28). To this end, we use the two dimensional directional

water-filling algorithm in [3]. In this algorithm, harvested

energy Eki is initially allocated to the respective time slot, and

water-levels are calculated from (30)-(31). Energy then flows

from time slot i to time slot i+ 1 for Tk if vki > vk(i+1), or

from Tk to Tℓ in time slot i if αkvki > vℓi. This is repeated

iteratively until water-levels are stabilized. We refer the reader

to [3, Alg. 1] for the implementation of this algorithm without

battery capacity constraints and bi-directional energy cooper-

ation. In addition to [3, Alg. 1], to conform to the battery

capacity conditions, if the energy flowing into time slot i+ 1
exceeds Emax

k for that transmitter, then energy flow into time

slot i+1 from time slot i stops. With this algorithm, we need

to iteratively update water-levels for all neighboring slots, and

regulate water-flow in both dimensions.

The contribution of partially procrastinating policies to this

algorithm emerges when we utilize Lemma 1. In particular,

for ǫki, (13) holds for at least one optimal policy, i.e., energy

is transferred from Tk to Tℓ only when the battery of Tk is

full. In the 2D-DWF algorithm described above, this provides

an important simplification by restricting the energy flow

between T1 and T2 to a small number of time slots where

one of the batteries is full. Therefore, we refer to the resulting

algorithm as the 2D-DWF algorithm with restricted transfers.

This restriction also eliminates the ambiguity about whether

the energy in Tk at time slot i should flow to the next time

slot or to Tℓ if both water-levels are lower. In the 2D-DWF

algorithm with restricted transfers, water flow to Tℓ does not

take place unless water flow to time slot i+ 1 is blocked due

to a full battery.

An example of the 2D-DWF algorithm with restricted

transfers is presented in Fig. 2. The system is initialized by

allocating pki = Eki, and calculating vki from (30)-(31), as in

Fig. 2a. At this point, directional water flow for each user is

allowed, as indicated by green arrows, while energy transfer

between users is not allowed, as indicated by red arrows. After

the water flows, we observe that the battery of T1 is full at

the end of i = 2, as in Fig. 2b, preventing further water flow

into i = 3. This enables energy transfer at i = 2, leading to

the optimal water-levels in Fig. 2c. We remark that this does

not imply no energy transfer takes place in i = 1 or i = 3,

but those transfers are represented by γki obtained from (23),

while the vertical water flow represents ǫki only.

V. NUMERICAL RESULTS

We consider transfer efficiency values α1 = α2 = 0.5,

channel coefficients h1 = h2 = −100dB, receiver noise

density N1 = N2 = 10−19W/Hz, and a bandwidth of 1MHz

for N = 100 time slots of length τ = 1sec. Energy arrivals

E2i are distributed independently and uniformly in [0, 10]mJ,
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Fig. 3. Sum-throughput versus Eh for a TWC with and without energy
transfer, compared to constant power scheme.

while E1i are distributed independently and uniformly in

[0, Eh]mJ. The energy storage capacity, i.e., battery size, for

both transmitters are Emax
1 = Emax

2 = 10mJ.

The sum-throughput of the two-way channel is plotted in

Fig. 3 versus Eh, for policies found with and without energy

cooperation. We also present the optimal policy when ǫki,
k = 1, 2, i = 1, . . . , N is restricted to be zero. Therefore,

the top three plots correspond to a) γki, ǫki ≥ 0, b) γki ≥ 0,

ǫki = 0, and c) γki = ǫki = 0 cases, respectively. Furthermore,

we compare the optimal policy to the constant power policy,

in which all nodes transmit with power equal to the expected

harvested power, i.e., pki = E[Eki], whenever possible. We

observe that energy cooperation has a notable effect on sum-

throughput, particularly when T1 is energy deprived, i.e., for

small Eh. This is due to energy transfers from T2 to T1 playing

an important role in increasing the sum-throughput of the

system. The difference between the energy cooperation plot

and the cooperation with ǫki = 0 plot demonstrates the impact

of transferring overflows, i.e., ǫki. Similarly, the difference

between the cooperation with ǫki = 0 plot and the with-

out cooperation plot demonstrates the impact of immediately

consumed energy transfers, i.e., γki. Although the impact of

γki diminishes with increasing peak harvested energy Eh, the

impact ǫki remains notable. Finally, we remark that the optimal

policies perform significantly better than the constant power

policy for all Eh.

VI. CONCLUSION

In this work, we have solved the problem of sum-throughput

maximization for two energy harvesting and cooperating trans-

mitters in a two-way communication scenario. We have proven

the optimality of partially procrastinating policies by partition-

ing transferred energy into immediately consumed and stored

components, and showing that the stored component in the

optimal policy is non-zero only when the battery of the energy-

transferring user is full. We have shown the decomposition of

the sum-throughput maximization problem into energy transfer

and power allocation problems. We have presented the two

dimensional directional water-filling algorithm with restricted

transfers to solve the power allocation problem. With this

storage-limited model, we have shown the benefits of partial

procrastinating policies in practical scenarios. Future work

includes extensions to other multiterminal models, peak power

constrained transmitters, and online policies.
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