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Abstract—In this paper, a half-duplex two-way relay channel
with energy harvesting nodes is considered. In particular, short-
term throughput maximization problems are solved using a
decode-and-forward relay. Necessary properties of the optimal
transmission policy are derived to gain insights into the optimal
solution. Then, a subgradient descent algorithm is used to find
the optimal policy. It is observed through simulations that energy-
deficient nodes act as bottlenecks on the achieved throughput. The
achieved average throughput is observed to be close to the upper
bound when nodes have no energy intermittency, and significantly
higher than the throughput achieved by naı̈ve policies.

I. INTRODUCTION

We consider a bidirectional relay channel with energy
harvesting nodes. Efficient energy management is required
when dealing with such nodes since they harvest energy out
of external sources in an intermittent fashion.

Recently, there has been considerable interest in energy
harvesting networks [1]–[13]. A single-user wireless commu-
nication system is considered in [1] with random energy and
data arrivals at the source. A piece-wise constant transmit
power policy where the node transmits with constant power in
intervals longest in duration while staying energy feasible, is
shown to be optimal. Reference [2] considers the throughput
maximization problem when the amount of energy that the
battery can store is limited. The two problems in [1], [2]
are observed to be related, and the optimal policy is shown
to follow the shortest path within the feasible energy tunnel
[2]. In [3], the extension of this model to fading channels is
addressed. A single link scenario with an energy harvesting
transmitter and receiver is analyzed in [4]. Multiple access,
broadcast and interference channels with energy harvesting
transmitters are considered in [5]–[9]. In addition to these
multi-user setups, special cases of the energy harvesting relay
channel problem have been studied in [10], [11], where it is
noted that the problem becomes more challenging with a half-
duplex relay and a data buffer at the relay.

In this work, we consider the two-way relay channel with
energy harvesting nodes. The channel is two-hop in the
sense that the transmitters cannot hear each other directly,
i.e., communication is possible only through the relay. We
consider a decode-and-forward relay [14], [15] operating in

half-duplex mode. The choice of the relaying scheme is due to
its relatively good performance, and its amenability to practical
codes, as compared to, for instance, compress-and-forward.
We formulate the short-term sum-rate maximization problem
and identify properties of the optimal policy to gain insights
into how the energy arrivals to the nodes affect the optimal
policy and the resulting throughput. We observe that for nodes
that are energy deprived, certain rate constraints have to be
satisfied with equality, pointing to insights about efficient use
of available energy. We then employ a subgradient descent
method [16] to find the optimal solution to the problem.
We observe through simulations that the optimal solution is
dominated by the more energy-deficient group of nodes, i.e.,
transmitters or the relay, and thus the optimal solution is
not necessarily unique contrary to previously studied energy
harvesting setups [1], [2]. Comparing the rates achieved by
the optimal policy with naı̈ve policies, we confirm that the
optimal policy performs notably better, approaching the upper
bound where all harvested energy is available to the node at
the beginning of transmission.

II. SYSTEM MODEL

We consider an additive white Gaussian noise (AWGN)
two-way relay channel with transmitters T1 and T2. These
two transmitters wish to convey independent messages to
each other, but cannot hear each other directly. They instead
communicate via the relay node T3. The two links in the
channel are assumed to be reciprocal for simplicity, i.e., the
link from T1 (resp. T2) to T3 and the link from T3 to T1 (resp.
T2) have the same static fading coefficient h13 (resp. h23).
We note that the results of the paper can easily be extended
to models without reciprocal channel gains. The relay does
not employ a data buffer, therefore it has to forward messages
as soon as it receives them. The channel model is given in
Figure 1. All channel coefficients and transmit powers are
normalized with respect to the corresponding receiver noise so
that the Gaussian noise of each link has an effective variance
of 1. This is achieved by first normalizing h1,3 and h2,3 to
establish unit variance noise at T1 and T2, and subsequently
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Fig. 1: The separated two-way relay channel with energy
harvesting nodes.

Fig. 2: The energy harvesting model for node j. Instances with
Ej,n = 0 are not shown.

scaling the transmit power at nodes T1 and T2 to do the same
for the noise at T3.

As shown in Figure 1, nodes do not have a constant source
of energy; they are powered by harvested energy only. An
energy packet of Ej,n units arrives at node j at the nth energy
arrival for all j = 1, 2, 3. Harvested energy is stored in a
battery with finite capacity Ej,max for node j, so any energy
in excess of the capacity of the battery is lost. We refer to the
time duration between the nth and (n + 1)st energy arrivals
as the nth epoch and the length of the nth epoch is denoted
by ln. The epochs are constructed by the union of all arrivals
to all nodes, similar to references [5], [10], but the nodes do
not necessarily harvest energy all at the same time. Therefore,
zero energy arrivals are allowed and Ej,n is set to 0 if node
j does not have an energy arrival at the beginning of the nth

epoch. Ej,1 denotes the initial amount of energy in the battery
of node j just before transmission starts. Figure 2 depicts an
example of the construction of epochs in our energy harvesting
model.

The energy harvesting profiles described by Ej,n and ln play
an important role on the feasibility of a transmission policy
as the energy available to each node is strictly limited to the
energy stored in its battery. Specifically, the energy required
by each node for a feasible transmission policy should not
exceed the energy available, both considering the amount of
harvested energy and the capacity of energy storage device.
In this work, it is assumed that all energy harvests are known
non-causally by the transmitters and the relay, so that offline
optimal policies and performance limits of the network can be
found.

We denote the power policy of the network by vectors p1,
p2 and p3, where each vector represents the average power

allocated to the respective node in each epoch. In order to
formulate a set for feasible power policies, we first present
the following observation:

Observation 1: There exists an optimal power policy that
never allows any of the batteries to overflow.

The proof follows from the fact that given any power policy
with battery overflows, the node can withdraw more power
from its battery prior to an overflow, potentially enlarging
the set of rates it can achieve, while preventing the overflow
and keeping battery state the same after the overflow. This is
possible due to the non-causal knowledge of harvested energy
packets, and was shown in detail in previous work [2]. Thus,
restricting the feasible set of policies to one that does not
overflow the battery is guaranteed to admit an optimal policy
that is also optimal when battery overflows are allowed.

With the no-overflow restriction, the set of feasible policies
are defined by two sets of constraints,

n∑
i=1

lipj,i −
n∑

i=1

Ej,i ≤ 0, (1)

n∑
i=1

Ej,i −
n−1∑
i=1

lipj,i ≤ Ej,max, (2)

for all j = 1, 2, 3 and n = 1, 2, ..., N where N is the
number of epochs considered in the problem. Energy causality
constraints, given in (1), ensure that the energy consumed by
a node does not exceed the energy harvested up to that epoch.
No-overflow constraints, given in (2), imply that whenever the
n+1st energy packet arrives to a node, the battery can store all
of this energy without any overflows. Any policy (p1,p2,p3)
satisfying both (1) and (2) for all j and i is considered a
feasible policy.

The communication model is the so-called multiple-access
broadcast (MABC) decode-and-forward [17]. The MABC
decode-and-forward scheme consists of a multiple-access
channel from transmitters T1 and T2 to T3 and a broadcast
channel from T3 to T1 and T2, which will be referred to as
the multiple-access and broadcast phases in the sequel. The
two phases occur sequentially in each epoch. The fraction of
the length of the epoch li allocated to the broadcast phase
is denoted by the time-sharing parameter 0 ≤ ∆ ≤ 1. This
is another parameter of the transmission policy that needs to
be optimized. Reference [15] shows the instantaneous rates
achieved by MABC in a half-duplex setup to be

R1 ≤ min

{
∆C

(
|h13|2p1

∆

)
, (1−∆)C

(
|h23|2p3
1−∆

)}
,

(3a)

R2 ≤ min

{
∆C

(
|h23|2p2

∆

)
, (1−∆)C

(
|h13|2p3
1−∆

)}
,

(3b)

R1 +R2 ≤ ∆C

(
|h13|2p1

∆
+

|h23|2p2
∆

)
. (3c)

where R1 and R2 are the rates of the messages originating
from nodes T1 and T2 respectively, p1, p2 and p3 are the



average powers consumed by nodes T1, T2 and T3 respectively
and C(p) = 1

2 log(1 + p). The instantaneous transmit powers
in each phase is found by scaling the average consumed power
with ∆. Note that in the broadcast phase, the relay transmits a
function of the two decoded messages, which can be decoded
at T1 and T2 using their own messages to find the intended
ones. Therefore, in the broadcast phase, T1 and T2 only need
to decode at the rate they intend to receive the message from
the other node. The multiple access and broadcast phases are
depicted in Figure 1.

III. OPTIMAL POWER ALLOCATION

We address the problem of maximizing the throughput for
the half-duplex two-way relay channel by choosing the average
powers pj in each epoch i for each node j = 1, 2, 3. In what
follows, we will state the problem and use KKT analysis to
extract properties of the optimal solution.

For a power policy to be feasible, each node must satisfy
its energy causality and battery capacity constraints, and the
resulting instantaneous rates must be drawn from the region
defined in (3). Then, the sum-rate maximization problem is
formulated as

max
R1,R2,∆,
p1,p2,p3

N∑
n=1

ln(R1,n +R2,n) (4a)

s.t.
n∑

i=1

lipj,i ≤
n∑

i=1

Ej,i, (4b)

n∑
i=1

Ej,i −
n−1∑
i=1

lipj,i ≤ Ej,max (4c)

Rk,n ≤ ∆nC(
h2
k3pk,n
∆n

), (4d)

R1,n +R2,n ≤ ∆nC(
h2
13p1,n + h2

23p2,n
∆n

), (4e)

Rk,n ≤ (1−∆n)C(
h2
k̄3
p3,n

1−∆n
), (4f)

Rk,n ≥ 0, 0 ≤ ∆n ≤ 1, j = 1, 2, 3, (4g)
k, k̄ = 1, 2, k̄ ̸= k, n = 1, 2, . . . , N

where

Rk = (Rk,1, Rk,2, . . . , Rk,N ), k = 1, 2, (5)
pj = (pj,1, pj,2, . . . , pj,N ), j = 1, 2, 3. (6)
∆ = (∆1,∆2, . . . ,∆N ) (7)

Here, R1,n and R2,n denote the rates in the nth epoch for
the messages originating from nodes T1 and T2 respectively,
p1,p2 and p3 denote the transmission power vectors, and
∆ is the vector of time-sharing parameters. Constraints (4b)
are the energy causality constraints and (4c) are the battery
capacity constraints for T1, T2 and T3. Constraints (4d) and
(4e) are the rate restrictions due to the multiple-access phase
and (4f) are the rate restrictions due to the broadcast phase
and non-negativity. All the constraints in (4) are convex and

the objective function is concave. Therefore, (4) is a convex
optimization problem, and yields an optimal solution that
satisfies the Karush-Kuhn-Tucker (KKT) conditions. Taking
the partial derivatives of the Lagrangian of (4), the stationarity
conditions are found as

v1,n + v2,n + v5,n − µ1,n = ln, (8a)
v3,n + v4,n + v5,n − µ2,n = ln, (8b)(

N∑
m=n

u1,m −
N∑

m=n+1

w1,m

)
ln =

1

ln 2

 v1,nh
2
13

1 +
h2
13p1,n

∆n

+
v5,nh

2
13

1 +
h2
13p1,n+h2

23p2,n

∆n

 (8c)

(
N∑

m=n

u2,m −
N∑

m=n+1

w2,m

)
ln =

1

ln 2

 v3,nh
2
23

1 +
h2
23p2,n

∆n

+
v5,nh

2
23

1 +
h2
13p1,n+h2

23p2,n

∆n

 (8d)

(
N∑

m=n

u3,m −
N∑

m=n+1

w3,m

)
ln =

1

ln 2

 v2,nh
2
23

1 +
h2
23p3,n

1−∆n

+
v4,nh

2
13

1 +
h2
13p3,n

1−∆n

 (8e)

v1,n

(
h2
13p1,n

ln 2(∆n + h2
13p1,n)

− C

(
h2
13p1,n
∆n

))
− v2,n

(
h2
23p3,n

ln 2(1−∆n + h2
23p3,n)

− C

(
h2
23p3,n

1−∆n

))
+ v3,n

(
h2
23p2,n

ln 2(∆n + h2
23p2,n)

− C

(
h2
23p2,n
∆n

))
− v4,n

(
h2
13p3,n

ln 2(1−∆n + h2
13p3,n)

− C

(
h2
13p3,n

1−∆n

))
+ v5,n

(
h2
13p1,n + h2

23p2,n
ln 2(∆n + h2

13p1,n + h2
23p2,n)

− C

(
h2
13p1,n + h2

23p2,n
∆n

))
= λ1,n − λ1,n (8f)

for all n = 1, 2, . . . , N , where vk,n, uj,n, wj,n, λ1,n and
λ2,n are the Lagrangian multipliers for rate constraints, en-
ergy causality, battery capacity and time-sharing parameter
constraints at the end of (4d), respectively. The complementary
slackness conditions are

uj,n

n∑
i=1

(lipj,i − Ej,i) = 0, (9a)

wj,n

(
n∑

i=1

Ej,i −
n−1∑
i=1

lipj,i − Ej,max

)
= 0, (9b)

v1,n(R1,n −∆nC(h2
13p1,n/∆n)) = 0, (9c)

v2,n(R1,n − (1−∆n)C(h2
23p3,n/(1−∆n))) = 0, (9d)

v3,n(R2,n −∆nC(h2
23p2,n/∆n)) = 0, (9e)



v4,n(R2,n − (1−∆n)C(h2
13p3,n/(1−∆n))) = 0, (9f)

v5,n(R1,n +R2,n −∆nC(
h2
13p1,n + h2

23p2,n
∆n

)) = 0, (9g)

µ1,nR1,n = 0, µ2,nR2,n = 0, (9h)
λ1,n∆n = 0, λ2,n(1−∆n) = 0, (9i)

for all j = 1, 2, 3 and n = 1, 2, . . . , N , and all Lagrangian
multipliers are non-negative due to dual feasibility conditions.
The following properties of an optimal policy can be found
using the KKT conditions above.

Property 1: At all epochs prior to an empty battery instance
for node Tk, k = 1, 2, at least one of the constraints in (4d) and
(4e) involving pk,n must be met with equality. This property
follows from (8c) and the respective complementary slackness
conditions.

Property 2: At all epochs prior to empty battery instances
for both T1 and T2, the sum-rate constraint in (4e) must be
tight. This property is a consequence of Property 1 and the fact
that the constraints in (4d) and (4f) cannot simultaneously be
tight without violating (4e).

Property 3: At all epochs prior to an empty battery instance
for T3, the constraints in (4b), (4c) and (4f) involving p3,n
cannot be loose. This property essentially prevents the relay
from transmitting with higher rates than necessary, and follows
from (8e).

So far, these properties advocate an energy efficiency per-
spective. Properties 1 and 3 ensure that if node T1, T2 or
T3 will be energy-deprived in the future, it should not invest
energy in improving a rate constraint that is loose, i.e., at least
one of the constraints should be tight at the time. Next, we
find a property suggesting that at least one of the phases for
both messages must be limiting for the intended rate.

Property 4: At all epochs prior to some empty battery
instance for T1, T2 and T3, at least one of the constraints
in (4d) and (4f) must be tight for each k = 1, 2. This property
is found by combining the stationarity conditions in (8a) and
(8b) with Property 2, and indicates that only a corner point
of the multiple access channel capacity region can be used at
any time prior to empty batteries for all nodes.

Above properties outline a set of necessary conditions for
the optimal policy, but they do not suffice to completely
describe the optimal solution. Also note that, unlike previous
scheduling work on energy harvesting networks, the nodes do
not necessarily have to consume all the harvested energy, since
either the transmitters or the relay may be the bottleneck of
the system. This may lead to some of the properties not being
useful for the majority of the transmission period, since they
require some or all batteries to be empty at a future time.
Therefore, we find it necessary to explore iterative algorithms
to solve the convex sum-rate maximization problem in (4),
which will be presented in Section IV.

IV. SUBGRADIENT DESCENT METHOD

The convexity of the problem in (4) suggests the use
of simple convex optimization algorithms such as gradient

descent. However the problems are high-dimensional since the
rates for each epoch, i.e., R1,n, R2,n, are also optimization
parameters along with transmit powers. Moreover, another
optimization problem arises when projecting the gradient
onto the feasible set at each iteration in order to keep the
solution within the feasible set. This optimization problem
turns out to be as complicated as the original one, and thus
a straightforward gradient descent implementation does not
prove to be computationally feasible.

Instead, we rewrite the TWRC sum-rate maximization prob-
lem (4) by moving the rate constraints into the objective as

max
p1,p2,
p3,∆

N∑
n=1

ln min


∆nC(

h2
13p1,n+h2

23p2,n

∆n
),

∆nC(
h2
13p1,n

∆n
) + (1−∆n)C(

h2
13p3,n

1−∆n
),

∆nC(
h2
23p2,n

∆n
) + (1−∆n)C(

h2
23p3,n

1−∆n
),

(1−∆n)(C(
h2
13p3,n

1−∆n
) + C(

h2
23p3,n

1−∆n
))


(10a)

s.t.
n∑

i=1

lipj,i ≤
n∑

i=1

Ej,i, (10b)

n∑
i=1

Ej,i −
n−1∑
i=1

lipj,i ≤ Ej,max, (10c)

0 ≤ ∆n ≤ 1, j = 1, 2, 3, n = 1, 2, . . . , N. (10d)

The resulting problem has linear constraints and is lower
dimensional as the parameter space is reduced to transmit pow-
ers and time-sharing parameters only. Note that the objective
in (10) remains concave after this mathematical manipulation
as the rate for each epoch is the minimum of a set of concave
functions. However, the objective in this case, although con-
tinuous, is not continuously differentiable, which is necessary
for gradient descent. Thus, we instead employ a subgradient
descent algorithm which converges to the optimal solution for
such problems [16].

The subgradient method is the same as gradient descent,
except a subgradient is computed at every iteration instead
of the gradient as the gradient may not always exist. If the
objective is differentiable at the solution of the current itera-
tion, then the gradient exists and is equal to the subgradient
at that point. The algorithm calculates the next solution and
projects it onto the feasible set. The optimization problem that
arises during this projection is a quadratic program which is
easier to solve compared to the projection for the unmodified
problem. Lastly, a line search is performed to find the optimal
step size in each iteration. Numerical examples are given in
Section V where optimal power policies are computed with
the subgradient descent method described here.

V. NUMERICAL RESULTS

In this section, we present simulations demonstrating the
optimal policy for the decode-and-forward two-way relay
channel in Section II and a performance comparison with
respect to upper and lower bounds.
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Fig. 3: Optimal cumulative harvested energy and average
consumed energy policies for nodes T1 and T1 + T2 (a)
and node T3 (b) for a symmetric half-duplex channel with
h13 = h23 = 1, peak energy harvesting rates Eh,1 = Eh,2 =
Eh,3 = 5 and battery sizes E1,max = E2,max = E3,max = 5.

Some examples for the optimal power policies found using
the subgradient descent algorithm described in Section IV
are shown in Figures 3 and 4 for the half-duplex mode
with symmetric and asymmetric channel gains. The energy
policies, i.e., the total energy consumed since the beginning
of transmission, are plotted for T1 only and the sum of T1 and
T2 in Figures 3a and 4a, and for T3 in Figures 3b and 4b. The
time sharing parameters ∆i are shown below Figures 3b and
4b. Here, the staircase tunnels represent the energy feasibility
constraints for respective nodes, and an energy policy that
remains within this tunnel is considered feasible. It is observed
that unlike previous work, e.g., for the single user channel
in [2], the optimal policy does not necessarily follow the
shortest path in the tunnel for all nodes. In Figure 4, it can be
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Fig. 4: Optimal cumulative harvested energy and average
consumed energy policies for nodes T1 and T1 + T2 (a)
and node T3 (b) for an asymmetric half-duplex channel with
h13 = 1, h23 = 0.5, peak energy harvesting rates Eh,1 = 5,
Eh,2 = 5 and Eh,3 = 1 and battery sizes E1,max = 5,
E2,max = 5 and E3,max = 1.

seen that the second phase of transmission, i.e., the broadcast
phase, dominates the other since the relay is energy-deprived
in comparison to T1 and T2. As a result, more time is allocated
to the broadcast phase, and the power allocation of T3 behaves
similar to the shortest path through the tunnel in Figure 4b to
achieve the optimal broadcast sum-rate. Similarly, the MAC
phase emerges as the bottleneck in Figure 3, and the sum-
power for T1 and T2 follows the shortest path through the
feasible tunnel.

In Figures 3 and 4, it can also be seen that the time division
parameter ∆n plays an important role in that, by properly
selecting ∆n, the effect of unbalanced energy harvests at the
transmitters and the relay can be mitigated and the achievable
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Fig. 5: Average sum-rate achieved against varying peak harvest
rates for node T1 with Eh,2 = 5 = Eh,3 = 5.

rates in the first and second phases can be balanced. This
results in an efficient use of the energy and a higher throughput
compared to equal or fixed allocation of phases.

In Figure 5, the average sum-rate achieved by the optimal
policy is given for varying peak harvest rates for user T1.
The peak harvest rates for the other nodes, i.e., node T2 and
the relay are set to 5. For comparison, an upper bound and
sum-rates achieved by two naı̈ve policies are also plotted. The
upper bound corresponds to the case where all the energy
harvested throughout transmission is assumed to be received
at the beginning of the transmission and the batteries are
infinite. This way, the energy causality and battery constraints
are removed and the optimal policy is chosen from a larger
feasible set. In the hasty policy, the nodes spend their har-
vested energy within the epoch that follows the energy arrival
and never store energy for future epochs. Therefore, a new
constraint is introduced, i.e. the batteries must be empty just
before an energy arrival, and the feasible set is smaller. The
constant power policy attempts to transmit with a fixed average
power in each epoch, determined as the average harvesting
rate. If the required energy is not available at the node, all
remaining energy is consumed in the epoch. The optimal
time sharing parameter ∆i is found in each time slot after
the average power values are determined. We remark that the
hasty policy is optimal when the nodes do not have a battery,
and the constant power policy is asymptotically optimal for
large N when the battery capacity is infinite, making the two
policies good metrics for comparison. As can be observed in
Figure 5, the achieved sum-rate curve approaches the upper
bound, while notably outperforming the hasty policy and the
constant power policy.

VI. CONCLUSION

In this paper, we considered a two-way relay channel with
energy harvesting and battery limited nodes. We solved the
sum-rate maximization problem with a decode-and-forward

relay operating in half-duplex mode, and derived insightful
properties of the optimal policy through KKT analysis. With
some mathematical manipulation, the optimization problem
was simplified and solved by an iterative subgradient descent
method. Numerical examples were presented to demonstrate
the performance of optimal transmission policies. The policies
studied in this problem were offline policies. Online policies
for the two-way relay based on insights drawn from our
results are an interesting future direction, as well as full-duplex
operation and relaying strategies.
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