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Abstract—Energy harvesting terminals are emerging as favor-
able alternatives to conventional terminals for wireless (sensor)
networking due to environmental concerns and their potential
to extend the network lifetime. Stochastic availability of energy
for such networks calls for new network design insights on
power control and scheduling, particularly in multi-user settings
with interference. This paper considers an asymmetric inter-
ference channel with two transmitters and two receivers, and
seeks optimal power policies to maximize sum capacity in an
energy harvesting setting. It is shown that in the asymmetric
interference case, the optimal sum capacity for the channel
can be found by iteratively employing single-user optimizations,
and the corresponding single-user problems are solved using
modified water-filling algorithms such as directional water-filling
and generalized water-filling. The performance of the proposed
iterative algorithm is demonstrated through numerical results.

I. INTRODUCTION

Environmental concerns and scarcity of energy resources

are leading to the development of a rapidly growing industry

on green technologies. In tune with this growth, with the

increasing demand in data rates and number of users in

wireless communications, design and implementation of green

wireless alternatives is an important goal. Utilizing energy

harvesters in wireless devices both serve this environmental

purpose, and extend the lifetime of mobile terminals by

eliminating its external energy dependence. In many practical

wireless networks, nodes suffer from interference caused by

other devices sharing the spectrum, which may severely affect

the overall performance of the network. Thus the interference

channel is the building block for the design of a multi-user net-

work. For energy harvesting networks, interference becomes

critical when the nodes rely on a common environmental

source and therefore transmit simultaneously. Consequently, an

intelligent power allocation in time could benefit the network

as a whole in such settings. In this paper, we derive optimal

power allocation policies for interference channels comprised

of energy harvesting transmitters.

There has been a surge of interest in optimization for energy

harvesting nodes using different approaches in the very recent

past. These include queueing theoretic transmission policies

to stabilize the data queue of a single-link communication

system [1], modified back-pressure based algorithms with

energy queues [2], or game theoretic sleep/wake-up strate-

gies [3]. One approach, introduced by [4], aims to find an

optimal scheduling through transmitter power control when

the transmitter node harvests packets of energy, and thus

available energy is strictly constrained. This work on a single

transmission link was subsequently extended by [5] to battery-

limited transmitters, and by [6] to fading channels. Multi-user

settings were also considered for the broadcast channel [7] and

the multiple access channel [8].

The Gaussian interference channel is a fundamental building

block for multi-user wireless networks. As a result, its capacity

analysis has been the focus of a number of previous studies.

Although the strong interference case was thoroughly solved

earlier [9], the sum-capacity for weaker interference settings

was only recently characterized [10], with the exact capacity

region still unknown. For the two user Gaussian interfer-

ence channel the known sum capacities for various channel

parameter regions are summarized in [10, Table 1]. These

expressions indicate that the interaction of two transmitters

play an important role on achieved sum-rate, making power

allocation in interference networks an interesting and practical

problem.

Although the basic energy harvester settings [4]–[8] are

considered in previous work, no research has yet been done

on a multi-transmitter multi-receiver setting. In this paper,

we consider such a setting and focus on the asymmetric

interference case where one receiver experiences higher level

of interferences than the other. This is a plausible setting, for

instance, in an ad hoc network with no central deployment

or power control mechanism. In this setting, we identify the

optimal transmission policies for two interfering transmitter-

receiver pairs. Since transmitters harvest their own energy, but

share the transmission medium, it becomes necessary for nodes

to adapt to both their energy availabilities and interference

from the other node. We develop iterative algorithms to

find power policies for both transmitters maximizing sum

capacity of the channel. Through simulations, we show that

optimal transmission dictates a notable change on transmission

powers of energy harvesting nodes compared to the single-user

approach in previous work.

II. SYSTEM MODEL

We consider two energy harvesting transmitter nodes T1
and T2 communicating with their respective receivers R1 and

R2 in a shared channel as shown in Figure 1. The energy
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Fig. 1: System model.

harvested by the transmitters is normalized to the respective

receiver’s Gaussian noise power and channel gain, so that the

direct channel coefficients are 1. With this normalization, the

cross-channel coefficients are
√
a and

√
b and the channel

outputs at the two receivers can be expressed as:

Y1 = X1 +
√
aX2 + Z1

Y2 =
√
bX1 +X2 + Z2 (1)

where Z1 and Z2 are the Gaussian noise with unit variance.

For this channel, the sum capacity for certain ranges of a
and b are known [10, Table 1]. In this paper, we focus on

asymmetric interference, which is the case with a < 1 and

b > 1 (a > 1 and b < 1). This is the case when one of the

receivers experiences strong interference, while the other weak

interference. The sum capacity in this regime is expressed for

two regions depending on whether ab > 1 or not, and is given

by:

C
I
s =

1

2
log

(

1 +
p1

1 + ap2

)

+
1

2
log (1 + p2) , ab ≥ 1 (2)

C
II
s = min

{

1

2
log

(

1 + p1
1+ap2

)

+ 1

2
log (1 + p2)

1

2
log (1 + bp1 + p2)

}

, ab ≤ 1 (3)

for the case with stronger interference at R2, i.e., a < 1 and

b > 1.

Each transmitter node uses only the harvested energy for

transmission, and it is assumed that transmission energy is

prominent in the system, i.e., processing power and base

power consumption are ignored. The nodes harvest packets

of energies E1i and E2i at times s1i and s2i respectively, and

stored in the batteries of the nodes with capacities E1max and

E2max, as shown in Figure 2. The energy overflowing the

battery is lost, and other factors such as battery leakage or

inefficiency are ignored. Recall that Ei and Emax values are

normalized to have unit channel coefficients and unit noise at

the receiver, and note that Ei’s are truncated at Emax since the

remaining portion cannot be utilized. We consider the offline

power allocation problem, so it is assumed that all information

about energy harvests are known to both transmitters, or a

centralized decision mechanism, before start of transmission.

The offline formulation is intended for benchmark purposes for

online problems, as well as some cases where energy harvest

is highly predictable such as solar energy.

The model suggests that the users shall choose transmission

Fig. 2: Energy harvesting model.

powers that they can supply the energy for. Therefore the

power allocations for users are strictly constrained to not

exceed the amount of harvested energy at any time of transmis-

sion. Also, since capacity expressions (2,3) are monotonically

increasing in p1 and p2 within the parameter range, allowing

energy to overflow at any node is strictly suboptimal, as can be

observed by comparing to spending the overflowing amount of

energy just before the overflow. This implies the optimal power

allocation should also satisfy a minimum transmission power

requirement in order to prevent any overflows. In parallel to the

single user notation in [5], both constraints for user j ∈ {1, 2}
described above will be expressed as the set Pj of feasible

power allocations pj(t),

Pj =

{

p(t)|
n
∑

k=0

Ejk − Ejmax ≤

∫ sjn

0

p(t)dt ≤

n−1
∑

k=0

Ejk, ∀n

}

(4)

where p(t) is a positive bounded integrable power allocation

function defined on [0, T ] with T being the deadline for

transmission. Here we used the fact that the two energy

constraints are flat between arrivals, and thus it suffices to

check feasibility only at arrival instances. The truncation of

Eji introduced above is crucial for constructing this feasibility

set, since Eji > Ejmax yields an empty feasible set. Finally

note that the set Pj is convex, i.e., the convex combination of

any two feasible power allocation functions is also feasible.

With this definition, we now state the optimal transmission

problem. Given the energy harvesting scenario and a deadline

T , the goal is to maximize sum capacity of the interference

network by optimal allocation of transmission powers of the

users, where each user is constrained with the feasible power

allocation set Pj . The problem is formulated as

max
1

T

∫ T

0

Cs(p1(t), p2(t))dt

s.t. p1(t) ∈ P1, p2(t) ∈ P2 (5)

where Cs(p1(t), p2(t)) is the sum capacity defined for the

corresponding region in (2,3).

III. SUM CAPACITY MAXIMIZATION FOR REGION I

Region I corresponds to when the channel parameters satisfy

ab ≥ 1. The sum capacity for this region with a ≤ 1 is

given in (2), which translates to a decoding scheme where R1
treats interference as noise and R2 decodes and removes the

interference. In this section, we present an iterative algorithm

that converges to the optimal power allocations for both users
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that maximize sum capacity. This solution involving the sum

capacity expression for a ≤ 1 also applies to its symmetry

with b ≤ 1 when the two users are swapped.

We first argue that CI
s is strictly concave in (p1, p2) for

a < 1. This is achieved by showing the Hessian matrix

of −CI
s , HI , is positive definite. Since HI is real and

symmetric, it is Hermitian. Therefore, it is sufficient to check

Sylvester’s criterion for positive definiteness. Determinant of

HI reveals that the condition for positive definiteness is

p2 ≥ (a2−1)/(2a−2a2), which holds for p2 ≥ 0 and a < 1.

Therefore CI
s is strictly concave for a < 1.

The strict concavity of CI
s and the convexity of constraint

sets P1 and P2 imply that problem defined in (5) for Region

I is convex and has a unique solution. Therefore the solution

can be found iteratively by fixing the power of one user and

performing a single variable maximization for the other user,

changing the fixed user at each iteration. When p2 is fixed,

the expression CI
s (p1) is identical to a single user directional

water-filling in [6] with a constant term and effective base

level 1
h′(t) = 1+ap2(t). This is a variation of the conventional

water-filling policy with two extra constraints: water initially

placed based on harvests is allowed to flow in only forward

direction to preserve the causality of energy, and no more than

E1max amount of water can flow past an instant to comply

with the battery constraint. To solve the single-user problem

with fixed p2, T1 only performs directional water-filling at

each iteration with base levels updated as needed.

When p1 is fixed, CI
s (p2) has two variable terms that do not

simplify to a conventional water-filling expression. Therefore

a more generalized approach is necessary. This single user

problem becomes

max

∫ T

0

Cs(p2(t))dt s.t. p2(t) ∈ P2

for which the Karush-Kuhn-Tucker(KKT) conditions for op-

timality at a time instant t that falls in the kth energy arrival

epoch can be written as

d

dp2(t)
CI

s (p2(t))−
N
∑

j=k

λj −
N
∑

j=k

µj + ηk = 0 (6)

where λj , µj and ηj are the Lagrange multipliers for the upper

and lower bounds in (4) and p(t) respectively, and N is the

number of arrivals within deadline T . The Lagrange multipli-

ers also satisfy the complementary slackness conditions:

λn ·
(

∫ s2n

0

p2(t)dt−
n−1
∑

i=0

E2i

)

= 0 ∀n (7)

µn ·
(

n
∑

i=0

E2i −
∫ s2n

0

p2(t)dt− E2max

)

= 0 ∀n (8)

ηn · p2(t) = 0 ∀n, t ∈ [sn−1, sn] (9)

which dictate that λj and µj are only nonzero when the

optimal policy reaches the boundary for one of the constraints

in P2, and ηj is nonzero only when transmission power is

zero. Together with (6), this implies that the derivative

d

dp2
CI

s (p2) =
−ap1

2(1 + p1 + ap2)(1 + ap2)
+

1

2(1 + p2)
(10)

only changes at arrivals at which a constraint in P2 is

satisfied with equality, while ηj ensures that (6) is met when

p2 = 0. This observation leads to a constrained version of

the generalized iterative water-filling approach in [11]. For

optimal transmission, T2 aims to keep the expression in (10)

constant, allowing it to change only when a constraint is tight.

This can be performed similar to directional water-filling, but

by comparing the value of the expression in (10) instead of the

water levels. A similar approach is adopted in [8] for multiple

access channels.

With the two single user problems individually solved,

the unique optimal transmission policy can be obtained by

iteratively solving the directional water-filling problem for T1
and the directional generalized water-filling problem for T2.

IV. SUM CAPACITY MAXIMIZATION FOR REGION II

In this section, we extend the results of Section III to Region

II with channel parameters ab ≤ 1. The sum capacity given in

(3) for b ≥ 1 is used throughout the section, but the results can

be reflected to the symmetry with a ≥ 1 in a similar manner

to Region I by swapping the two users.

Once again we start by stating the concavity of CII
s . Notice

that the first term of the minima in (3) is identical to CI
s , which

was shown to be strictly concave in Section III. The joint

concavity of the second term is trivial, yet it is not strictly

concave. Consequently the minimum of these two concave

terms is also concave, implying that a similar iterative method

will converge to the solution of (5) for this region. However

the uniqueness of the solution in this case is not certain since

concavity is not strict.

It can be observed that the value of p2 is sufficient to decide

which of the two terms in (3) dominates the minimum. The

condition for the first term being smaller can be simplified to

a threshold pc,

p2 ≤
b− 1

1− ab
, pc. (11)

This fact significantly simplifies the single-user problem for

T1, since p2 values are fixed. The solution has a directional

water-filling interpretation, but with the effective base levels

expressed conditioned to the dominating term of (3) as

1

h′(t)
=

{

1 + ap2(t) p2(t) < pc
1+p2(t)

b
p2(t) ≥ pc

(12)

For the single user problem of T2, the directional general-

ized water-filling approach still holds, but with the following

conditional water level expression:

d

dp2
CII

s (p2) =

{

− ap1

2(1+p1+ap2)(1+ap2)
+ 1

2(1+p2)
p2(t) < pc

1
2(1+bp1+p2)

p2(t) ≥ pc
(13)

The iterative execution of the single-user water-filling so-

lution for T1 with conditional base levels, and single-user

199



5 10 15 20
0

1

2

3

4

5

Time

A
ll
o
c
a
te

d
 P

o
w

e
r

7 6435

5 10 15 20
0

1

2

3

4

5

Time
A

ll
o
c
a
te

d
 P

o
w

e
r

5 589710

Fig. 3: Energy arrivals and power policies with single link

directional water-filling [6] for T1 (left) and T2 (right).
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Fig. 4: Optimal power policies with iterative directional water-

filling for T1 (left) and T2 (right).

generalized directional water-filling solution for T2 with the

modified water level expression in (13) converges to an

optimal transmission policy for the two users in this region.

V. SIMULATIONS

In this section, we present simulation results to demonstrate

how the optimal iterative solution yields different transmission

policies than single-user solutions. We simulate a system with

deadline T = 20, E1max = E2max = 10 and channel

coefficients a = 0.9 and b = 2 which falls within Region

I. The harvested energies Eji and their times sji are marked

on Figure 3 for T1 (left) and T2 (right).

Figure 3 shows the optimal single-user power allocation

functions for T1 and T2, calculated using directional water-

filling of [6]. In this case, each user calculates its optimal

single-user power allocation by ignoring the interference of

the other user. Therefore, nodes only adapt to their own

energy arrivals. The power allocation functions of the iterative

algorithms suggested in this paper are presented in Figure 4

for the same energy harvesting scenario. Note that for T1, the

base level is shown in green, and the transmission policy is

represented by the difference between water level and the base

level, shown in blue. It can be observed that in this case users

adapt both to their own arrivals, as seen at the end of p1(t)
and the beginning of p2(t); and to the interference caused

by the other user, notable around t = 9. The overall change

in transmission powers compared to Figure 3 is due to the

interaction of the two transmitters, and is significant even for

a two user case.

VI. CONCLUSION

In this paper, we derived and demonstrated iterative algo-

rithms to find the optimal transmission power policies for a

Gaussian asymmetric interference channel with cross-channel

coefficients
√
a and

√
b satisfying a < 1 and b > 1 or its

symmetry. We showed that an iteration of single-user opti-

mizations converge to the sum capacity maximizing power-

allocation, and solved the single-user problems using variants

of water-filling. We observed that the interaction of users in

such networks notably affect the optimal power allocation.

The regions considered in this paper incorporate various

approaches to interference such as treating interference as

noise, which is commonly used in practice for its simplicity.

Therefore the implications of this paper point toward practical

interest in identifying and solving optimality problems in such

systems. Current research in this direction includes analysis

for general regions of operations, and distributed or online

versions of the proposed allocation schemes [12].
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