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Abstract—This paper considers the broadcast channel with an
energy harvesting transmitter equipped with an inefficient energy
storage device. For this setting, the optimal offline power policy
that maximizes the average weighted sum rate of the system is
derived. It is observed that this policy has a double threshold
structure, with piecewise constant thresholds determined by the
energy harvesting process. The convexity of the capacity region
for the energy harvesting broadcast channel for a finite deadline
is established, showing that the weighted maximum sum-rate
traces the boundary of the region. Next, the optimal online
policy is found using dynamic programming, and it is observed
that the solution has a double threshold structure as well with
state dependent thresholds. Lastly, a double threshold policy is
proposed with fixed thresholds that performs near optimal with
reduced complexity.

I. INTRODUCTION

Energy harvesting for wireless communications has been a
recent topic of interest due to its benefits about lifetime, main-
tenance costs and environmental impact. A wireless node with
an energy harvester and a small battery for temporary storage
can operate indefinitely in theory by perpetually replenishing
its battery using the harvested energy. The energy available
to these nodes are intermittent and varying; making power
management, i.e., transmit power and energy storage control,
a crucial matter for efficient operation.

Studies on energy harvesting wireless networks in the past
few years considered different problems for various settings
and models. An energy harvesting model with offline harvest
information was first introduced in [1], where a transmission
completion time minimization problem was formulated and
solved for the optimal scheduling in a single transmitter-
receiver pair with energy harvests and packet arrivals. This
model was then extended to nodes with finite capacity bat-
tery, solving the problem of throughput maximization in [2].
Reference [3] introduced a directional water-filling algorithm
for power allocation for throughput maximization in a fading
channel. Multi user channels with energy harvesting trans-
mitters were also considered, see for example [4]–[6]. In all
these, it was observed that the solution to the offline problem
consisted of piecewise constant transmit powers with the goal
of transmitting with constant power for as long as possible
while obeying the energy feasibility conditions.

For energy harvesting nodes, an energy storage device is
desirable to provide such a power policy. In practice, however,
this storage device would have storage losses, leakage and

capacity fading. These in turn can affect the optimum transmis-
sion policy. Longer term losses of leakage and battery degrada-
tion were considered in [7]. A constant rate storage loss model
in an offline energy harvesting setting was considered in [8]
for a single user link, observing that in contrast to policies for
ideal batteries, the optimal policy had a threshold structure and
involved transmitting with harvested power without storage.

In this paper, we consider a two-user broadcast channel
with an energy harvesting transmitter. The broadcast node is
equipped with an inefficient battery which loses a constant
fraction of the stored or retrieved energy, as in [8]. The offline
weighted sum-rate maximization problem is solved and the
solution is found to be a two-threshold policy as in its single
user counterpart. Next, the convexity of the capacity region
in this setup is shown, implying that each boundary point
of the capacity region corresponds to the solution of the
weighted sum rate maximization problem for some weight,
and that the region can be traced using the problem solved.
An online policy is formulated using dynamic programming,
and is observed to have a two-threshold structure as well with
state dependent thresholds. Finally, a computationally simpler
online algorithm is proposed with fixed thresholds, whose
performance is observed to be near-optimal. Details of the
derivations in this paper can be found in [9].

II. SYSTEM MODEL

We consider an energy harvesting broadcasting node pow-
ered by an inefficient battery communicating with two re-
ceivers. The node controls its instantaneous transmission
power, which is supplied by the battery, energy harvesting
device, or both. The harvested power can both be used to
power the transmitter immediately, or to replenish the battery;
however in the latter case, a fraction of the power is lost due
to the inefficiency of the battery. The aim of the transmitter is
to maximize its throughput in this setting.

The system model is illustrated in Figure 1. The on-board
energy harvester provides energy at a rate of h(t), where
h(t) is non-negative and integrable. Out of this power, s(t)
is allocated by the transmitter to be stored in the battery of
capacity Emax, s(t) ≤ h(t), and the remaining portion is
used for transmission. The storage efficiency of the battery is
denoted by η, 0 ≤ η < 1, and thus the battery is replenished
at rate ηs(t). In practice, the loss may occur when storing or
retrieving energy to and from the battery; these two losses can
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Fig. 1. Energy harvesting broadcast channel with inefficient storage.

be combined to one as in our model by scaling the battery
capacity accordingly. The energy stored in the inefficient
battery is retrieved at rate u(t), determined by the transmitter,
and is used for transmission as well. Thus, the instantaneous
power available to the transmitter at time t is given by

p(t) = h(t)− s(t) + u(t) (1)

which consists of the power retrieved from the battery and
the portion of harvested power scheduled for transmission.
It is assumed that this power is decided by the broadcast
node through s(t) and u(t) in the presence of non-causal
energy harvesting information h(t), thus making the problem
in consideration an offline optimization problem.

With allocated transmit power p(t), the broadcaster can
choose an instantaneous rate pair (r1(t), r2(t)) ∈ R(p(t)),
where R(p) is the capacity region of the broadcast channel
for power p,

RAWGN (p) =
{
(r1, r2)

∣∣r1 ≤ 1

2
log2

(
1 +
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σ2
1

)
,
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2
log2
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αp+ σ2
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)
, 0 ≤ α ≤ 1

}
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for an additive white Gaussian noise (AWGN) broadcast
channel with σ1 ≤ σ2, and is achieved through superposition
coding [10]. Here, σ2

1 and σ2
2 are noise variances experienced

by the receivers after normalization of channel gains.
The energy supplied by the battery through u(t) is limited

by the energy available at the battery, which in turn is
replenished by s(t). The energy that can be stored in the
battery is limited by the battery capacity Emax. Denoting the
energy stored in the battery at time t as Ebat(t), these two
restrictions lead to the following constraints:

Ebat(t) =

∫ t

0

ηs(τ)− u(τ) dτ ≥ 0, (3)∫ t

0

ηs(τ)− u(τ) dτ ≤ Emax, 0 ≤ t ≤ T. (4)

(3) implies that energy retrieved from the battery up to time t
must not exceed the energy stored in the battery before time
t, i.e., is the energy causality constraint. (4) ensures that s(t)
and u(t) are chosen in such a way that the battery capacity is
never exceeded, i.e., is the battery capacity constraint.

III. WEIGHTED SUM-RATE MAXIMIZATION

Consider the problem of maximizing the average weighted
sum-rate r1,avg + αr2,avg , for α ≥ 0 within a given deadline
T . We need to find optimal power allocations s(t) and u(t)
that are energy feasible as in (3) and (4) and maximize the
average weighted sum-rate for the broadcaster. This problem
can be expressed as

max
s(t),u(t)

1

T

∫ T

0

r1(t) + αr2(t) dt (5a)

s.t. (r1(t), r2(t)) ∈ R(h(t)− s(t) + u(t)) (5b)

0 ≤
∫ t

0

ηs(τ)− u(τ)dτ ≤ Emax (5c)

h(t) ≥ s(t) ≥ 0, u(t) ≥ 0, ∀t ∈ [0, T ] (5d)

where r1(t) and r2(t) are instantaneous transmission rates
to receivers 1 and 2 respectively, chosen from the capacity
region R(p(t)). In order to simplify this problem, we first
observe that given some p(t), for any time instant t, the
optimal choice of (r1(t), r2(t)) is the one in R(p(t)) that
maximizes r1(t) + αr2(t). This is due to the linearity of the
objective and independence of the constraints on r1(t) and
r2(t) in t. Thus, for each p, one can find the rate pair in R(p)
that maximizes the instantaneous weighted sum-rate. Let the
resulting weighted sum-rate be denoted by rBC

α (p), i.e.,

rBC
α (p) = max

(r1,r2)∈R(p)
r1 + αr2. (6)

Then, the problem in (5) can be reduced to

max
s(t),u(t)

1

T

∫ T

0

rBC
α (h(t)− s(t) + u(t)) dt (7a)

s.t. 0 ≤
∫ t

0

ηs(τ)− u(τ)dτ ≤ Emax (7b)

h(t) ≥ s(t) ≥ 0, u(t) ≥ 0, ∀t ∈ [0, T ]. (7c)

Lemma 1: The maximum weighted sum-rate rBC
α (p) is

non-decreasing, continuous and concave in p for any α ≥ 0.
Proof: The non-decreasing property is trivial, since the

transmitter can discard excess energy to achieve any sum-rate
with less power. Continuity follows from the fact that with
power p − ϵ, one can get arbitrarily close to any weighted
sum-rate rBC

α (p) by pausing for an arbitrarily short duration
and transmitting with power p for the remaining time. This
is in fact equivalent to time-sharing with an inactive state.
Extending this to any two arbitrary powers p1 and p2, the
transmitter can achieve any linear combination of rBC

α (p1)
and rBC

α (p2) by time-sharing between these two powers, thus
showing that the maximum weighted sum-rate rBC

α (p) is
concave in p by definition.

Lemma 1 implies that being a linear function of rBC
α (p),

the objective in (7a) is concave, and since the constraints are
linear, the weighted sum-rate maximization problem (7) is
convex. By taking the partial derivatives of the Lagrangian
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of (7), we obtain the KKT stationarity conditions [11]:

r′α(p(t)) = η

∫ T

t

(λ(τ)− β(τ)) dτ + µ(t)− σ(t) (8)

r′α(p(t)) =

∫ T

t

(λ(τ)− β(τ)) dτ − ν(t), 0 ≤ t ≤ T (9)

where p(t) = h(t) − s(t) + u(t) and r′α(p(t)) stands for the
derivative of rBC

α with respect to p. Here, λ(t), β(t), µ(t), σ(t)
and ν(t) are the nonnegative Lagrangian multipliers corre-
sponding to the energy causality, battery capacity, s(t) ≤ h(t),
and nonnegativity constraints for s(t) and u(t) respectively.
The complementary slackness conditions are

λ(t)

(∫ t

0

ηs(τ)− u(τ) dτ

)
= 0, (10a)

β(t)

(
Emax −

∫ t

0

ηs(τ)− u(τ) dτ

)
= 0, (10b)

µ(t) (h(t)− s(t)) = 0, (10c)
σ(t)s(t) = 0, ν(t)u(t) = 0, 0 ≤ t ≤ T. (10d)

We provide the implications of these necessary conditions
in five power allocation cases next.

Case 1: Simultaneous charge and discharge
This case corresponds to s(t) > 0 and u(t) > 0 simultane-

ously. Since utilizing the battery causes a net energy loss, the
optimal policy must always avoid this.

Case 2: Discharging only
This case corresponds to u(t) > 0 and s(t) = 0. For this

case, (10c) yields ν(t) = 0, which is substituted in (9) to get

r′α(p(t)) =

∫ T

t

λ(τ)− βτ dτ. (11)

Since (10a) and (10b) imply that λ(t) and β(t) are only
nonzero when Ebat = 0 and Ebat = Emax respectively,
the right hand side (RHS) of (11) remains constant for all
values of Ebat ∈ (0, Emax). As a result, the transmit power
p(t) maintains a constant r′α in between two extreme battery
events. In general, the transmitter can choose any such p while
satisfying the KKT conditions, and the optimal policy is not
unique. For the sake of outlining only one optimal policy, we
choose the smallest p = pu satisfying (11) and keep it constant
until the next extreme battery event.

Another observation is that the RHS of (11) increases only
when β(t) > 0, i.e., battery is full, and decreases only when
λ(t) > 0, i.e., battery is empty. Therefore, the optimal transmit
power is found to increase only when the battery is depleted
and decrease only when it is full.

Case 3: Charging only with s(t) < h(t)
In this case, we focus on charging the battery only with

charge rate s(t) < h(t). Here, (10c) and (10d) along with
0 < s(t) < h(t) and u(t) = 0 imply that σ(t) and µ(t) are
zero. Substituting in (8), we get

r′α(p(t)) = η

∫ T

t

λ(τ)− β(τ) dτ. (12)

This expression is similar to (11), and thus we can say that
an optimal policy has constant transmit power p

∆
= ps while

charging the battery. The value of ps changes only when the
battery is at an extreme, increasing when it is depleted and
decreasing when it is full.

Comparing (11) and (12), ps and pu are related by

r′α(ps)

r′α(pu)
= η. (13)

which implies that finding one of these powers is sufficient.
Case 4: Charging only with s(t) = h(t)
We now consider the case with s(t) = h(t) and u(t) = 0,

for which we have σ(t) = 0 due to (10d). Consequently, µ(t)
remains in (8), and transmit power p(t) is zero, yielding

r′α(0) = η

∫ T

t

λ(τ) dτ − µ(t). (14)

Since µ(t) is nonnegative by definition, the expression in
(14) is not greater than r′α(ps). Since rα(p) is concave, we
have r′α(0) ≥ r′α(ps) for any ps ≥ 0. Thus, the only feasible
solution is ps = 0, yielding a transmit power of p(t) = 0 as
required by this case, as expected.

Case 5: No charging or discharging
Finally, we consider s(t) = u(t) = 0, yielding a transmit

power supplied entirely by the harvesting process, p(t) = h(t).
Without loss of generality, assume h(t) > 0, and we have
µ(t) = 0 from (10c). Substituting in (8) and (9), we get

r′α(p(t)) = η

∫ T

t

λ(τ) dτ + σ(t) = r′(ps) + σ(t), (15a)

r′α(p(t)) =

∫ T

t

λ(τ) dτ + ν(t) = r′(pu)− ν(t) (15b)

and thus conclude that for the transmitter to employ this
policy, the transmitter power must satisfy pu ≤ p(t) ≤ ps
as σ(t), ν(t) ≥ 0. Since p(t) = h(t), this is only possible
when the harvested power itself lies within [pu, ps].

The five cases outlined above restrict the power policy and
the corresponding transmit power p(t) of the broadcast node
to the following three modes:

1) Charging only: p(t) = ps, satisfying (12),
2) Discharging only: p(t) = pu, satisfying (11),
3) Passive: p(t) = h(t) with pu ≤ p(t) ≤ ps.
Hence, we have a double-threshold policy for p(t), i.e., p(t)

is derived by employing two thresholds pu and ps on h(t). The
thresholds are constant between an empty (full) battery, and
increase (decrease) together. When h(t) > ps, the broadcaster
uses a total power of ps and redirects the remaining power to
be stored in the battery, and when h(t) < pu, the broadcaster
uses a total power of pu by retrieving the missing power from
the battery. In between, no storage or retrieval is performed,
and the broadcaster transmits with power p(t) = h(t).

The set of thresholds can be calculated sequentially by
observing the feasibility conditions. First, starting from t = 0,
candidates for the (ps, pu) pair are found, which either deplete
or fill the battery at some future instance t1 > 0. Next,
feasibility of these candidates are confirmed by checking
what the next battery event would be if the same policy was
employed past t1. If the same battery event is repeated at some
t2 > t1, the pair is not feasible, since changing the thresholds
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in the allowed direction would inevitably violate feasibility
for t > t2. Thus, the unique candidate pair that causes two
different battery events at t1 and t2 and no events elsewhere
in [0, t2] is chosen as the optimal set of thresholds for [0, t1].
The process is then repeated starting from t1 until deadline T
is reached. This process is similar to the one in [2] for finite
battery power allocation, and its details can be found in [9].

Remark 1: The optimal policy derived here can be shown
to converge to the results of [4] as storage efficiency η →
1, and Emax → ∞. In this special case, a single threshold
ps = pu = p(t) emerges as the optimal policy. The power
policy is therefore constant between empty battery instances
and nondecreasing since no full battery event occurs, parallel
to [4, Lemma 3].

IV. CAPACITY REGION FOR THE ENERGY HARVESTING
BROADCAST CHANNEL

With the solution to the sum-rate maximization problem, we
next characterize the capacity region for the energy harvesting
broadcast channel given an energy harvesting profile h(t). For
this purpose, it is necessary to find the maximum average
rate region REH = (r1,avg, r2,avg) consisting of the union
of average rate pairs that can be achieved under the energy
harvesting constraints in (3) and (4).

It is trivial that the capacity region R(p) for some fixed
power p, as in (2), is convex. This follows from a simple time-
sharing argument at the same broadcast power. Moreover, a
similar time-sharing argument can be used to show that R(p)
is concave in p, i.e., for any rate pair in R(p1) and rate pair
in R(p2), one can always achieve a convex combination of
these rate pairs using a broadcast power equal to the convex
combination of p1 and p2. Based on these properties, we state
in Lemma 2 the convexity of the capacity region for the energy
harvesting problem.

Lemma 2: The capacity region consisting of achievable
average rates REH = (r1,avg, r2,avg) for an energy harvesting
transmitter under power constraints (3) and (4) is convex.

Proof: The proof is by time-sharing. Consider two fea-
sible power allocation policies p(t) and p′(t) with respective
variables s(t), u(t), s′(t) and u′(t), achieving average rate
pairs (r1,avg, r2,avg) and (r′1,avg, r

′
2,avg). It is sufficient to

show that the convex combination of these rate pairs with
0 ≤ γ ≤ 1 is also achievable with a feasible policy. Employing
uγ(t) = γu(t)+(1−γ)u′(t) and sγ(t) = γs(t)+(1−γ)s′(t),
one can achieve an average rate pair at least as good as the
convex combination of the rate pairs due to the concavity
of the capacity region R(p) in p. The proposed policies are
feasible since the constraints (3) and (4) are linear.

Since the energy harvesting capacity region is convex,
for any point on its boundary, one can find a separating
hyperplane. The slope of this hyperplane defines an α for
which the point is the maximizer of the weighted sum-rate
maximization problem with parameter α. Consequently, the
boundary of the capacity region can be outlined by tracing
0 ≤ α ≤ 1 and solving the weighted sum-rate problem in
Section III. This is employed in Section VI to evaluate and
compare the rate regions of policies in simulations.

V. ONLINE TRANSMISSION POLICIES

So far, we have considered the offline problem where the
broadcast node has non-causal information about the energy
harvesting process h(t). In practice, this may not be possible
and online power policies that only have causal harvesting in-
formation may be desired. For this purpose, we first formulate
a dynamic program for the online problem, and together with
the insights from the offline problem, propose a simpler policy.

A. Optimal Online Policy

For the power decision the broadcaster needs to make in
an online fashion, what the transmitter knows is limited to
the state of its battery and the current energy harvesting rate.
The optimal action for such a node can be formulated as a
dynamic program, which can be solved recursively to yield
an optimal policy. To be able to evaluate the optimal action
with a recursion, we quantize time with a sufficiently small δ
and assume that the realization of h(t) is constant within an
interval of length δ while Markovian or i.i.d. among intervals.
Expressing the value, i.e., expected average weighted sum-rate
as V (Ebat, h) at the state with battery energy Ebat and harvest
rate h, we can express the discounted dynamic program with
discount factor ∆ ≤ 1 as

V (Ebat, h) = max
ϕ

rBC
α (ϕ(Ebat, h))δ +∆E

[
V (Eδ

bat, h
δ)
]

where Eδ
bat and hδ are the battery and channel states after a

time δ has elapsed. Here, the value of a state is the weighted
sum-rate rBC

α obtained from the immediate action ϕ(Ebat, h)
and the discounted expected value of the next state. Solving
this recursion for Emax = 100mJ and h distributed uniformly
in [0, 20]mW , we observe that the optimal action ϕ(Ebat, h)
has the structure shown in Figure 2. Here, it can be observed
that the online optimal power allocation also conforms to a
double threshold policy for any fixed Ebat, with the thresholds
changing as a function of Ebat. In region I, the transmit power
p(t) equals the harvest rate h(t), while in regions II and III
the broadcast node is charging and discharging its battery
respectively. The boundaries of these regions can also be seen
to conform to the relation in (13).

B. Proposed Online Policy

Observing that both the optimal offline and optimal online
policies have a two-threshold structure, we propose that a
simpler policy composed of a constant pair of thresholds can
be used when the dynamic program is computationally costly.
In an attempt to balance the energy input and output of the
battery, we choose the thresholds for the proposed online
policy to satisfy∫ ∞

ps

(p−ps)fh(p)dp−
∫ pu

0

(pu−p)fh(p)dp = 0,
r′α(ps)

r′α(pu)
= η.

(16)
where fh(p) stands for the distribution of the energy harvesting
rate h. This choice aims to prevent the node from employing a
policy that yields battery overflows or outages systematically.
As η → 1, the thresholds approach average harvesting rate,
performing similar to the best-effort transmission scheme of
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Fig. 2. Optimal online transmission power as a function of node states.

[12] which is optimal for an infinite length transmission. Con-
versely as η → 0, the thresholds diverge and the transmitter
always chooses p(t) = h(t), which is trivially optimal for zero
storage efficiency. Thus, the proposed policy can be shown to
be asymptotically optimal for the extreme values of η.

VI. NUMERICAL RESULTS

In this section, we present the results of simulations of
the offline and online policies compared with naive policies.
Namely, we find the achievable rate regions for all policies
by solving the weighted sum-rate maximization problem for
different values of α, as suggested in Section IV. The resulting
average rate regions are presented in Figure 3. In these simula-
tions, a broadcast node with battery capacity Emax = 100mJ
with efficiency η = 0.6 given a bandwidth of 1MHz in an
AWGN channel is considered. The noise spectral density is
taken as N0 = 10−19W/Hz and the path loss coefficients
to receivers 1 and 2 are set to be −100dB and −103dB
respectively. For a simulation duration of T = 10000 seconds,
the simulation is performed in 1 second slots, within which
the harvesting process is assumed to yield a constant power
distributed uniformly in [0, 40]mW . The hasty and constant al-
gorithms transmit with harvested power and a pre-determined
constant power respectively, and are simulated for comparison.
It can be observed that the proposed online algorithm performs
close to the optimal online algorithm, while both outperform
naive algorithms such as hasty and constant.

VII. CONCLUSION

In this paper, the weighted sum rate optimal power alloca-
tion policy for an energy harvesting broadcaster node with
inefficient energy storage is found and shown to trace the
boundary of the capacity region for this channel. The optimal
offline policy is shown to have a double threshold structure,
where the two thresholds are related through the efficiency
of the battery. The thresholds are shown to remain constant
unless the battery is depleted or full. It is further shown that the
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Fig. 3. Average transmission rate regions in an energy harvesting broadcast
setting with η = 0.6.

optimal online policy established with dynamic programming
also yields a two-threshold policy, and a computationally
simple near-optimal online policy with fixed thresholds is
proposed.
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