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Abstract—In this paper, optimal power control policies for
an interference channel with two energy harvesting transmit-
ters and two corresponding receivers are considered. Energy
harvesting transmitters have strict power constraints due to the
harvesting process as well as battery capacity constraints. The
derived optimal power policies maximize the sum-throughput of
a deadline constrained system under such energy and data arrival
constraints by utilizing the limited available energy and managing
the interference in the channel simultaneously. It is shown that
an alternating maximization approach that individually optimizes
the power policies for each transmitter in a cyclic manner
converges to the optimal policy. The single-user subproblems with
data constraints are solved using a generalized directional water-
filling algorithm. A practical distributed algorithm requiring only
local energy harvesting information is presented, and its near-
optimal performance is demonstrated through simulations.

I. INTRODUCTION

Wireless networking with energy harvesting nodes provides

mobility, reliability and ease of maintenance as well as being

an environmentally friendly alternative. These benefits moti-

vate ubiquitous use of energy harvesting wireless communi-

cation devices in the near future.

The design principles of energy harvesting wireless net-

works are fundamentally different than their traditional coun-

terparts due to the instantaneously available energy constraints.

Energy availability is stochastic and uneven throughout opera-

tion, and the battery to store the harvested energy is limited in

practice. A particularly important network structure is one that

addresses the case where multiple energy harvesting transmit-

ters share the wireless medium to communicate to multiple

destinations, i.e., a wireless ad hoc network with interference.

In this paper, we consider the simplest such setting, the

two-user interference channel, and solve the optimum power

scheduling problem that maximizes short-term sum throughput

of this system under a deadline when the two transmitters

obtain the transmission energy by harvesting from ambient

sources.

Optimal power policies for energy harvesting nodes have

attracted recent interest in the research community. The con-

cept of energy neutrality [1] was utilized in queueing-theoretic

work [2], [3] to stabilize energy queues of energy harvesting

nodes. In such work, the stored energy is often allowed to

grow indefinitely, rendering it inapplicable for nodes with

limited battery capacity. An alternative approach enforcing

strict energy constraints is considered in [4], where trans-

mission time for a given amount of data is optimized over

power allocations that strictly obey a known energy arrival

scheme. This work has been subsequently extended to the

problem of maximizing transmitted data by a deadline with

the addition of a battery capacity constraint in [5], and battery

imperfections in [6]. A model incorporating channel fading

to these problems is introduced in [7] and solved with a

directional water-filling algorithm. More recently, multi-user

settings such as the broadcast channel [8], [9], or multiple

access channel [10] have also been considered. In contrast, we,

in this paper, focus on the scenario with multiple transmitters

and multiple receivers, i.e., the interference channel.

The interference channel is a fundamental building block for

wireless networks. Consequently, identifying the transmission

policies under the energy harvesting scenario for this channel,

will furnish us with insights needed for energy harvesting

wireless ad hoc network design. A critical issue is the lack of

conclusive results on the capacity of the interference channel.

For the Gaussian two-user interference channel, the strong

interference case was introduced and characterized in [11].

However other cases were only recently and partially solved

in [12] restricted to sum-capacity, pointing out that the sum-

capacity is notably influenced by the interaction of the trans-

mitters. This makes optimal power allocation in the energy

constrained setting of our problem even more interesting and

relevant.

The focus of this paper is on short-term throughout opti-

mization in a two-user interference channel with energy har-

vesting transmitters and data arrivals. The problem of transmit-

ting the maximum total number of bits for a given deadline is

considered. First, it is shown that an alternating maximization

algorithm converges to the optimal solution for jointly concave

rate expressions. The alternating subproblems are then solved

using the generalized water-filling algorithm modified similar

to the directional water filling in [7] to address energy and

additional data constraints. Finally, a distributed algorithm

is proposed and its performance is compared to that of the

optimal policy.
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Fig. 1: Interference channel with energy harvesting and data

arrivals.

II. SYSTEM MODEL

The two-user Gaussian interference channel with energy

harvesting transmitters is shown in Figure 1. Transmitters

T1 and T2 have independent data packets addressed to

corresponding receivers R1 and R2. The transmitters are

powered by independent energy harvesting processes, energy

from which are stored in batteries of size E1,max and E2,max

respectively. The harvested energies and battery capacities

are normalized to the corresponding transmitter-receiver link

gain and receiver noise level, yielding unitary direct channel

coefficients and noise variances. After this normalization for

each transmitter, the cross channel coefficients become
√
a

and
√
b and the channel outputs are expressed as

Y1 = X1 +
√
aX2 + Z1, Y2 =

√
bX1 +X2 + Z1 (1)

where Y1 and Y2 are received at R1 and R2, X1 and X2

are channel inputs by T1 and T2 normalized to have unit

channel gains at their corresponding receivers, and Z1 and Z2

are zero-mean random variables with unit variance. The sum-

rate achieved by the transmitters consuming powers p1 and p2
will be referred to as the rate function r(p1, p2) in the sequel,

and corresponding achieved individual rates will be denoted

with rj(p1, p2). For the sake of simplicity, it is assumed that

time or state dependent factors which cannot be included in

the rate function, such as battery leakage, are ignored.

The energy harvesting process and packet arrival process

for node j ∈ 1, 2 are denoted in Figure 2 with red and blue

arrows respectively. We assume a time slotted system with

slots of length τ , where a normalized energy of Ej,i units and

a data packet of size Bj,i bits are received by transmitter j at

the beginning of time slot i and is available for immediate

use within that time slot. Since an instantaneous energy

consumption requires infinite instantaneous power which is

impractical, the energy harvests must be stored in the battery

before consumption. Thus any arrival exceeding the respective

battery capacity is irreversibly lost, and such arrivals are

truncated in the model to eliminate trivial battery overflows.

Arriving data packets are stored in the data buffer as well, only

without a buffer size restriction. For optimal policy analysis,

it is assumed that the arrival scheme is perfectly and non-

causally known by both transmitters before transmission. This

Fig. 2: Energy harvests and data arrivals in the time-slotted

model.

problem is referred to as the offline problem. Since such

centralized information is not always available, a distributed

approach with only local arrival information is put forth in

Section V.

There are multiple constraints in this model for a feasible

selection of a transmission policy. The first constraint is the

energy causality in the sense that no more than the already

harvested amount of energy shall be consumed up to a time

in transmission. Denoting the transmission power of user j
over time slot i as pj,i, the constraint for time slot n can be

expressed as
n∑

i=1

Ej,i −
n∑

i=1

τ · pj,i ≥ 0 (2)

where j is the transmitter index chosen from the set {1, 2}.

Secondly, it is shown in [5] that a policy with battery overflow

is suboptimal since any overflowing energy can be consumed

prior to the overflow, strictly increasing the utility as long as

data is available. Therefore the battery capacity constraint,

n∑
i=1

τ · pj,i + Ej,max −
n+1∑
i=1

Ej,i ≥ 0 (3)

is to be met for every n over the transmission. Note that it is

possible for a transmitter to not have any extra bits in the data

queue when a battery overflow is imminent, rendering overflow

avoidance useless. This special case is discussed in detail in

Section IV. The final constraint is data causality, implying that

no more than the available amount of data can be transmitted

until the end of the nth slot,

n∑
i=1

Bj,i −
n∑

i=1

τ · rj(pj,i) ≥ 0. (4)

We define the problem of maximizing the total number of

bits sent by the transmitter until a deadline T = N · τ , i.e., N
time slots, as the short-term throughput maximization problem,

which can be expressed as follows:

max
p1≥0,p2≥0

N∑
i=1

τ · r(p1,i, p2,i) (5)

s.t. (2), (3), (4), n = 1, ..., N, j ∈ {1, 2}.
In (5), the vector pj represents the collection of transmission

powers of user j, and will be referred to as the power policy

or the power allocation vector of user j in the sequel. The
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expression pj ≥ 0 implies component-wise non-negativity on

the transmission power vector.

III. CONVERGENCE OF ALTERNATING MAXIMIZATION

In this section, we employ an iterative approach to solve the

two user optimization problem defined in (5). In particular, we

show the convergence of the alternating maximization method

where the optimization parameter alternates between the power

vectors of the transmitters, namely p1 and p2. Starting from

T1 and an arbitrary initial feasible pair (p0
1,p

0
2), the following

update for the power policies is performed on the kth iteration:

pk
1 = arg max

p1≥0

N∑
i=1

τ · r(p1,i, pk−1
2,i ) (6)

s.t. 0 ≤
n∑

i=1

(E1,i − τ · p1,i) ≤ E1,max − E1,n+1

n∑
i=1

Bj,i −
n∑

i=1

τ · rj(pj,i) ≥ 0, j = 1, 2

pk
2 = arg max

p2≥0

N∑
i=1

τ · r(pk1,i, p2,i) (7)

s.t. 0 ≤
n∑

i=1

(E2,i − τ · p2,i) ≤ E2,max − E2,n+1,

n∑
i=1

Bj,i −
n∑

i=1

τ · rj(pj,i) ≥ 0, j = 1, 2

n = 1, ..., N

Note that the energy constraints for only the optimized

vector is included in each problem. This is possible since the

constraints are not coupled due to the fact that the transmitters

harvest energy independently. However, this argument is not

applicable to the data constraints, since rj(p1, p2) depends

on both power vectors. The problems in (6) and (7) involve

single-user optimizations, a similar of which was solved in

[13] utilizing a generalized water-filling algorithm. In order to

conform to energy and data constraints, this algorithm needs

to be enhanced as in [7] with restricted flow dynamics, as will

be described in Section IV.
Optimality of the iterative solution is due to the convexity of

the problem. The convergence of a coordinate descent method

was shown in [14] for a problem of the form

min f(x) s.t. x ∈ X (8)

where X is a possibly unbounded box and f(x) is a proper

closed convex function. To show this property, we start by

stating that for any encoding and decoding scheme achieving a

sum-rate r(p1, p2), there exists a concave achievable sum-rate

function r′(p1, p2) that performs at least as good, constructed

by utilizing time-sharing of the same algorithm [15].
Lemma 1: Given any transmission scheme achieving an ar-

bitrary rate function r(p1, p2), one can achieve a rate function

r∗(p1, p2) jointly concave in r1 and r2 that performs at least as

good, provided that time-sharing between two power vectors

is possible.

Proof: The proof follows from constructing r∗(p1, p2) as

r∗(p1, p2) = max

{
λr(p′1, p

′
2) + (1− λ)r(p′′1 , p

′′
2 ) s.t.

λp′j + (1− λ)p′′j = pj , j = 1, 2, 0 ≤ λ ≤ 1

}

(9)

which is by definition concave, and performs as good as

r(p1, p2) since it is included within the maximization set when

λ = 0. All rates within the set defined above can be achieved

by time-sharing of parameter λ between the two power vectors

(p′1, p
′
2) and (p′′1 , p

′′
2).

With above lemma, proper closed convexity follows from

the null transmission case with r(0, 0) = rj(0, 0) = 0 and a

bounded transmission power assumption. Note that Lemma 1

can be extended in the same manner to rate functions involving

multiple transmitters and receivers.

Theorem 1: The alternating maximization algorithm in

(6,7) converges at least linearly.

Proof: By [14, Theorem 2.1], we only need to show

the proper closed convexity of the objective function and the

Almost Cyclic Rule. The Almost Cyclic Rule requires each

coordinate to be iterated once every B iterations. Since the

iteration in (6,7) is alternating, this is satisfied for B = 2.

To show the proper closed convexity of the problem, we

first compute the Lagrangian dual function of (5) as in (10),

where λj,n, μj,n and γj,n are Lagrange multipliers and Cλ,μ,γ

is the collection of the remaining terms that are independent

of pj . Additional complementary slackness conditions for

λj,n, μjn and γj,n apply, enabling positive values only when

corresponding energy or data constraint is met with equality.

When the additive inverse and thus minimization is consid-

ered, the objective function in (11) conforms to proper closed

convexity given that r(p1, p2) and rj(p1, p2) are concave in p1
and p2, implying the convergence of the alternating maximiza-

tion for the Lagrangian problem. The convexity of −r(p1, p2)
is shown in Lemma 1, which reflects to proper closed convex-

ity as discussed previously. The convexity of −rj(p1, p2) is not

trivial for any arbitrary transmission scheme, but is assumed in

the sequel since it can be shown to hold for most sum-capacity

results in the interference channel. This assumption is only

necessary when systems with data arrivals are considered.

When the single coordinate subproblems of the iterative

algorithm for the Lagrangian dual is formed, it is observed

that these subproblems are identical to the Lagrangian duals

of (6) and (7), proving the convergence of the original iterative

algorithm proposed.

IV. SOLUTION OF SINGLE-USER SUBPROBLEMS

With the convergence of the single-user iterative algorithm

proved, it is necessary to specify how the single user sub-

problem in each iteration can be solved. For this purpose,

we observe the KKT conditions of a single user optimization

problem with rate function r(p). The stationarity condition

implies that

d

dpj

(
r(pj)−

N∑
i=n

(
γj,nrj(pj)+γj̄,nrj̄(pj)

))∣∣∣∣
pj,n

=

N∑
i=n

(λj,i−μj,i).

(12)
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L(λ, μ, γ) = max
p1≥0,p2≥0

N∑
i=1

τ · r(p1,i, p2,i)−
2∑

j=1

N∑
n=1

(
λj,n

(
n∑

i=1

(Ej,i − τ · pj,i)
)
− (10)

μj,n

(
n∑

i=1

(τ · pj,i − Ej,i) + Ej,max − Ej,n+1

)
− γj,n

(
n∑

i=1

(Bj,i − τ · rj(pj,i))
))

= max
p1≥0,p2≥0

τ
N∑
i=1

⎛
⎝r(p1,i, p2,i)−

2∑
j=1

γj,n · rj(pj,n)
⎞
⎠+ Cλ,μ,γ + τ

2∑
j=1

N∑
n=1

pj,n

(
N∑
i=n

(λj,n − μj,n)

)
︸ ︷︷ ︸

βj,n

(11)

needs to be satisfied throughout the transmission, whereas the

complementary slackness conditions imply that the Lagrangian

multipliers λj,n, μj, n and γj,n are positive only when the

corresponding constraint is active, and zero otherwise. Moving

the data causality terms with multiplier γj,n to the other

side of the equation, we observe that the solution can be

considered as a generalized water-filling type as in [13], with

the multipliers acting to change the desired water level among

time slots whenever a constraint is active. The energy causality

and battery capacity constraints for this problem have been

introduced in [7], yielding a directional water-filling solution

where water, corresponding to harvested energy, is allowed

to flow only in forward direction and by a limited amount

starting from its arrival point. In this paper, we introduce the

following flow dynamic to accommodate the new data arrival

constraints.

Note that due to the nature of power-rate functions, the

derivative of γj,nrj(pj) in (12) is nonnegative and that of

γj̄,nrj̄(pj) is nonpositive. This indicates that a violated or

active data causality constraint for user j at time slot n will

act to decrease the power in the prior time slots while that for

user j̄ �= j will act in the opposite manner. In the directional

water-filling algorithm, this can be interpreted as an additional

“pump” element between time slots, forcing water flow in

the forward direction when data causality for the user in

consideration is violated, or backward when data causality for

the other user is. An example is shown in Figure 3, where for

small values of B1 the pump between the two time slots is

activated (b), and remains active until the water level in the

first time slot yields a transmission power departing exactly

B1 bits.

An interesting outcome of the pump modification is the

possible contradiction of algorithm elements. Due to the

limited battery capacity, it is possible that the pump and tap

elements may be active at the same time, the former forcing

water flow and the latter resisting it. An example of such cases

arise when E1 = E2 = Emax and B1 = 0 in Figure 3 In such

cases, the contradiction is resolved by removing the pumped

water until the data constraint is met, in a way allowing the

battery to overflow. This does not affect the optimality of the

policy since in such a contradicting scenario, the discarded

energy is bound to be lost.

V. DISTRIBUTED ALGORITHM

The optimal policies calculated using the proposed iterative

algorithms require the knowledge of energy and data arrival

Fig. 3: The operation of the pump element. (a) Arrival sce-

nario, (b) initial water placement without constraints, and (c)

optimal allocation after pump is activated.

settings of both transmitters at a centralized controller prior

to the transmission to perform the iterations. In practice, such

information may not be available or may not be desired to be

shared. In this section we propose a near-optimal algorithm

that works in a distributed fashion using the insight gained

from the centralized optimal iterative solution.

An important result of this paper is the convergence of

single user iterative algorithm, and for some sum-capacity

achieving schemes it can be seen that the single-user subprob-

lems can further simplify or be independent of the other user.

The role of the single user optimization problem in the optimal

offline solution indicates that when the model is restricted

to localized power decisions at each transmitter, i.e., without

any knowledge about the energy or data arrivals of other

transmitters, a reasonable algorithm is to determine policies

using a single link water-filling approach while assuming

expected values for the unknown parameters. For the very

strong interference case, this algorithm yields the optimal

offline policy; whereas in weaker interference cases, further

iterations only provide gradual improvements on the sum rate.

Therefore, this simplified approach performs near-optimal, as

demonstrated through simulations in Section VI.
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Fig. 4: Simulation of iterative directional water-filling, single

user directional water-filling and naive algorithms in asymmet-

ric interference setting with a = 0.7, b = 5 and bandwidth

1MHz.

VI. SIMULATIONS

We now present simulations of the iterative algorithm and

distributed algorithm proposed in this paper. We compare

the performances of the optimal iterative algorithm, the dis-

tributed near-optimal directional water-filling suggested in

Section V, and naive nodes that do not perform any kind

of algorithm to adapt the energy harvesting process. The

naive nodes attempt constant power transmission with the

expected energy harvest rate at each time slot if sufficient

energy is available, and transmit with all remaining energy

otherwise. We assume a Gaussian interference channel with

receiver noise spectral density N0,1 = N0,2 = 10−19W/Hz,

bandwidth 1MHz and channel coefficients h11 = h22 =
−100dB, h12 = −101.55dB and h21 = −93.01dB yielding

channel parameters a = 0.7 and b = 5 after normalization,

falling in the asymmetric interference region. For battery

capacities Emax,1 = Emax,2 = 10 mJ , we generate energy

arrivals with energy distributed uniformly in [0, Emax] and

interarrival times distributed exponentially with mean 5 sec,
quantized to time slots of duration τ = 1 sec. For this setting,

the cumulative departures of these algorithms are plotted

in Figure 4. It is apparent that the water-filling algorithms

provide notable performance increase over the naive approach.

Moreover, it is observed in this simulation as well as others

with different parameters that the single user directional water-

filling performs very close to optimal, making it a favorable

candidate for practical applications.

VII. CONCLUSION

In this paper, the short term sum-throughput maximization

problem for a two-user interference channel with energy

harvesting nodes and data arrivals was formulated and solved

with an iterative algorithm. It was observed that the resulting

single user subproblems can be solved with generalized di-

rectional water-filling algorithm with the addition of a pump

element to account for the data causality constraints. With

the insight from the optimal solution, a distributed version of

the solution was suggested. The performance of the suggested

iterative directional water-filling algorithm and its distributed

near-optimal counterpart were verified through simulations,

showing a notable performance boost over naive algorithms

even in the two user case without data arrivals.

Being the building block for multi-user interference net-

works, the results for the interference channel serve as a start-

ing point for energy harvesting multiple transmitter-receiver

networks. This addresses practical interests in analyzing and

optimizing the upcoming generation of energy harvesting

networks. Future directions for this topic would be extensions

to multi-hop network structures as well as online algorithms

to adapt to energy availability and interference levels simulta-

neously.

REFERENCES

[1] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Transactions on Embedded
Computing Systems (TECS) - Special Section LCTES, vol. 6, no. 4, Sept.
2007.

[2] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy man-
agement policies for energy harvesting sensor nodes,” IEEE Transactions
on Wireless Communications, vol. 9, no. 4, pp. 1326–1336, 2010.

[3] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of wireless
networks with rechargeable batteries,” IEEE Transactions on Wireless
Communications, vol. 9, pp. 581–593, Feb. 2010.

[4] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvest-
ing communication system,” IEEE Transactions on Communications,
submitted Jun. 2010, available at http://arxiv.org/abs/1010.1295.

[5] K. Tutuncuoglu and A. Yener, “Optimum transmission policies
for battery limited energy harvesting nodes,” IEEE Transactions
on Wireless Communications, submitted Sept. 2010, available at
http://arxiv.org/abs/1010.6280.

[6] B. Devillers and D. Gunduz, “A general framework for the optimization
of energy harvesting communication systems with battery imperfec-
tions,” Arxiv preprint arXiv:1109.5490, 2011.

[7] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-
sion with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 8, pp. 1732 –1743, Sep. 2011.

[8] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvest-
ing rechargeable transmitter,” IEEE Transactions on Wireless Communi-
cations, submitted Oct. 2010, available at http://arxiv.org/abs/1010.2993.

[9] M. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optimal packet schedul-
ing on an energy harvesting broadcast link,” IEEE Journal on Selected
Areas in Communications, vol. 29, no. 8, pp. 1721 –1731, Sept. 2011.

[10] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple
access channel with rechargeable nodes,” in Proceedings of the IEEE
International Conference on Communications, ICC’11, Kyoto, Japan,
Jun. 2011.

[11] H. Sato, “The capacity of the gaussian interference channel under strong
interference (corresp.),” IEEE Transactions on Information Theory,
vol. 27, no. 6, pp. 786–788, 1981.

[12] X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-
interference sum–rate capacity for gaussian interference channels,” IEEE
Transactions on Information Theory, vol. 55, no. 2, pp. 689–699, 2009.

[13] O. Kaya and S. Ulukus, “Achieving the capacity region boundary of
fading CDMA channels via generalized iterative waterfilling,” IEEE
Transactions on Wireless Communications, vol. 5, no. 11, pp. 3215–
3223, 2006.

[14] Z. Q. Luo and P. Tseng, “On the convergence of the coordinate descent
method for convex differentiable minimization,” Journal of Optimization
Theory and Applications, vol. 72, no. 1, pp. 7–35, 1992.

[15] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for
energy harvesting transmitters in an interference channel,” JCN Special
Issue on Energy Harvesting in Wireless Networks.

382


