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We investigate optimal resource allocation for the multiband relay channel. We find the optimal power and bandwidth allocation
strategies that maximize the bounds on the capacity, by solving the corresponding max-min optimization problem. We provide
sufficient conditions under which the associated max-min problem is equivalent to a supporting plane problem, which renders
the solution for an arbitrary number of bands tractable. In addition, the sufficient conditions derived are general enough so that a
class of utility functions can be accommodated with this formulation. As an example, we concentrate on the case where the source
has two bands and the relay has a single band available and find the optimal resource allocation. We observe that joint power and
bandwidth optimization always yields higher achievable rates than power optimization alone, establishing the merit of bandwidth
sharing. Motivated by our analytical results, we examine a simple scenario where new channels become available for a transmitter
to communicate; that is, new source to relay bands are added to a frequency division relay network. Given the channel conditions
of the network, we establish the guidelines on how to allocate resources in order to achieve higher rates, depending on the relative
quality of the available links.

1. Introduction

Future wireless networks are expected to enable nodes to
communicate over multiple technologies and hops. Recent
advances in the development of software defined radios
support the vision where agile radios are employed at
each node that utilize multiple standards and communicate
seamlessly. Indeed, an intense research effort is directed
towards having multiple communication standards coexist
within one system, for example, the cellular network and
IEEE 802.11 WLAN as in [1, 2]. We refer to a group
of nodes capable of employing a number of commu-
nication technologies to find the best multihop route
between the source-destination pairs, as a hybrid wireless
network.

In this paper, we consider a simple hybrid wireless
network with a source destination pair and aim at under-
standing its performance limits, that is, information theoretic

rates with optimal resource allocation. In particular, we
consider a scenario where a source node can communicate
over multiple frequency bands to its destination, and a node
that overhears the source transmission acts as a relay. We
assume that the frequency bands that the source utilizes
as well the ones used by the relay node are mutually
orthogonal. The different bands are envisioned to represent
links that operate with different wireless communication
standards.

There has been considerable research effort up to date
towards characterizing the information theoretic capacity
of relay channels [3–7]. Most of the earlier work on relay
channel capacity assumes that simultaneous transmission
and reception at the relay is possible [4]. Since this is
difficult to implement, recent work considers employing
orthogonality at the relay via time-division [5, 8–10],
frequency-division [11, 12], or code-division [13, 14]. To
compensate the loss of spectral efficiency caused by this
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architecture and to increase the capacity, optimal resource
allocation has been considered in [5, 8, 10, 11, 15, 16]. The
optimal power and time slot duration allocation for the time-
division relay channel has been considered in [5]. The work
in [8] investigates three half-duplex time-division protocols
that vary in the method of broadcasting they employ and the
existence of receiver collision. The optimal power and time-
slot allocation has been investigated for the protocol with the
maximum degree of broadcasting and no receiver collision in
[5].

We note that resource allocation in wireless relay net-
works is employed by utilizing the received SNR and the
channel state information which are typically assumed to
be available at the source and the relay node [5, 8, 10, 11,
16]. Notably, [16] studies optimal power and bandwidth
allocation strategies for collaborative transmit diversity
schemes for the situation when the source and the relay
know only the magnitudes of the channel gains. The outage
minimization and the corresponding optimal power control
are considered when the network channel state is available
at the source and the relay [10]. The model considered
in this paper is in accordance with previous work and
utilizes the received SNRs that are available at the source
and the relay in order to find optimal resource allocation
strategy.

In this paper, we investigate the optimal resource allo-
cation strategies that maximize the capacity bounds for a
simple hybrid wireless relay network. The channel model
in this work can be traced back to a class of orthogonal
relay networks first proposed in [11]. The three-node relay
network in [11] is composed of two parts: a broadcast
channel from the source node to the relay and destination
node, and a separate orthogonal link from the relay node
to the destination node. The parallel channel counterpart of
[11] is later examined in [15]. A sum power constraint is
imposed on the source node, and the relay node is restricted
to perform a partial decode and forward operation. The sum
rate from the source to the destination is then maximized by
performing power allocation among different subchannels
and the time sharing factor between the two parts of the
network. A supporting plane technique is proposed in [15]
to solve the associated max-min optimization problem. The
results for the parallel network are then applied to the block
fading model [15].

The model considered in this work is similar to the
parallel relay network in [15]; yet, for the hybrid wireless
network considered, the rate maximization leads to a dif-
ferent optimization problem than [15]: in a hybrid network,
in addition to power allocation among different bands, it is
conceivable to consider bandwidth allocation as well, and we
find that the joint optimal power and bandwidth allocation
yields higher rate than power optimization only. It is worth
mentioning that dynamic bandwidth allocation is beneficial
for a hybrid wireless network even in a scenario of a flat
overall band. This is because different systems (standards)
may exhibit different received SNR behavior even if the
underlying channel gain and noise level are the same. This
can be caused, for example, by different coding schemes or
different requirements on feedback. Thus, one system will
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Figure 1: (k,m) Multiband Relay Channel.

not, in general, be invariably better than all the others over
all links.

At the outset, the joint power and bandwidth opti-
mization appears challenging. Luckily, the resulting max-
min optimization problem, we show, conforms to a set of
sufficient conditions that render the solution manageable,
even for an arbitrarily large number of bands. The technique
that we can use under these sufficient conditions is the
supporting plane technique used in [15]. We remark that the
sufficient conditions are general enough that a class of utility
functions can be optimized using the technique although
our focus is on the information theoretic rates. This implies
that the optimization technique used in this paper can be
incorporated as a building block in a variety of resource
allocation settings.

Lastly, in order to gain insight into the impact of
optimal resource allocation on the construction of a hybrid
wireless network, we examine a scenario where new wireless
links can be added to the classical frequency division relay
network to form a simple hybrid wireless network. Given
the channel conditions between nodes, we study how to
allocate resources to achieve the higher achievable rate. We
observe that the source node is encouraged to communicate
over the best network by dedicating all resources exclusively
when condition of source-to-relay (SR) link and source-to-
destination (SD) link of the new network is better (or worse)
than that of SD link and SR link of the current network.
Otherwise, it is beneficial to share resource between the
current network and the new network to achieve a higher
rate.

2. The Multiband Relay Channel

We consider the multiband relay channel (MBRC), which
models a three-node hybrid wireless network where multiple
frequency bands available from the source and the relay
are mutually orthogonal. In particular, the situation where,
among total k channels, there arem channels available for the
source node and k−m for the relay node, shown in Figure 1,
is termed the (k,m)-MBRC.

The source node transmits information over m orthogo-
nal channels to the relay and the destination node. The relay



EURASIP Journal on Wireless Communications and Networking 3

node uses a decode-and-forward scheme [4]. The (k,m)-
MBRC input-output signal model is thus given by

ỸSR = XS + Z̃SR; YRD = X̃R + ZRD; YSD = XS + ZSD.
(1)

where XS = [X1,X2, . . . ,Xm]T and X̃R = [X̃m+1, X̃m+2,

. . . , X̃k]
T

are the transmitted signal vectors from the source
node and the relay node, respectively. YSD = [Y1,Y2,

. . . ,Ym]T and ỸSR = [Ỹ1, Ỹ2, . . . , Ỹm]
T

are the received
signal vectors at the destination node and the relay node
when the signal is transmitted from the source node.
YRD = [Ym+1, Ym+2, . . . ,Yk]T is the received signal vector

at the destination from the relay. Z̃SR = [Z̃1, Z̃2, . . . , Z̃m]
T

is the zero-mean independent additive white Gaussian
noise (AWGN) vector with covariance matrix E[Z̃SRZ̃T

SR] =
diag{Ñ1/2, Ñ2/2, . . . , Ñm/2} at the relay node. ZSD =
[Z1, Z2, . . . ,Zm]T and ZRD = [Zm+1, Zm+1, . . . ,Zk]T are
the zero-mean independent AWGN vectors with covari-
ance matrices E[ZSDZT

SD] = diag{N1/2,N2/2, . . . ,Nm/2},
and E[ZRDZT

RD] = diag{Nm+1/2,Nm+2/2, . . . ,Nk/2} at the
destination node. [·]T denotes the transpose operation, and
diag{a1, . . . , an} is an n × n diagonal matrix. Since channels
are independent, the channel transition probability mass
function is given by

P
(
y1, y2, . . . , ym, ym+1, . . . , yk, ỹ1, ỹ2, . . . , ỹm |
x1, x2, . . . , xm, x̃m+1, . . . , x̃k)

=
m∏
i=1

P
(
yi, ỹi | xi

) k∏
j=m+1

P
(
yj | x̃ j

)
,

(2)

and we have the following theorem.

Theorem 1. The upper and lower bounds for the capacity of
(k,m)-MBRC are

Clow = max
S∈{1,...,m}

Sc={1,...,m}/S

⎡⎣sup
P(·)

min

⎧⎨⎩∑
i∈S
I(Xi;Yi)

+
k∑

i=m+1

I
(
X̃i;Yi

)
,
∑
i∈S
I
(
Xi; Ỹi

)⎫⎬⎭

+ sup
P(·)

∑
i∈Sc

I(Xi;Yi)

⎤⎦,

(3)

Cup = sup
P(·)

min

⎧⎨⎩
m∑
i=1

I(Xi;Yi)

+
k∑

i=m+1

I
(
X̃i;Yi

)
,
m∑
i=1

I
(
Xi; Ỹi,Yi

)⎫⎬⎭,

(4)

where I(X ;Y) is the mutual information between X and Y .
The input distribution P(·) is

P(x1, x2, . . . , xm, x̃m+1, . . . , x̃k) = P(x1)P(x2) · · ·P(x̃k).
(5)

Proof. The lower bound is obtained by taking the maximum
of all possible transmission rates given the total number of
bands; that is, the lower bound includes all possible trans-
mission schemes which depend on whether the transmission
from the source band(s) is decoded at the relay.

We define S as the set of bands in which the transmission
from the source is decoded at the relay. Sc is the complement
of S and includes the set of bands for direct communication.
For (k,m)-MBRC, the lower bound is given by

Clow = max
S∈{1,...,m}
Sc={1,...,m}/S

{
CDF

(
XS, X̃{m+1,...,k}, ỸS, YS∪{m+1,...,k}

)

+ CDT (XSC , YSC )
}

,

(6)

where XS is the transmitted signal vector from the source
and XSc is the transmitted signal vector from the source
intended for direct transmission. Similarly, X̃{m+1,...,k} is the
transmitted signal from the relay. ỸS is the received signal
vector at the relay. YS∪{m+1,...,k} is the received signal vector
at the destination. YSc is the received signal vector at the
destination as a result of direct transmission. CDF(·) and
CDT(·) are given by

CDF(·) = sup
P(xS ,x̃{m+1,...,k})

min
{
I
(

XS, X̃{m+1,...,k}; YS∪{m+1,...,k}
)

,

I
(

XS; ỸS | X̃{m+1,...,k}
)}

,

(7)

CDT(·) = sup
P(xSc )

I(XSc ; YSc), (8)

where P(xS, x̃{m+1,...,k}) is the input joint distribution with
respect to S. Similarly, P(xSc) is the input joint distribution
with respect to Sc. We note that (7) can be readily obtained
by using the results in [4] by taking X = XS, X̃ = X̃{m+1,...,k},
Ỹ = ỸS, and Y = YS∪{m+1,...,k}. Applying the same approach,
we obtain the following from the cut set bound [17]:

Cup = sup
P(·)

min
{
I
(

XS, X̃{m+1,...,k}; YS∪{m+1,...,k}
)

,

I
(

XS; YS∪{m+1,...,k}, ỸS | X̃{m+1,...,k}
)}

,

(9)
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where P(·) = P(x1, . . . , xm, x̃m+1, . . . , x̃k). Following a similar
approach to [11], (5) can be shown to maximize the mutual
information in (7)–(9), and the optimization over (5) leads
to (3)-(4).

3. Capacity Bounds and
Optimal Resource Allocation

In the remainder of the paper, we will consider optimal
resource allocation on the bounds obtained for the MBRC,
that is, for hybrid wireless networks where the source
node has access to distinct bands (standards) and a second
node that overhears the source information relays to the
destination using additional orthogonal bands. We consider
the Gaussian case, where all the transmitted signals are
corrupted by additive white Gaussian noises.

We have the input-output signal model given by (1)
under source and relay power constraints:

E
[
X2
i

] ≤ αiPs i = 1, . . . ,m;

E
[
X̃2
i

]
≤ ζiPr i = m + 1, . . . , k,

(10)

where Ps and Pr are the total available power at the source and
relay node. αi and ζi are the nonnegative power allocation
parameters for each orthogonal band at the source and relay
node, and

∑m
i=1 αi =

∑k
i=m+1 ζi = 1. Unlike [5, 10], we do

not have a total power constraint between the source and the
relay and assume that each has its own battery.

We assume that the system has total bandwidth W . We
define the received SNRs at the relay and the destination over
channel i = 1, . . . , k as

χi �
Ps

ÑiW
, ηi �

Ps
NiW

, i = 1, . . . ,m,

ρi �
Pr
NiW

, i = m + 1, . . . , k.

(11)

Note that the actual received SNR values are the scaled
versions of (11) depending on the power and bandwidth
allocation. For example, the actual received SNR at the relay
from channel 1, which is allocated α1 fraction of the source
power and φ1 fraction of the bandwidth, simply is α1χ1/φ1.
Given the received SNRs which are available at the source
and relay, our aim is to find the optimal resource allocation
parameters that maximize capacity lower bound in terms of
the transmitted power and the total bandwidth for (k,m)-
MBRC, which leads to optimally allocating the source power
among m source bands, the relay power among k − m relay
bands, and the total bandwidth among k bands. We can
obtain the capacity lower and upper bounds of (k,m)-MBRC
from Theorem 1 as follows.

Theorem 2. The upper and lower bounds for the capacity of
the Gaussian (k,m)-MBRC are

CMBRC
low

= max
S∈{1,...,m}
Sc∈{1,...,m}/S

max
0≤αi,φi ,ζi≤1∑m

i=1 αi=1∑k
i=1 φi=1∑k
i=m+1 ζi=1

min

⎧⎨⎩∑
i∈S
φi log

(
1+αi

ηi
φi

)

+
k∑

i=m+1

φi log

(
1+ζi

ρi
φi

)

+
∑
i∈Sc

φi log

(
1+αi

ηi
φi

)
,

∑
i∈S
φi log

(
1+αi

χi
φi

)

+
∑
i∈Sc

φi log

(
1+αi

ηi
φi

)⎫⎬⎭,

(12)

CMBRC
up = max

0≤αi,φi ,ζi≤1∑m
i=1 αi=1∑k
i=1 φi=1∑k
i=m+1 ζi=1

min

⎧⎨⎩
2∑
i=1

φi log

(
1+αi

ηi
φi

)

+
k∑

i=m+1

φi log

(
1+ζi

ρi
φi

)
,

2∑
i=1

φi log

(
1+αi

ηi+χi
φi

)⎫⎬⎭.

(13)

We omit the proof for Theorem 2 since the derivation for
each mutual information follows directly from [15]. For each
broadcast channel, if the relay node sees a higher received
SNR than the destination node, then a superposition coding
scheme [17] is used to convey independent information to
the relay node, which cannot be decoded by the destination
directly. The relay node then collects this information from
all the channels where superposition coding is used, and
transmits it to the destination at the appropriate rate.

Based on whether the relay node is utilized by a certain
channel (band), we note that there are 2m possible schemes.
We observe that these 2m schemes are not exclusive to
each other, since a superposition coding scheme may be
reduced to a direct source-to-destination transmission if no
band is allocated to the relay-to-destination link. We also
note that which scheme yields the largest rate is completely
decided by the SNR relationship, namely, the componentwise
relationship between the received SNRs of the source-to-
relay links, that is, χ1, . . . , χm and the received SNRs of the
source-to-destination links, that is, η1, . . . ,ηm.

If χj ≤ ηj , j = 1, . . . ,m, then for any bandwidth
allocation, the signal received by the relay over this broad-
cast channel can be viewed as a degraded version of the
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signal received by the destination. Therefore, direct link
transmission should be used for this band, regardless of
what scheme is used for the other bands. On the other
hand, if ηj < χj , then the relay node can always learn
something more than the destination node over this band
and uses the superposition code scheme, and although
the superposition scheme may be reduced to a direct link
transmission scheme, optimizing under this scheme does not
incur any rate loss. Based on these observations, we conclude
that there is no need to examine all the schemes to find the
best rate and the corresponding resource allocation. That is,
practically, the system checks the received SNRs and chooses
one of 2m schemes satisfying the relationship of the received
SNRs to communicate and the rate with optimized resource
allocation for the chosen scheme is the maximum achievable
rate, and the corresponding resource allocation is the globally
optimal solution.

Next, we maximize the capacity lower bound in (12). To
achieve this goal, we introduce the following general max-
min optimization problem. We define G1(R) and G2(R) as
any utility function with any resource allocation vector R
over the convex set C0:

max
(c1,c2) ∈B1

min{c1, c2}

where B1 =
{

(G1(R),G2(R)) : R ∈ C0
}

,

C0 =
{

all feasible values of R
}
.

(14)

Proposition 1. If G1(R) and G2(R) are nonnegative and
concave over C0, there must exist 0 ≤ β ≤ 1 such
that maximizing the following equation with respect to R is
equivalent to (14):

G
(
β,R

) = βG1(R) +
(
1− β)G2(R), 0 ≤ β ≤ 1. (15)

Proof . See Appendix A.
Note that the optimization problem in (14) corresponds

to finding R and β maximizing the minimum of two end
points in G(β,R). One possible technique to solve the max-
min optimization problem in (14) is given by the following
proposition [15], which we will also utilize.

Proposition 2 ([15, Proposition 1]). The relationship be-
tween optimal resource allocation parameters R∗ and the
corresponding optimal point β∗ is given by the following.

Case 1: If β∗ = 1, G1(R∗) < G2(R∗).

Case 2: If β∗ = 0, G1(R∗) > G2(R∗).

Case 3: Neither case 1 nor 2 occurs; under this case, if 0 ≤ β∗ ≤
1, G1(R∗) = G2(R∗).

Now, one can restate our max-min optimization problem
given in Theorem 2 as follows:

max
(c1,c2)∈B1

min{c1, c2}

where B1 =
{

(C1(R),C2(R)) : R ∈ C0
}

,

C0 =
⎧⎨⎩(α1, . . . ,αm, ζm+1, . . . , ζk,φ1, . . . ,φk

)
:

0 ≤ αi, ζi,φi ≤ 1,

m∑
i=1

αi = 1,
k∑

i=m+1

ζi = 1,
k∑
i=1

φi = 1

⎫⎬⎭ ⊂ R2k,

(16)

where C1(R) and C2(R) are the first and the second terms of
max-min optimization problem in (12). Next, one needs to
prove that C1(R) and C2(R) are concave over C0 in (16). Define

F
(
x1, . . . , xn, y1, . . . , yn

)
=
∑
i∈D

xi log
(

1 + yi
ti
xi

)
,

ti > 0, xi ≥ 0, yi ≥ 0, i = 1, . . . ,n,

D = {i : xi > 0, i = 1, . . . ,n}.

(17)

It is easy to see that F(x1, . . . , xn, y1, . . . , yn) is continuous over
{xi ≥ 0, yi ≥ 0, i = 1, . . . ,n}. Then, one has the following
proposition.

Proposition 3. F(x1, . . . , xn, y1, . . . , yn) is concave over xi ≥
0 and yi ≥ 0, i = 1, . . . ,n.

Proof. First, note that due to the continuity of F(·), we only
need to prove that F(·) is concave over the interior of the
region, that is, xi > 0, yi > 0, i = 1, . . . ,n. This is done
by examining the Hessian, H, of (17). The second-order
derivatives of (17) with respect to xi and yi are

∂2F(·)
∂x2

i

= −t2i y2
i

xi
(
ti yi + xi

)2 ;
∂2F(·)
∂y2

i

= −t2i xi(
ti yi + xi

)2 , (18)

∂2F(·)
∂xi∂yi

= t2i yi(
ti yi + xi

)2 . (19)

We note that ∂2F(·)/∂xi∂xj = ∂2F(·)/∂yi∂yj = ∂2F(·)/
∂xi∂yj = 0, for all i /= j.

The Hessian is the 2n×2n block diagonal matrix with the
following matrix in its ith diagonal:

Ai =

⎡⎢⎢⎢⎢⎢⎣
∂2F(·)
∂x2

i

∂2F(·)
∂xi∂yi

∂2F(·)
∂yi∂xi

∂2F(·)
∂y2

i

⎤⎥⎥⎥⎥⎥⎦ i = 1, . . . ,n. (20)
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It is readily seen that Ai is singular. Since ∂2F(·)/∂x2
1 < 0 for

y1 > 0 from (18), H is the negative semidefinite. Thus, F(·)
is concave over xi > 0 and yi > 0, i = 1, . . . ,n. Since F(·) is
continuous over xi ≥ 0, yi ≥ 0, i = 1, . . . ,n, F(·) is concave
over xi ≥ 0 and yi ≥ 0, i = 1, . . . ,n.

We note that for any choice of set S ∈ {1, . . . ,m}, C1(R)
corresponds to F(·) in (17) with xi = φi, i = 1, . . . , k, yi = αi,
i = 1, . . . ,m, yi = ζi, i = m+1, . . . , k, ti = ηi, i = 1, . . . ,m, and
ti = ρi, i = m + 1, . . . , k. For C1(R), the Hessian is a 2k × 2k
block diagonal matrix. Similarly, C2(R) corresponds to F(·)
with xi = φi, i = 1, . . . ,m, yi = αi, i = 1, . . . ,m, ti = χi, i ∈ S,
and ti = ηi, i ∈ Sc. For C2(R), the Hessian is a 2m× 2m block
diagonal matrix.

Remark 1. Since F(·) is concave over the set xi ≥ 0 and yi ≥
0, i = 1, . . . ,n, it is also concave over any convex subset of
it. Thus, C1(R) and C2(R) are concave over R ∈ C0. ( It is
readily seen that the sum constraints define a convex set.)
This establishes that the local optimal for (16) is also the
global optimal [18, Theorem 3.4.2, page 125-126].

Remark 2. We further find that F(·) is strictly concave over
any convex subset of xi > 0(yi > 0), i = 1, . . . ,n, jointly
when yi > 0 (xi > 0), i = 1, . . . ,n, are held constant. Note
that when all yi > 0, i = 1, . . . ,n, are held constant, that is,
yi = ci, we have F(·) as a function of xi, i = 1, . . . ,n. In this
case, it is easily seen that the Hessian is the n × ndiagonal
matrix in which ith diagonal term is given by ∂2F(·)/∂x2

i =
−t2i c2

i /(xi(tici + xi)
2), ci > 0, i = 1, . . . ,n. Since now all of the

diagonal terms are strictly negative when xi > 0, i = 1, . . . ,n,
F(·) is strictly concave over all xi > 0, i = 1, . . . ,n, jointly
when all yi > 0, i = 1, . . . ,n, are held constant. Similarly,
F(·) is strictly concave over yi > 0, i = 1, . . . ,n, jointly when
all xi > 0, i = 1, . . . ,n, are held constant. Since if a function
is strictly concave over a set, it is also strictly concave over
any convex subset of that set, the preceding argument implies
that F(·) is strictly concave over any convex subset of xi >
0 (yi > 0), i = 1, . . . ,n, when all yi > 0 (xi > 0), i = 1, . . . ,n,
are held constant. This fact will be useful in the sequel.

Based on Proposition 1 and Proposition 3, the method-
ology given in Proposition 2 can be applied to our max-
min optimization problem in (16) for an arbitrary (k,m).
That said, in the remainder of the paper, we will examine
the optimal resource allocation for (3, 2)-MBRC where the
source has two bands and the relay has a single band available
to communicate and uses its own full power Pr . We find
this network model representative and meaningful because
of the following two observations. First, if there is more than
one band available for the link between the relay and the
destination, then only the best band among them will be
used. This can be seen by fixing the overall band for this link
and performing joint power and bandwidth optimization.
Therefore, as long as the relay-to-destination SNRs are
different, which is usually the case in practice, (k,m)-MBRC
will have the same resource allocation parameters as those of
(m + 1,m)-MBRC. Secondly, the case with m > 2 is similar
to the case with m = 2 except that there are more schemes to

choose from. Therefore, we focus on the (3, 2)-MBRC in the
sequel.

3.1. Maximization of Capacity Bounds for the Gaussian (3, 2)-
MBRC. For (3, 2)-MBRC, there are four schemes to choose
from. Let us label them Schemes I through IV. From
Theorem 2, upper and lower bounds for the capacity of the
Gaussian (3, 2)-MBRC are

CMBRC
low = max

0≤αi,φi≤1∑2
i=1 αi=1∑3
i=1 φi=1

min

⎧⎨⎩
2∑
i=1

φi log

(
1+αi

ηi
φi

)

+φ3 log

(
1+

ρ3

φ3

)
,φ1 log

(
1+α1

κ

φ1

)

+φ2 log

(
1+α2

ν

φ2

)}
,

(21)

CMBRC
up = max

0≤αi,φi≤1∑2
i=1 αi=1∑3
i=1 φi=1

min

⎧⎨⎩
2∑
i=1

φi log

(
1+αi

ηi
φi

)
+φ3 log

(
1+

ρ3

φ3

)

2∑
i=1

φi log

(
1+αi

ηi+χi
φi

)⎫⎬⎭,

(22)

where (κ, ν) = (χ1, χ2), (χ1,η2), (η1, χ2), and (η1,η2) for
schemes I to IV, respectively. Each scheme materializes as a
function of the received SNRs as follows.

Scheme I: S = {1, 2}, the scenario where transmis-
sion from the source node over both links is decoded
at the relay node. This scheme is chosen if η1 ≤ χ1

and η2 ≤ χ2.

Scheme II: S = {1}, the scenario where transmission
from the source node over band 1 is decoded at
the relay node while band 2 is used for direct
transmission only. This scheme is chosen if η1 ≤ χ1

and η2 ≥ χ2.

Scheme III: S = {2}, the scenario where transmis-
sion from the source node over band 2 is decoded
at the relay node while band 1 is used for direct
transmission only. This scheme is chosen if η1 ≥ χ1

and η2 ≤ χ2.

Scheme IV: S = {φ}, the scenario where transmis-
sions from the source node from both bands are used
only for direct transmission. This scheme is chosen if
η1 ≥ χ1 and η2 ≥ χ2.

We define R∗ = (α1,α2,φ1,φ2,φ3) as the optimal
resource allocation parameters for (21). C1(R) and C2(R) are
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the first and second terms in (21). From (21), we note that
the capacity for scheme IV is given by

CMBRC
direct = max

0≤αi,φi≤1∑2
i=1 αi=1∑2
i=1 φi=1

{
φ1 log

(
1 + α1

η1

φ1

)
+ φ2 log

(
1 + α2

η2

φ2

)}
.

(23)

In this case, the max-min optimization problem reduces to
a maximization problem and it is readily shown that the
optimal resource allocation for the rate of scheme IV is given
by

R∗ =
⎧⎨⎩(1, 0, 1, 0, 0) if η1 > η2,

(0, 1, 0, 1, 0) if η1 < η2.
(24)

For schemes I, II, III, once the appropriate scheme is decided
upon, parameters (κ, ν) can be substituted accordingly and
we can examine R∗ for each of the cases in Proposition 2.

Case 1. β∗ = 1, and R∗ maximizes C1(R).

This case holds if the following condition is satisfied:

2∑
i=1

φ∗i log

(
1 + α∗i

ηi
φ∗i

)
+ φ∗3 log

(
1 +

ρ3

φ∗3

)

< φ∗1 log

(
1 + α∗1

κ

φ∗1

)
+ φ∗2 log

(
1 + α∗2

ν

φ∗2

)
,

(25)

and we obtain

R∗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1, 0, 1− ρ3

ρ3 + η1
, 0,

ρ3

ρ3 + η1

)
if η1 > η2,

(
0, 1, 0, 1− ρ3

ρ3 + η2
,

ρ3

ρ3 + η2

)
if η1 < η2.

(26)

The received SNRs must satisfy

η1

ρ3 +η1
log

(
1+

κ
(
ρ3 +η1

)
η1

)
> log

(
1+ρ3 +η1

)
for η1 > η2,

(27)

η2

ρ3 +η2
log

(
1+

ν
(
ρ3 +η2

)
η2

)
< log

(
1 +ρ3 +η2

)
for η1<η2.

(28)

Proof. See Appendix B.

Case 2. β∗ = 0, and R∗ maximizes C2(R).
This case holds if the following condition is satisfied:

2∑
i=1

φ∗i log

(
1 + α∗i

ηi
φ∗i

)
+ φ∗3 log

(
1 +

ρ3

φ∗3

)

> φ∗1 log

(
1 + α∗1

κ

φ∗1

)
+ φ∗2 log

(
1 + α∗2

ν

φ∗2

)
,

(29)

and we obtain

R∗ =
⎧⎨⎩(1, 0, 1, 0, 0) if κ > ν,η1 > κ,

(0, 1, 0, 1, 0) if κ < ν,η2 > ν.
(30)

Proof. See Appendix B.

Remark 3. By substituting the appropriate parameters for
(κ, ν) for each scheme into (30), we observe that Case 2 does
not ever materialize for schemes I, II, III.

Case 3. 0 ≤ β∗ ≤ 1, and R∗ maximizes β∗C1(R) + (1 −
β∗)C2(R) for a fixed β∗.

This case occurs when (25) or (29) doES not hold. The
closed form solution for this optimization problem does
not exist. Thus, we have to rely on an iterative algorithm.
We propose to use alternating maximization algorithm that
calls for optimizing α = {α1,α2} in one stage, followed by
optimizing φ = {φ1,φ2,φ3} in the next stage. The iterations
are obtained by finding KKT points of the corresponding
optimization problem with the variable vector α or φ. We
note that the objective function is not differentiable at the
boundary of the feasible region, that is, for φi = 0, i = 1, 2, 3
and the corresponding KKT points are not defined. Thus,
we need to introduce a small positive value, ε, and define
a modified feasible region as illustrated in (B.3) and (B.4)
that excludes the boundary point. Every time an iteration
reaches the boundary of the new feasible region, we expand
the feasible region by successively reducing ε so that we can
continue with the iterations until convergence. The detailed
description of the following proposed iterative algorithm and
proof of its convergence to the global optimal solution is
given in Appendix C.

Step 1. (i) Initialization: for initial values of β∗, μ, λ, ωi, i =
1, 2, 3, ψi, i = 1, 2, and assign values to φ1,φ2,φ3, such that
φ1 + φ2 + φ3 = 1.

(ii) Iteration n: update αi(n), i = 1, 2 by finding the
solution of KKT condition of (C.2) with respect to αi, i =
1, 2; find μ(n) and ψi(n), i = 1, 2 such that α1(n) + α2(n) = 1
and αi(n) ≥ ε, i = 1, 2.

(iii) Iteration n+1: update φ1(n+1), φ2(n+1), and φ3(n+
1) by finding the solution of KKT condition of (C.2) with
respect to φi, i = 1, 2, 3; find λ(n+ 1) and ωi(n+ 1), i = 1, 2, 3
such that φ1(n+ 1) +φ2(n+ 1) +φ3(n+ 1) = 1, and φi(n) ≥ ε,
i = 1, 2, 3.

(iv) Repeat step (ii) until the optimal β∗ is found by
C1(R∗) = C2(R∗) in (C.3).

Step 2. If the iteration does not reach the boundary of the
feasible region of (B.3) and (B.4), the algorithm terminates.

Step 3. Otherwise, set ε = ε/d, d > 1 in (B.3) and (B.4)
and repeat Steps (1) to (2) by using the KKT points from
the previous iteration as the initial points. ( For numerical
results, we use d = 2.)

We reiterate that based on the scheme at hand, we
would substitute the correct parameters for (κ, ν) ∈
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Figure 2: Upper and lower bounds of (3, 2)-MBRC with power
optimization only: SNRs at SD, η1 = 10 dB and η2 = 5 dB.

{(χ1, χ2), (χ1,η2), (η1, χ2)} to find the optimal resource allo-
cation strategy.

3.2. Upper Bound on Capacity. Recall that the upper bound
given by (13) is obtained by the max-flow min-cut theorem.
The maximization for the upper bound follows same steps to
that of the lower bound, details of which we will omit here.
In general, the upper bound is not tight. One exception is
that for (3, 2)-MBRC, since Case 2 for schemes I, II, and III
is not possible, the optimal resource allocation parameters
R∗ maximize C1(R) (Case 1) or C1(R) = C2(R) (Case 3).
There exists a ρ′3 such that C1(R∗) < C2(R∗) if ρ3 < ρ′3,
otherwise C1(R∗) = C2(R∗). Since the first term of the upper
bound in (22) is the same as C1(R), we know that for (3, 2)-
MBRC, R∗ maximizes CMBRC

low = CMBRC
up for ρ3 < ρ′3 and the

resulting optimized rate is the capacity of (3, 2)-MBRC. A
similar observation was made for the frequency division relay
network, that is, when one band exists from the source in
[11]. It is interesting to observe that the same observation
extends to the multiband case.

4. Numerical Results and Discussion

4.1. Capacity Bounds. In this section, we present numerical
results to support our analysis described in Section 3.
Specifically, for (3, 2)-MBRC, we plot the capacity lower
bound (LB) obtained by optimal resource allocation as well
as the capacity upper bound (UB) with the same resource
allocation parameters. For comparison purposes, we also
consider the case where overall bandwidth W is equally

20181614121086420
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Figure 3: Upper and lower bounds of (3, 2)-MBRC with joint
power and bandwidth optimization: SNRs at SD, η1 = 10 dB and
η2 = 5 dB.

divided between the three bands and only optimal power
allocation is done.

Figure 2 shows the capacity UB and LB for (3, 2)-MBRC
with optimal power allocation only. When the source-to-
relay (SR) SNRs χ1 and χ2 are smaller than or equal to the
source-to-destination (SD) SNRs η1 and η2, respectively, the
lower bound does not increase and saturate even if the relay-
to-destination (RD) SNR ρ3 increases. This is expected, since
using the relay is not beneficial when the source-to-relay
channel is worse than the source-to-destination channel.

In contrast, when χ1 and χ2 are larger than η1 and
η2, respectively, the lower bound increases as ρ3 increases
and saturates after a certain threshold of ρ3. This threshold
becomes larger as the quality of the SR links improves
as compared to the SD links, that is, as χ1 and χ2 get
larger compared to η1 and η2. Indeed, the fact that we can
achieve higher rates when the SR channel is better than the
SD channel is intuitively pleasing as the power allocation
becomes more effective when we have a better SR channel.
It is noticeable that the upper and lower bounds approach
each other as the SR link quality improves as compared to
that of SD.

Figure 3 shows the capacity UB and LB for (3, 2)-MBRC
with joint optimal power and bandwidth allocation. We
observe that the lower bound does not saturate when the SR
links are better than the SD links. This additional improve-
ment is thanks to the dynamic bandwidth allocation. By
comparing Figure 2 and 3, we observe that the achievable rate
of MBRC with joint optimal power and bandwidth is always
larger than that of power optimization only, sometimes by
a significant margin. This points to the advantage of joint
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Figure 4: Comparison of achievable rates: the new SR ink is better
than the current SR link, and the new SD link is better than the
current SD link.
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Figure 5: Comparison of achievable rates: the new SR link is better
than the current SR link, and the new SD link is worse than the
current SD link.

power and bandwidth optimization, promoting the idea of
different wireless technologies lending each other frequency
resources to improve capacity.

4.2. Guidelines for Hybrid Network Design. When a new
wireless link becomes available at the source in addition
to the existing single band relay network, a hybrid wireless
network can be formed. In this case, a meaningful question is
how to allocate resources between links in order to maximize
the data rate. It is evident that the resource allocation
strategy is a function of the channel quality of the available

Case 1 Case 3
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Figure 6: Optimal bandwidth allocation: the new SR link is better
than the current SR link, and the new SD link is worse than the
current SD link.

links (SD/SR/RD). To answer this question, we compare the
achievable rates with optimal resource allocation for k = 2
and 3 and observe the effect of adding a new link on the
maximum achievable rate.

Figure 4 shows the achievable rates when the new SR ink
is better than the current SR link, and the new SD link is
better than the current SD link. Comparing k = 3 and k = 2,
we observe that the achievable rate of k = 3 is better than
that of k = 2. This is because quality of the new link is better
than that of the current link, and all resources are allocated
to the new link. If the new links were worse, the maximum
achievable rates would stay the same since all resources would
be allocated to the current link.

Figure 5 shows the achievable rates when the new SR
link is better than the current SR link, and the new SD
link is worse than the current SD link. We observe that the
achievable rates for k = 2 and 3 are almost same for low
RD SNR. This is because when the RD link is poor, the relay
becomes less useful, and most of bandwidth and power are
allocated into channel with the best direct link. As the RD
SNR increases, we observe that the achievable rate for k = 3 is
larger than that of k = 2. This is because it is optimal resource
allocation that we allocate more bandwidth and power to the
new link with the best SR link. The observation is justified
by examining bandwidth allocation (the power allocation
follows a similar pattern) for k = 3 shown in Figure 6. We
see that more bandwidth is allocated to the current link (φ2

for k = 3) for low received RD SNR. More bandwidth is
allocated to the new link (φ1 for k = 3) when the RD link
becomes better. We also observe that Case 1 and Case 3 of
our proposed optimal resource allocation occur depending
on the RD SNR: with both SR SNRs better than both SD
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SNRs, Case 1 occurs at low RD SNR (from 0 dB to 10 dB);
otherwise, the optimal resource allocation corresponds to
Case 3. We note that the optimal resource allocation scheme
would be reversed if the new SR link were worse than the
current SR link, and the new SD link were better than the
current SD link.

We note that the given received SNRs in the numerical
results correspond to scheme I (i.e., ηi ≤ χi, i = 1, 2).
Similarly, we can examine the effect of adding a new link
under different received SNR relationship between ηi and χi
which corresponds to scheme II or scheme III, and we could
readily apply the optimal resource allocation solution found
in Section 3.1.

5. Conclusions

In this paper, we have investigated the optimal resource
allocation for a hybrid three-node relay network where the
source, with the help of a relay node, communicates to
the destination via multiple orthogonal channels (MBRCs).
In particular, we have studied joint optimal power and
bandwidth allocation strategies that maximize the bounds on
the capacity, which results in a max-min optimization prob-
lem. We have solved this problem using a supporting plane
technique [15]. In particular, we have provided sufficient
conditions for when this max-min optimization problem can
be solved using this technique. It is worthwhile to mention
that these sufficient conditions are general enough so that
other utility functions that rely on SNR can be considered
as well as the information theoretic rates considered in this
paper.

For (3, 2)-MBRC, we have found the joint power and
bandwidth allocation. We have observed that the upper and
lower bounds approach each other as the source-to-relay
channel condition improves as compared to the source-
to-destination channel condition, and joint power and
bandwidth optimization always yields better performance
than power optimization only.

Our numerical results have also investigated the scenario
where a new link at the source becomes available for an
existing frequency division relay network, and the power and
bandwidth resources are to be reallocated. We have observed
that the source node is encouraged to communicate over the
best link by dedicating all resources when the new SR link
and SD link are better (or worse) than the current SD link
and SR link. Otherwise, it is beneficial to share resources
between the current link and the new link to achieve the
higher rate.

The simple MBRC investigated in this paper can be
considered as a building block for more complex hybrid
wireless networks. From the system design point of view,
we conclude that, for this two-hop, simple network, higher
achievable rates can be obtained by optimally allocating
resources between multiple standards. It would be of interest
to gain an understanding of the set of conditions under
which using multiple communication links (standards)
and optimal sharing of resources would be beneficial for
multihop hybrid wireless networks.

Appendices

A. Proof of Proposition 1

Proof . Suppose that both G1(R) and G2(R) are nonnegative
and concave over convex set C0. Then, we claim that the
optimization problem (14) can be relaxed as follows:

max
(c1,c2)∈B

min{c1, c2}, (A.1)

where B = dominance closure{convex closure{B1}},
(A.2)

B1 =
{

(G1(R),G2(R)) : R ∈ C0
}

, (A.3)

C0 =
{

all feasible values of R
}

, (A.4)

dominance closure{A} :=closure

⎧⎨⎩ ⋃
(x,y)∈A

{
rectangular

(
x,y

)}⎫⎬⎭,

(A.5)

where rectangular
(
x, y

) = {(a, b) : 0 ≤ a ≤ x, 0 ≤ b ≤ y
}
.

(A.6)

To see that, we devise the following notion of dominance:
pair (a, b) is said to be dominated by (c,d) if a ≤ c and b ≤
d. We say that a set A1 is dominated by the other set A2, or
A1 � A2 if every point in A1 is dominated by some point in
A2. Since G1(R) and G2(R) are concave over C0, we realize
that B1 dominates its convex closure B1. Furthermore, from
the definition of dominance closure in (A.5), it is easy to see
B � B1. Since B � B1 and B1 � B1, we have B � B1. We
note that adding dominated points to B1 does not change
the value of optimization problem (14), which allows us to
consider problem (A.1)–(A.6) instead.

Set B has the following properties. (1) It is a closed
convex set. To see that, consider two points in B: (a1, b1) ∈
rectangular (x1, y1) and (a2, b2) ∈ rectangular(x2, y2). Then
we must have (λa1 + (1 − λ)a2, λb1 + (1 − λ)b2) ∈
rectangular (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2). (2) Consider
any supporting plane of this set, which is a line in R2 in
this case. The slope of this line cannot be both positive
and finite. Otherwise, suppose the supporting plane passes
through point (x, y) in B, then rectangular (x, y), defined by
(A.6), will not be in B.

We then observe that (A.1)–(A.6) must be solved
when c1 = c2 /= 0 and (c1, c2) is at the boundary of B.
The maximum of (A.1)–(A.6) should be attained at the
boundary of B since every interior point of B must be
dominated by some point at its boundary. Also, there must
be such a point on the boundary with c1 = c2. We then show
that the point with c1 = c2 /= 0 must be a local maximal
point. This is because any improvement over this point
would require increasing c1, c2 simultaneously. Suppose such
improved point exists. Then it will be strictly separated from
set B by the support plane passing through (c1, c2), since
no supporting plane has finite positive slope. Since B is
a closed convex set and min{x, y} is a concave function
over R2, any local maximum must be globally optimal [18,
Theorem 3.4.2, page 125-126]. This completes our claim that
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optimality must be attained at the diagonal line. We observe
that this point may not be in B1. Therefore, it may not be
parameterizable by R. This necessitates consideration of the
three cases as we will show later.

Since optimality must be attained at the boundary of the
convex set B, we observe that (A.1)–(A.6) is equivalent to
(A.7) for a certain β:

max
(c1,c2)∈B

βc1 +
(
1− β)c2, 0 ≤ β ≤ 1. (A.7)

(A.7) can be solved by examining three cases: β = 0, β = 1,
0 < β < 1.

For β = 1 and β = 0, we have

max
R∈C0

G1(R), β = 1; max
R∈C0

G2(R), β = 0. (A.8)

For 0 < β < 1, we prove below that (A.7) is equivalent to
(A.9). Let the optimal solution of (A.7) be (c∗1 , c∗2 ). Since 0 <
β < 1, (c∗1 , c∗2 ) cannot be dominated by any point in B other
than itself. (If such a point exists, it would be separated from
B by the supporting plane passing through (c∗1 , c∗2 ).) Since
B � B1 and B ⊃ B1, we must have (c∗1 , c∗2 ) ∈ B1. This means
that we can solve (A.9) instead:

max
(c1,c2)∈B1

βc1 +
(
1− β)c2, 0 < β < 1. (A.9)

Since all points in B1 can be parameterized by R, problem
(A.9) is equivalent to (A.10). β is adjusted until the solution
to (A.10) yields G1(R) = G2(R):

max
R∈C0

βG1(R) +
(
1− β)G2(R), 0 < β < 1. (A.10)

In summary, we proved that there must exist a β ∈ [0, 1]
such that (14) is equivalent to (A.7) if G1(R) and G2(R) are
nonnegative and concave over convex set C0. Depending on
the value of β, we find that there are three cases for the max-
min optimization (A.7) as given in Proposition 2.

B. Optimal Resource Allocation

Proof. We provide the proof for optimal resource allocation
for (3, 2)-MBRC. To do so, we utilize the following theorem
which we restate here with our notation for convenience.

Theorem 3 ([19, Proposition 3.9, pages 219–221]). Suppose
that F : Rn -→ R is continuously differentiable and concave on
the set X , a Cartesian product of sets Xi, where each Xi is a
closed convex subset of Rni(n1 + · · ·+ nm = n). Furthermore,
suppose that for x = {x1, . . . , xm}, xi ∈ Rni , F(x) is a strictly
concave function of each xi, when the other components of x
are held constant. Let {x(t)} be the sequence generated by the
iterative algorithm obtained by optimizing F(x) over one vector
variable at a time. Then, every limit point of {x(t)}maximizes
F(x) over X .

For a fixed 0 ≤ β∗ ≤ 1, the objective function of our
max-min problem corresponds to

F(x) = β∗C1(x) +
(
1− β∗)C2(x), (B.1)

where x corresponds to R = (α1,α2,φ1,φ2,φ3).
Based on Proposition 3, we know that the objective

function (B.1) of our max-min optimization problem given
in (21) is concave over the constraint set X , which is a
Cartesian product of the following two sets,X1 andX2, which
are closed convex subset of Rni(n1 = 2,n2 = 3):

X1 =
{
α = (α1,α2) : 0 ≤ α1,α2 ≤ 1,

2∑
i=1
αi = 1

}
,

X2 =
{
φ = (φ1,φ2,φ3

)
: 0 ≤ φ1,φ2,φ3 ≤ 1,

3∑
i=1
φi = 1

}
.

(B.2)

Also, for the interior points of the feasible region of R, we
note that (B.1) is strictly concave over α(φ) when φ(α) are
fixed; see Remark 2. We note that the objective function (B.1)
is not differentiable at the boundary of the feasible region,
that is, for φi = 0, i = 1, 2, 3. Therefore, we cannot directly
apply Theorem 3. We define a modified feasible region as
follows:

X1new =
⎧⎨⎩α = (α1,α2) : ε ≤ α1,α2 ≤ 1,

2∑
i=1

αi = 1

⎫⎬⎭, (B.3)

X2new =
⎧⎨⎩φ = (φ1,φ2,φ3

)
: ε ≤ φ1,φ2,φ3 ≤ 1,

3∑
i=1

φi = 1

⎫⎬⎭
(B.4)

with a small ε > 0. Since (B.1) is continuously differentiable
over the new feasible region given by (B.3) and (B.4), we
can now apply Theorem 3. Thus, we can devise an iterative
algorithm to maximize the function, by maximizing over
α for fixed φ (φ for fixed α) and then maximizing φ for
fixed α (α for fixed φ). The iterative method, by Theorem 3,
will converge to the maximizer of F(x) over (B.3) and
(B.4), which is the global optimal. If the iterative algorithm
converges to a point that is at the boundary of the new
feasible region given by (B.3) and (B.4), we need to reduce
ε further and repeat the iteration using the KKT points from
the previous iteration as the initial point. By repeating this
procedure, the iterative algorithm converges to the global
optimal solution.

For Case 1 (β∗ = 1 in (B.1)) and Case 2 (β∗ = 0 in
(B.1)), we provide the closed form solution below. For Case
3 (0 ≤ β∗ ≤ 1 in (B.1)), we provide the iterative algorithm in
Appendix C.
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Case 1. R∗ maximizes C1(R). Using α1 = 1 − α2 = α and
φ2 = 1− φ1 − φ3, C1(R) in (21) can be rewritten as

C1
(
α,φ1,φ3

)
= φ1 log

(
1 +

αη1

φ1

)

+
(
1− φ1 − φ3

)
log

(
1 +

(1− α)η2(
1− φ1 − φ3

))

+ φ3 log

(
1 +

ρ3

φ3

)
.

(B.5)

Differentiating (B.5) with respect to φ1, we obtain φ1 =
αη1(1 − φ3)/(αη1 + (1 − α)η2). Observe that 0 ≤ φ1 ≤ 1 for
0 ≤ α ≤ 1 and 0 ≤ φ3 ≤ 1. Substituting this expression for
φ1 into (B.5), we obtain

C1
(
α,φ3

) = (1− φ3
)

log

(
1 +

αη1 + (1− α)η2(
1− φ3

) )

+ φ3 log

(
1 +

ρ3

φ3

)
.

(B.6)

For fixed φ3, we can maximize (B.6) in terms of α by

α∗ =
⎧⎨⎩1 if η1 > η2,

0 if η1 < η2.
(B.7)

Substituting (B.7) into (B.6), we have

C1
(
φ3
)=(1−φ3

)
log

(
1+

max
(
η1,η2

)(
1−φ3

) )
+φ3 log

(
1+

ρ3

φ3

)
.

(B.8)

Maximizing (B.8) with respect to φ3 leads to ρ3/(ρ3 +
max(η1,η2)). The optimal power allocation parameter in
(B.7) indicates that one of channels whose received SNR at
the destination is smaller is not used. Thus, for the case where
η1 > η2, φ∗2 = 0. On the other hand, for the case where
η1 < η2, φ∗1 = 0. Thus, using

∑3
i=1 φi = 1, the optimal

resource allocation parameter for Case 1 is given by (26). By
Remark 1, this is the global optimal solution. The condition
of the received SNRs given by (27) and (28) for Case 1 to
occur can be readily found by substituting (26) into (25).

Case 2. R∗ maximizes C2(R). By applying the same tech-
nique as in Case 1 , we find the optimal resource allocation
parameters given in (30). By Remark 1, this is the global
optimal solution.

C. Iterative Algorithm for Case 3

Proof. For Case 3, R∗ maximizes the following.

C
(
β∗,R

) = β∗C1(R) +
(
1− β∗)C2(R), 0 ≤ β∗ ≤ 1

(C.1)

Since the closed form solution does not exist for case 3,
we rely on the iterative algorithm given in Theorem 3. As
we noted in Appendix B, (C.1) is not differentiable at the
boundary of the feasible region. Thus, we start with the new
feasible region given in (B.3) and (B.4). Then, the Lagrangian
is

L = β∗
⎛⎝ 2∑
i=1

φi log

(
1 + αi

ηi
φi

)
+ φ3 log

(
1 +

ρ3

φ3

)⎞⎠
+
(
1− β∗)(φ1 log

(
1 + α1

κ

φ1

)
+ φ2 log

(
1 + α2

ν

φ2

))

− λ
⎛⎝ 3∑
i=1

φi − 1

⎞⎠− μ
⎛⎝ 2∑
i=1

αi − 1

⎞⎠ +
3∑
i=1

ωiφi +
2∑
i=1

ψiαi,

(C.2)

where λ and μ are Lagrange multipliers corresponding to sum
constraints for bandwidth and power allocation, respectively.
ωi and ψi are inequality constraints for bandwidth and power
allocation, respectively, that is, αi ≥ ε, i = 1, 2, and φi ≥ ε,
i = 1, 2, 3. For a fixed β∗, we start with values of φ1, φ2, and
φ3 such that

∑3
i=1 φi = 1 and find the optimal α such that

α1 + α2 = 1. In iteration n, we update α(n) by optimizing
the objective function over α while keeping the total power
constraints satisfied, and fixing φ = φ(n − 1). In iteration
n + 1, φ(n + 1) is found by optimizing the objective function
with respect to φ while keeping the bandwidth constraints
satisfied, and fixing α = α(n). By Remark 1 and 2, and
Theorem 3, this algorithm converges to the global optimal
solution. Note that the optimal solution (α∗,φ∗) satisfies
(see Proposition 2)

2∑
i=1

φ∗i log

(
1 + α∗i

ηi
φ∗i

)
+ φ∗3 log

(
1 +

ρ3

φ∗3

)

= φ∗1 log

(
1 + α∗1

κ

φ∗1

)
+ φ∗2 log

(
1 + α∗2

ν

φ∗2

)
.

(C.3)
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