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Cooperation With an Untrusted Relay:
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Abstract—We consider the communication scenario where a
source-destination pair wishes to keep the information secret
from a relay node despite wanting to enlist its help. For this
scenario, an interesting question is whether the relay node should
be deployed at all. That is, whether cooperation with an untrusted
relay node can ever be beneficial. We first provide an achievable
secrecy rate for the general untrusted relay channel, and proceed
to investigate this question for two types of relay networks with
orthogonal components. For the first model, there is an orthogonal
link from the source to the relay. For the second model, there
is an orthogonal link from the relay to the destination. For the
first model, we find the equivocation capacity region and show
that answer is negative. In contrast, for the second model, we
find that the answer is positive. Specifically, we show, by means of
the achievable secrecy rate based on compress-and-forward, that
by asking the untrusted relay node to relay information, we can
achieve a higher secrecy rate than just treating the relay as an
eavesdropper. For a special class of the second model, where the
relay is not interfering itself, we derive an upper bound for the
secrecy rate using an argument whose net effect is to separate the
eavesdropper from the relay. The merit of the new upper bound
is demonstrated on two channels that belong to this special class.
The Gaussian case of the second model mentioned above benefits
from this approach in that the new upper bound improves the
previously known bounds. For the Cover–Kim deterministic relay
channel, the new upper bound finds the secrecy capacity when the
source-destination link is not worse than the source-relay link, by
matching with achievable rate we present.

Index Terms—Information theoretic secrecy, Relay channel.

I. INTRODUCTION

A fundamental approach to information security is founded
in information theory where the limits of reliable com-

munication can be determined while keeping the information
secret from eavesdropping node(s). This notion of secrecy was
first proposed by Shannon [1]. In his work, Shannon assumed
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that the eavesdropper has perfect access to the signal transmitted
from the source to the destination and determined that the rate of
key must equal to the rate of data to ensure “perfect secrecy,” i.e.,
in order for the data not to be leaked to the eavesdropper even
if the eavesdropper has unlimited computational power. Wyner,
in [2], pointed out that Shannon’s assumption is pessimistic, as
more often than not, the eavesdropper only has a noisy copy of
the signal transmitted from the source, and building a useful se-
cure communication system per Shannon’s notion is possible
[2], [3].

Recent work in this area aims to find the secrecy capacity or
capacity region for a variety of communication scenarios and
channel models. A set of models follows the classical model of
Wyner’s wiretap channel [2], where an external eavesdropper
is present in addition to legitimate parties. This line of work
includes the multiple input multiple output (MIMO) wiretap
channel [4]–[6], the wiretap channel with a cooperative jammer
[7], the multiple access wiretap channel [8]–[11], the MIMO
broadcast channel with multiple legitimate receivers and an ex-
ternal eavesdropper [12], the two-way wiretap channel [10],
the relay channel with an external eavesdropper [13]. In these
models, where the information leaked to the eavesdropper is a
loss to the legitimate communication system, it was observed
that legitimate parties could aid in enhancing secrecy by intro-
ducing intentional interference to the eavesdropper via cooper-
ative jamming [7], [10], [14]. Another set of models deals with
a more symmetric scenario, where each receiver of an intended
message is also modeled as an eavesdropper for the remaining
unintended messages in the system. This setting has been con-
sidered for the multiple access [15], broadcast [16], [17], and
interference channels [18], [19]. In these models, one commu-
nication pair, in the interest of protecting its own information,
may end up helping the other pair [19].

The focus of this paper, while on cooperative communica-
tions, differs from the above models in that, it deals with a com-
munication network whose nodes have different levels of secu-
rity clearance. Examples like this exist in real life. In a gov-
ernment intelligence network or the network of a financial in-
stitution, not every node in the network is supposed to have
the same level of access to information, despite operating with
agreed protocols and serving as relay nodes in the network. The
question is whether these untrusted nodes should still partici-
pate in this cooperative communication network, or if they pose
a “problem” when secret messages are to be transmitted, and
hence, their cooperation should not be enlisted. The basic issue
addressed here therefore, different from the previous models
that aim to solve the coexistence problem of several commu-
nication pairs, is to resolve the conflict within one system.
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This paper focuses on the most basic model in this category
in order to assess the effect of secrecy requirements upon coop-
erative communications. We consider the three node relay net-
work, where the relay has a lower security clearance than the
destination and is therefore untrusted. Reference [20], the first
work that studied this model, shows that the secrecy capacity
of this system is zero if the relay channel is degraded. The se-
crecy capacity equals that of the wiretap channel if the channel
is reversely degraded, which means that the relay-to-destina-
tion communication is useless in this case as well [21]. In fact,
the achievable secrecy rate in [21] never exceeds that obtained
by treating the relay as an eavesdropper. This is evident by the
fact that the achievable secrecy rate maximizing strategy is one
where the relay transmits a fixed signal [21]. With this choice,
the secrecy rate reduces to that of the broadcast channel [3]. In
Section IV of this work, we present yet another negative result:
the relay node is again useless in a class of relay networks with
orthogonal components [22], dubbed Model 1 in the sequel. In
each of these references, the model turns out to be equivalent to
the models of the first two categories, where the relay node is
merely an eavesdropper, rather than a cooperating partner.

In light of these results, one might be tempted to take a pes-
simistic view, and wonder whether there exists any situation
where the cooperation of the untrusted relay might enable a
higher secrecy rate than simply treating it as an eavesdropper.
Interestingly, we find in this paper that the answer to this ques-
tion is yes. This is shown for a class of relay networks with or-
thogonal components where the relay to destination link is or-
thogonal to that from the source [23], dubbed Model 2 in the
sequel. Specifically, we observe that by performing compress-
and-forward, the relay node can help increase an otherwise zero
secrecy rate without having any idea what it is relaying.

Once an achievable secrecy rate is found where the untrusted
relay is useful, an upper bound on the secrecy rate is needed
to assess how close the achievable strategy is to the optimum.
There are two previously known upper bounds. Reference [13]
provided an upper bound for the relay channel with an external
eavesdropper. By assuming that this external eavesdropper re-
ceives the signals received and transmitted by the relay, we ob-
serve the model in [13] can be specialized into the model con-
sidered in this work and hence, the bound in [13] can be readily
applied. Alas, this bound is not computable for the Gaussian
case. A computable bound was provided for the Gaussian relay
channel with a colocated eavesdropper in [21]. Alas, this bound
does not depend on the condition of the relay-to-destination
channel. Moreover, the noise correlation of the links may render
the bound to be arbitrarily loose. In this work, we aim to derive
an upper bound that improves the bound in [21] in these two
aspects, and accomplish this goal for a class of untrusted relay
channels.

More specifically, the upper bound on the secrecy rate is de-
rived for a special class of Model 2, where the relay does not
interfere itself. The derivation of the upper bound entails the in-
troduction of a second eavesdropper. Although in general, intro-
ducing a second eavesdropper can decrease the secrecy capacity,
we prove that for the special class of channels question, doing
so does not alter the secrecy capacity. The upper bound is then
derived by removing the first eavesdropper at the relay and intro-

Fig. 1. Relay channel with a colocated Eavesdropper: S: Source node, R/E:
Relay node with a colocated Eavesdropper, D: Destination node.

ducing correlation between the output seen by the second eaves-
dropper and other outputs of the channel, which tightens the
upper bound as in other Sato-type bounds; see [5] for example.

The merit of the new upper bound is demonstrated in two
cases: First, for the Gaussian case of Model 2, we show that
the new bound improves the previously known bounds. Second,
for the Gaussian Cover–Kim deterministic relay channel intro-
duced in [24], we show that the upper bound matches the achiev-
able rate using compress-and-forward when the signal to noise
ratio of the source-destination link is not worse than that of the
source-relay link, thus, establishing the secrecy capacity.

The remainder of the paper is organized as follows. Section II
describes the general relay network with a colocated eaves-
dropper, and an achievable equivocation region for this channel
using the compress-and-forward relaying. In Section III, the
two special cases of the general model, i.e., Model 1 and Model
2 are described. Section IV presents the equivocation capacity
region for Model 1. Section V specializes the achievable region
found in Section II to Model 2. Section VI identifies a special
class of Model 2, for which introducing a second eavesdropper
properly will not decrease the secrecy capacity, and derives
an upper bound for its secrecy rate. The upper bound is then
specialized to the Gaussian case of Model 2. Section VII
investigates the secrecy capacity of Gaussian Cover–Kim de-
terministic relay channel. We note that to facilitate a better flow
throughout the manuscript, more involved proofs are presented
in appendices whereas shorter ones are kept in the main text.

Throughout this paper, the following notation is used: ,
denotes a variable that goes to 0 when goes to .

. denotes a vector of length , whereas de-
notes the th element of the vector. denotes the set

. denotes the set ; the
set is empty if . The short hand stands for the
set . The short hand stands
for the set .

II. ACHIEVABLE SECRECY RATE FOR THE GENERAL RELAY

CHANNEL WITH COLOCATED EAVESDROPPER

The relay channel with a colocated eavesdropper was first
considered in [20] and is shown in Fig. 1. It is a memo-
ryless three-node relay channel [25], whose description is

. are the channel inputs from the source
and the relay, respectively, and are the channel outputs
observed by the destination and the relay, respectively. We
assume that there is an eavesdropper at the relay node who has
access to everything that the relay node knows. The source
wishes to send message to the destination over channel
uses, while keeping it secret from the eavesdropper.
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Fig. 2. Example: Relay’s transmitted signal� can provide more information
about � .

Without loss of generality, the relaying function for the th
channel use can be defined as

(1)

where is a random variable which models any stochastic
mapping employed by the relay node. Hence, without loss of
generality, we can restrict to be a deterministic function. The
information available to the eavesdropper regarding the secret
message is . Thus, the equivocation rate is
computed as

(2)

In Appendix H, we prove that the following is a Markov chains

(3)

Using (3), we have .
Hence, the equivocation rate can be instead defined as

(4)

Remark 1: In general . To see
an example, consider the channel model in Fig. 2. Let denote
the binary addition. The channel has binary input. The destina-
tion receives signals from two orthogonal links: and , and
that we have

(5)

(6)

where represents the i.i.d. binary noise.
It follows in this setting that, . This is

because the relay can always subtract the interference caused
by on its received signal and hence obtains . However,

if is chosen to be an i.i.d. binary
sequences, each component of which takes the value 1 with
probability . Thus, in this case, we clearly have

.
We should note however that,

if the relaying scheme is deterministic: .
Also, note that, clearly, any outer bound derived for the equiv-
ocation is an outer bound for . With
this preparation, the equivocation rate region can be defined as
follows. Let the message decoded by the destination be . The
equivocation rate region is composed of all rate pairs
such that

(7)

(8)

(9)

The secrecy rate is defined as when , which means
the following equation holds when we consider secrecy rate:

(10)

Here is the cardinality of the message set . Note that
when block Markov coding scheme is used, the message is
transmitted via successive blocks [25]. In this case, denotes
the messages transmitted over all blocks. should be the total
number of channel uses of these blocks. The definition of

should be adjusted accordingly.
Next, we derive an achievable equivocation region based

on compress-and-forward. Compress-and-forward scheme was
proposed in [25] and has been used for the relay network with
an external eavesdropper in [13] and [26]. In our case, as we
will see, the fact that the relay and the eavesdropper being
colocated brings additional advantage to allow for a higher
degree of compression to be achieved at the relay as compared
to the setting in [13].

Theorem 1: For a relay network described as ,
with , being the input from the source and the relay, re-
spectively, and , being the signals received by the relay and
the destination, respectively, the following region of rate pairs

is achievable:

(11)
where

(12)

and the union is taken over

(13)

Proof: See Appendix A.

Remark 2: Compared with the coding scheme presented in
[13], the difference is that we have Wyner–Ziv coding. Without
Wyner–Ziv coding, the constraint (12) in the Theorem would be

(14)

which is identical to that in [13, Theorem 4 (12)]. In [13], the
eavesdropper is external to the relay node, and hence, only
has a noisy copy of . In this case, the equivocation
over multiple blocks would not necessarily be the sum of
equivocation over each block. Reference [13] worked around
this problem by using a compress-and-forward scheme without
Wyner–Ziv coding. The equivocation over multiple blocks was
then lower bounded by proving that given the signal received
by the eavesdropper and the secret message, the external eaves-
dropper would be able to determine the signals transmitted by
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Fig. 3. Relay channel with orthogonal components Model 1: Orthogonal
source to Relay link.

the source and the relay via backward decoding [13, Appendix
D (53)-(55)].

In contrast with that in [13], fortunately, in our model, the
eavesdropper has perfect knowledge of . This enables us
to compute the equivocation of blocks from the equivoca-
tion of each block. See (144)–(146) in Appendix A. Hence, the
Wyner–Ziv coding is used in our setting without difficulty.

Remark 3: Theorem 1 will be useful in Section V in finding
an achievable rate for one of the models (Model 2) that we will
describe in the next section.

Remark 4: We can prefix the channel input with and
apply Theorem 1 to the channel . The equivoca-
tion region then becomes

(15)
for which (12) must be fulfilled, and the union is taken over

(16)

Clearly, this may potentially enlarge the achievable region given
by Theorem 1.

Having examined the general relay channel with a colocated
eavesdropper, we next consider two special cases of it for which
stronger results can be derived.

III. TWO SPECIAL CASES OF THE GENERAL MODEL: RELAY

NETWORKS WITH ORTHOGONAL COMPONENTS

The two models of the relay network with orthogonal com-
ponents are depicted in Figs. 3 and 4, respectively. Fig. 3 shows
Model 1. In this model, the relay and the source communicate
with the destination via a multiple access channel, with its input
being and output being . The source and the relay
communicate via a channel orthogonal to the channel used by
the source and the relay to transmit to the destination. The input
and the output of this channel are denoted by and , re-
spectively. Thus, the overall channel description is

(17)
The capacity of this network without secrecy constraints was
found in [22].

The Gaussian case of Model 1 is defined as [22]

(18)

Fig. 4. Relay channel with orthogonal components Model 2: Orthogonal Relay
to destination link.

where and are independent zero mean real Gaussian
random variables each with variance . and are channel
gains. The transmit power constraints on the source and the
relay are given by

(19)
Fig. 4 shows Model 2. In Model 2, the source communicates

with the relay and the destination via a broadcast channel, and
the relay communicates with the destination via a separate (or-
thogonal) link. Thus, the channel is described by:

(20)
When there are no secrecy constraints, the Gaussian case of
Model 2 was considered in [23]. The capacity of this channel
remains an open problem except for some special cases given in
[23]. The class of channels for which we will be able to derive
an upper bound on the secrecy rate, is described by

(21)
Observe that such a channel is a special case of (20) since is
dropped from the condition term of in (20).

We will discuss two channels that fall into the class defined
by (21): (i) the Gaussian case of Model 2; (ii) the Gaussian
Cover–Kim deterministic relay channel [24].

The Gaussian case of Model 2 is defined as

(22)

where are independent zero-mean Gaussian
random variables with unit variance. and are channel gains.
The transmit power of the source and the relay are constrained
by

(23)

The Gaussian Cover–Kim deterministic relay channel is de-
picted in Fig. 5. The received signals at the destination and at
the relay are given by

(24)

where is the channel gain and is a zero mean Gaussian
random variable with unit variance. Notice that the random vari-
ables representing the noise components have a correlation
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Fig. 5. The Gaussian Cover–Kim deterministic Relay channel.

. Between the relay and the destination, there is a separate
noiseless link with rate . The destination receives side infor-
mation from the relay via this link in addition to which it
receives from the source. The transmission power of the source
is constrained to be

(25)

In the following sections, we first derive the equivocation ca-
pacity region of Model 1. We then derive the achievable equiv-
ocation region for Model 2 using the results from Section II.
Finally, we derive the upper bound for the secrecy rate for the
class of Model 2 defined in (21) and specialize it to the Gaussian
case and the Cover–Kim channel.

IV. EQUIVOCATION CAPACITY REGION FOR MODEL 1

Theorem 2: The equivocation capacity region of Model 1 is
given by

(26)

Proof: See Appendix B.

Remark 5: Theorem 2 is proved by specializing the results
from [21]. The achievable scheme is based on partial-decode-
and-forward. This entails that the relay decodes the information
transmitted via . The scheme is outlined next for the sake of
completeness.

Denote the codebook used by the relay and the source as
and , respectively. The codeword in is denoted

by . The codeword in is denoted by ,
which are to be transmitted via and , respectively.

The codebooks are generated as follows: Let be a
positive sequence that converges to 0 when goes to .

codewords are sampled in
an i.i.d. fashion from to form . For each in ,

codewords are sampled in an i.i.d. fashion
from and are included in . For each in ,

codewords are sampled in an
i.i.d. fashion from and are included in .

The transmission is divided into blocks, each composed
of channel uses. The messages transmitted by the source
during the th block is denoted by .
corresponds to the secret part of the message. The cardi-
nality of is smaller than . The
cardinality of is smaller than and

. The signals received and transmitted by the
relay during the th block are denoted by and ,
respectively. The relay decodes from using

as the side information. is chosen by the relay
based on , which the relay decodes from .
The source node knows , and, hence, knows
before the th block starts. It locates the part of the codebook

which is generated according to and transmits the
message using this part of the codebook. The source
also locates the part of the codebook which is generated
according to and transmits the message using
this part of the codebook. The destination can successfully
decode from , which determines ,
due to the fact that the cardinality of is smaller than

. Then it locates the part of the codebook in
that is generated according to and use it to decode

from . This is possible due to the fact that the
cardinality of is smaller than .

Remark 6: By letting in (26), we obtain the secrecy
capacity of the network given by (27).

(27)

(28)

It is readily seen that in this case the relay to destination link
is not useful. Additionally, when , from the coding
scheme outlined in Remark 5, the secret information, ,
is only mapped to signal transmitted via , which means the
secret information does not pass through the relay node at all.
These two observations combined lead to the conclusion that the
relay-to-destination link is indeed not useful in improving the
secrecy rate of the system, and that the untrusted relay should
not be deployed at all.

A direct extension of the above result can be readily made to
the Gaussian channel.1

Corollary 1: For the Gaussian relay network described
above, the equivocation region is given by

(29)

Proof: The proof is the same as in [22, Section III]. The
three terms: , , are

1Proofs follow by replacing entropy with differential entropy whenever
necessary.
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maximized simultaneously when are chosen to be
zero mean and jointly Gaussian with the following parameters:

V. AN ACHIEVABLE REGION FOR MODEL 2

In this section, we present the achievable equivocation rate
region for Model 2.

Theorem 3: For Model 2 defined by (20), an achievable
equivocation rate region is given by

(30)
where

(31)

and the union is taken over

(32)

Proof: We use Theorem 1. In particular, region (30) fol-
lows from (11) by letting and using the fol-
lowing two Markov chains (33) and (34). Equation (34) follows
from the fact that is independent from as shown
by (32).

(33)

(34)

It then follows from (33) and (34) that
and

(35)

Next, we apply Theorem 3 to the Gaussian case, which is
defined by (22).

Corollary 2: For the Gaussian relay network with orthog-
onal components defined by (22), the following rate region is
achievable.

(36)

where

(37)

Proof: Region (36) follows from letting
, and is

independent from all the other variables. Substituting the distri-
bution of into (31), we find that we need

(38)

It is clear from (36) that to make the region as large as possible,
should be as small as possible, and (37) ensures this.

Remark 7: Suppose . Without the channel between
relay and destination, we have a wiretap channel where the
eavesdropper has a better channel. Hence, the secrecy capacity
is zero [27]. We also know that a nonzero secrecy rate cannot
be achieved with decode-and-forward. However, if the relay to
destination gain, , is large enough, a nonzero secrecy rate can
be achieved with compress-and-forward, as can be seen from
(36). This is an example where the relay-to-destination link
helps to achieve a nonzero secrecy rate when the relay and the
eavesdropper are colocated. Thus, the untrusted relay is useful
and should be cooperated with.

Remark 8: The scheme we present here differs from the noise
forwarding scheme of [13] where the relay transmits noise that
is independent from its received signal. By contrast, in this work,
the signal transmitted by the relay is computed from its received
signal.

Remark 9: The amplify and forward scheme can also be used
at the relay. Let be the average transmission power of the
source node. Then, in this case, the signal transmitted by the
relay at the th channel use is given by

(39)

Note that in (39), we force to depend on the signal re-
ceived in the previous channel use in order to preserve
the causality of the relay function as defined in (1). However,
because the channel between the relay and the destination is or-
thogonal to the one between the source and the destination, the
fact that the signals received via is delayed by one channel
use compared to those received via does not make any differ-
ence to the destination. Therefore, it is safe to write
and omit the subscript .

The relay network is therefore equivalent to a Gaussian
wiretap channel as shown in Fig. 6. The achievable secrecy
rate is computed from [3] for a
Gaussian distribution for : and when maxi-
mized over , the secrecy rate is given by

(40)

where for defined in (39), is given by

(41)

Observe that amplify-and-forward can also achieve a nonzero
secrecy rate given a large enough . However, comparing it to
(36), we find that the secrecy rate given by amplify-and-forward
is strictly smaller than the secrecy rate achievable by compress-
and-forward.
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Fig. 6. The equivalent wiretap channel of Model 2 using amplify-and-forward
Relaying.

Remark 10: When there are no secrecy constraints, for com-
press-and-forward/amplify-and-forward, the source should al-
ways transmit at maximum power. However, when there are se-
crecy constraints, for compress-and-forward/amplify-and-for-
ward, the source may not transmit at maximum power. This can
be shown as follows.

We first look at the case where there are no secrecy con-
straints. The rate for compress-and-forward follows from the
maximum possible value of in Corollary 2, which is

(42)

where is given by (37). Recall that is the average transmis-
sion power of the source node. Hence, we only need to show that

(43)

is a monotonic function of which is proved in Appendix C.
Hence, to maximize we should choose .

The rate for amplify-and-forward is derived by ignoring the
eavesdropper in Fig. 6. The achievable rate is ,
which, using the Gaussian input distribution for , equals

(44)

where is given by (41). To prove that (44) is maximized at
, it is sufficient to prove that is a monotonically increasing

function of , which can be shown by rewriting as

(45)

When there are secrecy constraints, the secrecy rate is not
necessarily maximized at . This can be observed in par-
ticular when (the relay to destination link gain) is small. In this
case, for compress-and-forward, as shown in (37), the quantiza-
tion noise will increase more rapidly with source power .
Similarly, for amplify-and-forward, the in (41) will decrease
more rapidly with source power . This, along with the negative
term present in (36) and (40), may offset the benefits
of having a larger source power . This phenomenon is demon-
strated numerically in Fig. 7, where the source-to-relay channel
gain . Both compress-and-forward and amplify-and-for-
ward can achieve a larger secrecy rate when power control is
used at the source. Moreover, compared to compress-and-for-

Fig. 7. Effect of source power control.

ward, amplify-and-forward benefits more from judicious power
allocation at the source.

VI. UPPER BOUND FOR THE SECRECY RATE OF A SPECIAL

CLASS OF MODEL 2

A. The Enhanced Channel

In this section, we describe the general methodology that we
use to derive the upper bound. Our upper bound involves intro-
ducing a second eavesdropper. The focus of this section is to
investigate the sufficient condition such that doing so will not
decrease the secrecy capacity of the channel. In Section VI-B,
this will be useful in finding the upper bound for the secrecy rate
for a class of channels conforming to Model 2.

We focus on the case there is no feedback from the relay’s
output to its input , which means the conditional proba-
bility distribution of the channel should have the following form:

(46)

Note that due to the absence of feedback, we drop the term
from the conditioning of . The reason that we choose this
distribution to study will be clear shortly.

Deriving the outer bound entails a “relay-eavesdropper sepa-
ration” argument. In other words, the net effect of this argument
is to change the eavesdropper that is colocated with relay node,
to an eavesdropper that is external to the relay node. Illustrated
in Fig. 8, this means:

1) We add a second eavesdropper to the relay network, who
sees a channel that is statistically equivalent to the channel
seen by the relay node. Let the signal received by this
second eavesdropper be . That is, we have

(47)

2) We remove the first eavesdropper.
The reader, at this point, rightfully should question the va-

lidity of step 1). This is because, as mentioned earlier, intro-
ducing a second eavesdropper, can decrease secrecy rate in gen-
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Fig. 8. The Relay-Eavesdropper separation argument.

eral, even if the second eavesdropper observes a statistically
equivalent channel as in (47). This is because the second eaves-
dropper may be able to hear the transmission signal of the
first eavesdropper, and these two eavesdroppers can potentially
cooperate. An example is provided in Appendix D to demon-
strate this phenomenon.

We next show that, for the channel model in (46), introducing
a second eavesdropper, if done with care, will not alter the se-
crecy capacity of the system. In particular, let the received signal
of the “second” eavesdropper be defined as follows:

(48)

(49)

Note that the second equality in (49) is (47) specialized for (46).
We reiterate that though a conforming to these conditions
may not exist for any arbitrary relay network, for the Gaussian
relay network models we are interested in, such a can be
found, as will be seen in the sequel [see (92), (117), and (120)].

For this choice of , we have the following theorem.

Theorem 4: For the relay channel defined by (46), (48)–(49)
are sufficient for the secrecy capacity of the channel after intro-
ducing the second eavesdropper to remain identical to the se-
crecy capacity of the original channel.

Proof: Due to the addition of the second eavesdropper, we
know that the secrecy capacity of the new channel the se-
crecy capacity of the original channel. Therefore, we only need
to show that the secrecy capacity of the new channel the se-
crecy capacity of the original channel. We use to denote any
distribution related to the new channel, and for any distribu-
tion related to the original channel. Suppose the new channel
uses the exact same coding scheme and the same message set

as the original channel. Then we can make the following
statements.

1) Suppose can be reliably received by the destination at a
rate of in the original channel. Then it must be reliably
received by the receiver at the same rate in the new channel
as well, because these two channels share the same coding
scheme and the same channel statistics.

2) The transmitted message is still secret from the first
eavesdropper colocated with the relay, since we are using
the exact same coding scheme of the original channel.

3) We next show that of the new channel equals
of the original channel. To do that, it is suf-

ficient to prove that of the new channel equals
of the original channel, as we show next.2

First we state two Markov chains, which are proved in
Appendix E.

(50)

We have

(51)

(52)

(53)

(54)

(55)

(56)

(57)

Here step follows from the Markov chain
. Step follows from the fact that

these two channels share the same coding scheme,
, and the constraint we placed on

the marginal distribution . Step
follows the Markov chain .

The fact that introducing an eavesdropper does not reduce
the secrecy capacity can then be seen from the following
relationship:

(58)

(59)

If , then . There-
fore, for a given coding scheme, if is kept secret from the
eavesdropper at the relay, it is also kept secret from the newly
introduced eavesdropper. Hence, any secrecy rate achievable in
the original channel is achievable after introducing the second
eavesdropper. This means the secrecy capacity remains the
same.

Theorem 4 shows that if the relay is not self-interfering,
adding an eavesdropper as described in step 1 will not incur
any loss in secrecy rate. This, along will step 2, will result in

2It is understood in the case of continuous random variable, the sum should
be replaced by integral. In fact, both of them can be expressed as integral by
defining the measure properly.
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an “enhanced” channel whose secrecy rate is an upper bound
to that of the original channel.

Remark 11: Actually, for the channel model in (46), we have

(60)

This means the secrecy capacity of the channel model in can be
computed via instead. This is proved in
Appendix F.

Remark 12: Note that the conditional probability distribution
of the relay channel is left intact. The benefit of
the separation argument is that we have freedom in choosing ,
as long as it conforms to (48) and (49). Choosing properly
allows us to tighten the bound.

B. Upper Bound for a Special Class of Model 2

We next use the result we derived in Section VI-A to upper
bound the secrecy rate of a class of relay channels. This class, as
we mentioned earlier, is given by (21), which can be specialized
from (46). Equation (48) becomes

(61)

(62)

Definition 1: Define as the set of joint probability distribu-
tion functions of , , , , , such that (61) and (62)
are fulfilled.

With this definition, we have the following theorem.

Theorem 5: For the relay channel defined in (21), where the
relay is the eavesdropper, the secrecy rate is upper bounded
by

(63)

Proof: The first term can be obtained by specializing the
result from [21]. Reference [21, version 7,(13)] claims for a gen-
eral relay , the secrecy rate is upper bounded by

(64)

Specializing it to our channel, which means replacing with
, we have

(65)

(66)

From (61), is a Markov chain. Hence, (66)
equals

(67)

(68)

(69)

From (61), is a Markov chain. Hence,
(69) equals

(70)

Hence, we have proved the first term.
Next, we proceed to bound the second term

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

Here step follows from Fano’s inequality. Step follows
from the relay destination link being orthogonal to the rest part
of the channel. Step follows from the fact that the relay
is not interfering the second eavesdropper. Therefore, given

, the signals do not provide further
information about .

Remark 13: Another upper bound that can be obtained is

(85)
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which is proved in Appendix G, and it can be further tightened
by choosing . However, as shown below this upper bound
does not improve the first term in (63).

(86)

(87)

(88)

(89)

Step follows from .

C. The Gaussian Case of Model 2

Using Theorem 5, we now evaluate the upper bound for the
Gaussian channel.

Corollary 3: For the Gaussian case of Model 2, which has
independent noise components, the upper bound on secrecy rate
is

(90)

Proof: First we notice that (63) is upper bounded by

(91)
Since , we define a Gaussian random vari-
able such that

(92)

Then the set can be reparametrized with the correlation be-
tween and the correlation between . For a given
correlation, it is known that and
are both maximized with Gaussian distribution [5, Appendix II].
The first term in (91) then becomes . To ob-

tain the second term inside the minimum, we choose
, with being independent if , otherwise

we choose , with being independent,
where is a zero mean Gaussian random variable with appro-
priate variance.

In Fig. 9, we compare the upper bound to the achievable rates
for the Gaussian case of Model 2. We fix the source-to-relay
channel gain , and vary the relay-to-destination channel
gain . As , we observe that the upper bound becomes
tight. As , the upper bound decreases. This improvement
is due to the first term in Corollary 3.

VII. THE COVER–KIM DETERMINISTIC RELAY CHANNEL

In this section, we investigate the Cover–Kim deterministic
relay channel of [24], [28] whose capacity is established therein.
The channel was defined in Fig. 5 in Section III.

For the achievable secrecy rate, we have the next theorem.

Fig. 9. Secrecy rate of the Gaussian orthogonal Relay channel.

Theorem 6: For the Gaussian Cover–Kim deterministic
channel, the following secrecy rate is achievable:

(93)

Proof: Let be a positive sequence that converges
to 0 when goes to . Let be a random code book with

codewords sam-
pled from an i.i.d. Gaussian distribution with zero mean and
variance . These codewords are randomly partitioned into

bins of equal size. The bin index
of the transmitted codeword is determined by the message .
The actual transmitted codeword is then selected randomly
from this bin according to a uniform distribution. The relay
uses either hash-and-forward or compress-and-forward as
described in [24]. Let be the average error probability
over the codebook ensemble that the destination could
not correctly determine , hence, , from and side
information provided by the relay. It was proved in [24] that

. Since each bin is a Gaussian codebook
by itself whose rate is below the AWGN channel capacity
between the source and the relay, the relay node can deter-
mine given and with high probability using jointly
typical decoding. Therefore, from Fano’s inequality, we have

. Thus

(94)

(95)

(96)

(97)

(98)

(99)

(100)
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(101)

Since each code word is selected with equal probability, we have

(102)

Also, . Substituting this and (102)
into (101), dividing it by and taking the limit ,
we have (93), which equals . Therefore

. Since both terms inside
the limit are nonnegative, this proves the existence of at least
one codebook with a rate of such
that both terms are arbitrarily small. Hence, we have proved the
theorem.

Theorem 7: The secrecy rate of the Gaussian Cover–Kim de-
terministic channel is upper bounded by

(103)

Proof: We use Theorem 4 to separate the eavesdropper and
the relay. Let be the signal received by the eavesdropper such
that (61) and (62) are met. Then, we have

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

Step follows from Fano’s inequality. Step follows from
the fact that the relay is not interfering with, i.e., heard by the
(second) eavesdropper. Therefore, given , signals

will not provide more information about .
The bound is further tightened by choosing properly.

1) If , then

(117)

(118)

(119)

is a zero mean Gaussian random variable with variance
, and is independent from .

2) If , then

(120)

is a zero mean Gaussian random variable with variance
, and is independent from .

Substituting these choices of into (116), we get (103).

Remark 14: Inspecting (93) and (103), we see that the upper
bound and the achievable rate coincide when . Hence, for

, i.e, when the source to destination link is not worse than
the source to the relay link, the secrecy capacity is achieved by
compress-and-forward.

Remark 15: The secrecy capacity can exceed the direct link
capacity if . This is a benefit of the correlation of
the noises corrupting the links from the source. If the noises
are independent, the secrecy capacity cannot exceed , as
proved next.

Observation 1: If the relay channel has the property

(121)
Then

Proof: From (63), we have

(122)

(123)

(124)

(125)

where in (124) we use the Markov chain .

We conclude this section by presenting Fig. 10 which
shows the upper bound and the achievable rate for

use and . As expected, the two meet
for , yielding the secrecy capacity.

VIII. CONCLUSION

In this paper, we have considered the relay channel with a
relay that is an eavesdropper. In particular, we focused on two
relay channel models with orthogonal components. For the
first model, we have found the capacity-equivocation region
and proved that the relay-destination link does not help in
increasing secrecy rate, and therefore the untrusted relay should
not be deployed if perfect secrecy is desired. In contrast, for
the second model, we have found an achievable secrecy rate
which calls relay’s cooperation and improves the secrecy rate
as compared to treating it simply as an eavesdropping node.
Thus, we conclude that, for this model, the untrusted relay may
help the source and the destination to communicate despite
being subjected to the secrecy constraint, and that cooperation
with the untrusted relay is beneficial.
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Fig. 10. Secrecy rate for the Gaussian Cover–Kim deterministic Relay channel.

We have provided a channel transformation that separates the
relay and the eavesdropper to upper bound the secrecy rate for
a special class of untrusted relay channels. We have found this
approach to be useful in upper bounding the secrecy rate for
two cases: For the Gaussian relay channel with an orthogonal
relay-destination link, this new approach yields a computable
bound that tightens previously known bounds. For the Gaussian
Cover–Kim deterministic relay channel, we have shown that this
approach finds the secrecy capacity when the source-destination
link is not worse than the source-relay link.

A moment’s thought reveals an insight into why the un-
trusted relay node is useful only for the second model. In the
first model, the broadcast channel between the source and the
relay along with the destination is composed of two orthogonal
links. Hence, to achieve perfect secrecy, the source node does
not have to introduce randomness at its encoder. In contrast, in
the second model, the broadcast channel between the source
and the two receivers, the relay and the destination, is a general
broadcast channel. Hence, randomness at the encoder of the
source node is necessary to achieve secrecy. The signals from
the relay hence, can help the destination remove the random-
ness introduced by the source node. Therefore, the signals from
the relay node can be useful in this case.

Since the first example demonstrating the potential benefit of
cooperating with an untrusted relay [29], there has been recent
growing interest in communication models with untrusted re-
lays. Notable recent developments include work on the multiple
access channel with generalized feedback [30] and relay broad-
cast channel [31], [32], where, in addition to the secret message
considered in this work, the untrusted relay node has its own
secret message. The role of untrusted relay is examined in bidi-
rectional communication in [33]–[35], where the relay node in
a two-way relay network is untrusted. A case for the communi-
cation scenario with multiple untrusted relay nodes is recently
presented in [36] and [37], where the source and the destination
can only communicate via a chain of untrusted relay nodes. All
these works, like this paper we are about to conclude, speaks

to the merit of cooperative communication even with untrusted
partners, and that cooperation and secrecy can go hand in hand.

APPENDIX A
PROOF OF THEOREM 1

The achievable scheme of Theorem 1 is a combination of sto-
chastic encoding at the source node and compress-and-forward
at the relay node. The compress-and-forward relaying scheme is
the same one described in [25]. The achievable scheme involves

blocks of channel uses. Each block is composed of channel
uses.

A) Codebook Generation:
2) The Codebook of the Source Node: Let be a posi-

tive sequence, that converges to 0 when goes to . The source
uses a codebook composed of i.i.d. sequences sampled from the
distribution . Each codeword has components. In order
to confuse the relay/eavesdropper, the codebook is further par-
titioned randomly to bins. Suppose there are bins. Each bin
contains codewords. is chosen such that

(126)

The reason behind this choice will be clear shortly. Each code-
word is hence, indexed by the label , where is the bin
index and indexes the codeword within the bin. The rate of the
codebook is given by

(127)
3) The Codebook of the Relay [25]:

i) The signal transmitted by the relay is from a codebook
composed of i.i.d. sequences sampled from the distribu-
tion . Each codeword has components and is de-
noted by . The codebook has codewords.

ii) For each , we generate codewords, each with
components, denoted by . The th component of
the codeword is drawn from in an
i.i.d. fashion.

iii) For each , we randomly bin the label into bins and
label each bin with a according to uniform distribution.
This random binning is used for Wyner–Ziv coding.

We use to denote the random codebooks generated for the
source and the relay.

B) Stochastic Encoder at the Source Node: The codeword
transmitted as the th block is indexed by label , where
is the bin index and indexes the codeword within the bin.
Let be the message transmitted at the th block. Re-
call that is the rate of the message . Hence,

. The messages are mapped to the codewords as
follows.

1) If , , the bin index, is determined by . The
codewords in bin are partitioned into subsets
of equal size. The subset is chosen according to the un-
mapped part of . Then is selected from the
labels of the codewords in this chosen subset according to
a uniform distribution.
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2) If , is still determined by . is sam-
pled according to a uniform distribution from the set

.
The message is encoded into the codeword indexed by .

For this mapping, we observe that the cardinality of is
.

Only messages are transmitted
over blocks. During the last block, the relay and the source
agrees that the source will send message 1.

C) Compress-and-Forward at the Relay: During the th
block, the relay node first compresses to .
is indexed by two labels: and . is chosen to be the label
that corresponds to . Hence, a different set of , of size

, is used for compression depending on the value of .
The label is chosen to be the first element in the following
set:

are jointly typical (128)

If the set is empty, . The size of the codebook
should be sufficiently large for the set to be nonempty, which
requires [25].

Label is transmitted during the st block. At this
time the destination has received , and can decode

. Since provide side information to
the destination about , can be compressed further before
transmission. This is done via Wyner–Ziv coding. Recall that
the set is randomly binned. The size of each bin
should be chosen such that the destination can decode , and
hence, determine from this bin from the side information

. This requires . Only
the bin index is transmitted. Recall that each bin is labeled with

. Hence, this determines , which determines .

Remark 16: One important aspect of this coding scheme is
that the signals transmitted by the relay during different blocks

are correlated. This is because,
as described in the coding scheme at the relay, each
is determined from , which is shown in (128)
to be related to . Because of the self interference
at the relay, the signals received by the relay during different
blocks are correlated as well. How-
ever, is correlated with past only through

. This property will be useful in bounding the equivoca-
tion rate.

D) Decoder at the Destination: Recall that the short
hand stands for the set

. The short hand stands for the set
.

The destination first decodes . The decoding at the
th block happens as: It first decodes from . For

this, we require . It then determines from
, which determines the bin that contains . It next

determines by finding the label in this bin such that
is joint typical with . This

determines . Finally is decoded from
. For details, the reader is re-

ferred to [25, Theorem 6].

Let the decoding result be . According to error prob-
ability analysis in [25], if the number of codewords in the code-
book of the source does not exceed

(129)

and the following condition is fulfilled:

(130)

then

(131)

The expectation is taken over the random codebook .
Combining (129) and (127), we have

(132)

The destination then computes from ,
since the former is a deterministic function of the latter. The
average probability of decoding error for is hence,
upper bounded by the average probability of decoding error of

. Therefore (131) implies

(133)

E) Equivocation Computation: Let denote
. The computation of the equivocation

rate starts from the following expression:

(134)

(135)

(136)

Here, the first equality follows from the fact that conditioned
on , the signals are independent from ,

, . The second equality is because, as described in
the relaying scheme above, is a deterministic function
of and .

To simplify the notation, we omit the from the condi-
tioning term in the derivation below and only mention it when
necessary.

Equation (136) can be reformulated as

(137)

(138)

(139)

(140)

From the description of the stochastic encoder at the source
node, we observe that each block is
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independent from each other. Hence, the second term in (140)
can be expressed as

(141)

We notice, in the codebook used by the source node, each bin
is of equal size. We assume the message is uniformly dis-
tributed over the message set. Then each bin is chosen with
equal probability. From the encoder design, we observe each
codeword in the each bin is also chosen with equal probability.
Hence, we observe that

(142)

Therefore

(143)

The first term in (140) can be upper bounded as

(144)

(145)

(146)

Recall that is determined by two indexes and . The
label is already on the condition term. To determine , we
notice from (126) that

(147)

With this constraint, for a given codebook , which is on the
condition term implicitly, the eavesdropper can estimate from
the following set:

(148)

This set should contain only with probability close to 1. From
Fano’s inequality, we have ,
where and . Therefore from
(144)–(146), we have

(149)
The third term in (140) can be upper bounded as follows:

(150)

(151)

(152)

For compress-and-forward relaying, as explained in the
previous section, is a deterministic function of

. Hence, the second term in (152) is zero.
Equation (152) therefore equals

(153)

(154)

From the coding scheme described in Section A-C, we ob-
serve depends on , ,

only through . Hence

(155)

is a Markov chain. Therefore (154) equals

(156)

(157)

(158)

where and . Equation (158) follows
from the fact the channel is memoryless and the codebook is
composed of i.i.d. sequences.

Applying (149), (143), and (158) to (140), we have

(159)

(160)

(161)

(162)

Equation (161) follows from (147). Equation (162) is because
in each block is chosen independently of other blocks,

is chosen according to a uniform distribution from a set with a
cardinality of .

From (159)–(162), we have

(163)

Combining it with (133) we have

(164)

Therefore, there must exists a codebook such that

(165)
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Since each term on the left side of (165) are nonnegative, it
follows that with this codebook

(166)

(167)

For the simplicity of notation, we omit from the conditioning
term. It is understood that all the derivations below are condi-
tioned on .

Since is a deterministic function of , we have

(168)

(169)

(170)

Hence

(171)

(172)

The achievable region can then be discussed for two cases
1)
2)

When , the region is given by

(173)

where meets the following condition from (132):

(174)

subject to the constraint . When
, the region is given by

(175)

Finally, the union of these two regions (173) and (175) be-
comes the region given by

(176)

with the constraint .

APPENDIX B
PROOF OF THEOREM 2

The converse for is given in [22] using the cut set bound.
The converse for can be derived by specializing the upper

bound in [21], which is stated in (64) as . For
our model, this can be upper bounded as

(177)

(178)

(179)

From (17), is a Markov chain. Hence,
(179) equals

(180)

(181)

(182)

Hence, we have proved the converse for .
The achievability of (26) also follows from the partial decode-

and-forward scheme presented in [21, Theorem 1].

Theorem 8: [21, Theorem 1] The following region is
achievable:

(183)
In (183), we let , and restrict
the union to be over the probability distributions of the form

, and we obtain

(184)

(185)

(186)

(187)

(188)

(189)

(190)

where step follows from being a Markov
chain [22] and being a Markov chain. Step

follows from being a Markov chain [22].
Moreover, the bound on can be expressed as

(191)

(192)

(193)

where step follows from being a Markov
chain.
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Note that (193) is the same as [22, eq, (2)], therefore, from
the same argument therein, we obtain

(194)

(195)

By substituting (195) and (190) into (183), we find that the rate
pair in (26) is achievable.

Remark 17: It is shown in [21, Lemma 3] that the achiev-
able rate region (183) is convex. Therefore the rate region (26)
is also convex.

APPENDIX C
PROOF THAT (43) IS A MONOTONIC INCREASING FUNCTION

OF THE SOURCE POWER

It suffices to show that the argument of , which is
, is a monotonically increasing function of . The expres-

sion of is given by (37). Thus we have

(196)
Since is always positive, we can prove its mono-

tonicity in by showing is monotonically in-

creasing in . From (196), it is given by

(197)

Let . Let .
Then the derivative of (197) with respect to is given by

(198)

(199)

Note that . Hence, the denominator of (199) is posi-
tive. Therefore we only need to show that the numerator of (199)
is positive. The numerator of (199) equals

(200)

(201)

(202)

(203)

Since , , (203) is positive. Therefore the
derivative of with respect to is positive. This

means (43) is a monotonic increasing function of .

APPENDIX D
AN EXAMPLE WHERE INTRODUCING A SECOND EAVESDROPPER

DECREASES SECRECY CAPACITY

Consider a special case of Model 2 defined by

(204)

(205)

This is a Gaussian relay channel with orthogonal components
with reversely correlated noise. is a zero mean Gaussian
random variable with unit variance. Hence, its probability den-
sity function is symmetric around the origin: .

We first observe that since the orthogonal link between the
relay and the destination is noiseless, the optimal relaying
scheme in this case is choosing . This can be
proved as follows: First we recognize, for this channel, given

, the signals do not provide more information to the
eavesdropper. This is because the relay is not interfering itself
and hence, as shown in Remark 11, the secrecy capacity can
be computed from instead, i.e., can
be dropped from the conditioning term. Therefore for any
given relay scheme, we can always use to give
the destination the signals received by the relay, and ask the
destination to compute the generated from the original
relaying scheme instead. It can be verified that in this way the
secrecy constraint is fulfilled and can still be transmitted
reliably. Therefore, the secrecy rate achievable by any given
relay scheme is achievable via , which must be
the optimal relaying scheme.

Hence, the destination essentially receives
at the th channel use and the eavesdropper receives . The
channel is therefore equivalent to a 1 2 MIMO wiretap
channel [4]. Note that the destination can remove the noise
completely by simply computing . The eavesdropper,
on the other hand, observes an AWGN link with finite capacity.
Hence, the secrecy capacity of this channel is easily seen to be

.
Now, we construct a second relay channel. The channel is the

same as the previous one except that the received signal at the
relay becomes

(206)

That is to say that the relay receives an additional copy of its
transmitted signal. This should not benefit the relay/eaves-
dropper at all. So the secrecy capacity is still .

Now, we construct a third relay channel from the second relay
channel, by adding one more eavesdropper to the model. Let the
signal received by this second eavesdropper be

(207)
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It follows that

Hence, the new eavesdropper observes the same marginal dis-
tribution as the eavesdropper located at the relay node. How-
ever, this eavesdropper receives exactly the same signal received
by the destination. Therefore the secrecy capacity of the new
system is reduced to 0.

APPENDIX E
PROOF THAT (50) AS A MARKOV CHAIN

Recall that is shown in (1) as the local randomness gener-
ated at the relay. Using chain rule, we have

(208)

From (1), we observe that

(209)

is a Markov chain. Since the channel is memoryless, and the
relay function (1) has to be causal, we observe

(210)
is also a Markov chain. Applying these two Markov chains to
(208), we have

(211)

We next integrate out and from both side of (211). This
can be done in a recursive fashion as we show next. First we
integrate over on both sides of (211). This gives us

(212)

From (48), we have . Applying
it to (212) yields

(213)

We next integrate over on both sides of (213), which yields

(214)

Repeating the process in (212)–(214) for ,
we have

(215)

Integrating over on both sides of (215), we have

(216)

Integrating over on both sides of (216), we have

(217)

Integrating over on both sides of (217), we have

(218)

Dividing each side of (217) by the corresponding side of (218),
we have

(219)

Hence, we have shown that is a Markov
chain.

We next prove that is a Markov chain.
Again, we start with (211) and integrate out and from
both sides of it in a recursive fashion. First we integrate over

on both sides of (211) and obtain

(220)

Then from (48) we observe that
. Hence, (220) becomes

(221)



3824 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010

We next integrate over on both sides of (221), which yields

(222)

Repeating the process in (220)–(222) for ,
we have

(223)

Integrating over on both sides of (223), we have

(224)

Integrating over on both sides of (224), we have

(225)

Integrating over on both sides of (225), we have

(226)

Dividing each side of (225) by the corresponding side of (226),
we have

(227)

Hence, we have shown that is a Markov
chain.

APPENDIX F
PROOF THAT FOR THE MODEL

STATED IN (46)

We begin with

(228)

(229)

where the last equality follows from the fact that is a de-
terministic function of . Hence, we only need to prove

for the channel model defined in
(46). This can be done as follows:

First we factorize using a similar pro-
cedure seen in (208)–(211)

(230)

(231)

(232)

where in (232) we use the Markov chain stated in (209) and
(210).

From (46), we have . Hence,
we have

(233)

We next integrate out from both sides of (233) using the
procedure shown in Appendix E, which yields

(234)

We next use the fact that is a Markov
chain, as stated in (50) and proved in Appendix E, from which
we have

(235)
Since is a deterministic function of , we have

(236)

(237)

Since is independent from , (236)–(237) can be written
as

(238)

From it, we can write

(239)

and

(240)

From (239) and (240), we have

(241)

Hence, .

APPENDIX G
PROOF THAT (85) IS AN UPPER BOUND

We begin with

(242)

Due to the secrecy constraint, we have
. Due to the fact that can be decoded from reliably,
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we have, from Fano’s inequality,
. Hence, there exists such that

(243)

(244)

(245)

For this , we find (242) is upper bounded by

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

From (61), we observe is a
Markov chain. Hence, (253) equals

(254)

(255)

(256)

(257)

The term inside the sum in (257) can be bounded as

(258)

(259)

(260)

(261)

where is the local randomness at the relay. Equation (261) is
due to the fact that is a deterministic function of .

From (61), we have

(262)

from which we have

(263)

Hence, are all independent from . There-
fore, (261) equals 0. Equation (257) thus becomes

(264)

(265)

(266)

From (61) and the fact that the channel is memoryless and the
relay function is causal, we observe that

(267)

is a Markov chain. Hence, (266) equals

(268)

(269)

Define as a random variable that is uniformly distributed over
. Define

. Then (269) equals

(270)

(271)

(272)

Since is a Markov chain, (272) equals

(273)

(274)

Dividing both sides by and letting , we have the upper
bound in (85).

APPENDIX H
PROOF THAT (3) IS A MARKOV CHAIN

Let denote the local randomness used by the encoder of
the source node. Then we have

(275)

(276)

(277)

(278)

(279)
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In (277), we use the fact that is a deterministic function of
and .

We note that the relay channel is memoryless and the current
channel inputs are both present in the condition term
of the first term of (279). Also are previous inputs
and outputs of the channel. Hence, the first term of (279) is 0.
Therefore, (279) equals

(280)

(281)

(282)

The last step follows from the fact that is a deterministic
function of and , and is a deterministic function of

and . Hence, from (275)–(282), we deduce

(283)

Repeat the derivation (275)–(282) for , we
get

(284)

Hence, we obtain (3).
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