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Abstract—This paper studies the fundamental limits of storage
for structured data, where statistics and structure are both
critical to the application. Accordingly, a framework is proposed
for optimal lossless and lossy compression of subsets of the
possible realizations of a discrete memoryless source (DMS). For
the lossless subset-compression problem, it turns out that, the
optimal source code may not index the conventional source-
typical sequences, but rather index certain subset-typical se-
quences consistent with the subset of interest. Building upon
an achievability and a strong converse, an analytic expression is
given, based on the Shannon entropy, relative entropy, and subset
entropy, which identifies such subset-typical sequences for a broad
class of subsets of a DMS. Intuitively, subset-typical sequences
belong to those typical sets which highly intersect the subset of
interest, but are still closest to the source distribution in the sense
of relative entropy. For the lossy subset-compression problem, an
upper bound is derived on the subset rate-distortion function in
terms of the subset mutual information optimized over the set
of conditional distributions that satisfy the expected distortion
constraint with respect to the subset-typical distribution and over
a set of certain auxiliary subsets. By proving a strong converse
result, this upper bound is shown to be tight for a class of
symmetric subsets. As shown in our numerical examples, more
often than not, one achieves a gain in the fundamental limits,
in that the optimal compression rate for the subset in both the
lossless and lossy settings can be strictly smaller than the source
entropy and the source rate-distortion function, respectively,
although exceptions are also possible.

Index Terms—subset-typical sequences; subset entropy; subset
mutual information; subset-type covering lemma; method of types;
semantic information processing.

I. INTRODUCTION

Source coding addresses compression, with or without fi-
delity, of an information source. In particular, in (near-) loss-
less compression of a discrete memoryless source (DMS), one
identifies and indexes source-typical sequences that capture
essentially all the probability mass of the source. For a DMS
X with probability distribution P (x) over alphabet X , the
number of such typical sequences is approximately 2nH(X),
so the fundamental limit of lossless compression is given by
the Shannon entropy [1], [2]:

R∗ = H(X). (1)
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In lossy compression of a DMS, on the other hand, one
essentially groups source-typical sequences and covers each
group with a sequence that is within a certain distortion
distance of them [1], [2]. For a DMS X ∼ P (x), the
number of such cover sequences is approximately 2nR(D), so
the fundamental limit of lossy compression with a distortion
requirement D is given by the rate-distortion function, defined
as the average mutual information optimized over the set of
conditional distributions that satisfy the expected distortion
constraint: [1], [3]:

R(D) = R(P,D) := min
PY |X :E[d(X,Y )]≤D

I(X;Y ). (2)

These basic settings have been studied extensively and ex-
tended to scenarios with unknown statistics [4] and to net-
work and distributed settings [5], [6] and find applications in
database management [7], [8]. An implicit but pivotal consid-
eration in all of these works is that important realizations of
interest for the source to reconstruct consist only of the likely
and source-typical sequences.

In some emerging applications in information processing
including database management and bioinformatics, however,
the likelihood and typicality of a source realization may
not be the main factor to determine the importance of that
sequence. In particular, in semantic communications [9], [10],
only information with certain patterns and structures might
be meaningful according to semantic and logic rules. In
such scenarios, therefore, one is interested in processing and
conveying only certain source outputs with potentially low
probability, rather than capturing the collective probability
mass of the source embodied in the source-typical sequences.

The goal of this paper is to provide a treatment of a subset
source coding problem, where the encoder and decoder aim
at providing a (near-)lossless or lossy description of only a
subset of all possible source realizations as determined by the
application. To explain the subset source coding problem more
concretely, we provide in the following a motivating example
with a toy setup to showcase the kind of results we obtain,
and the connections with and distinctions from the standard
source coding problem.

A. Motivating Example

Consider a binary DMS, X = {0, 1}, with a Bernoulli
distribution with parameter Pr[X = 1] = p = 0.11, so that the
Shannon entropy of the source is simply the binary entropy
Hb(p) = −p log p − (1 − p) log(1 − p) = 0.5, and its rate-
distortion function with respect to the Hamming distance is
R(D) = 0.5 − Hb(D) for 0 ≤ D ≤ 0.11 and R(D) = 0
otherwise. Now, consider the subset L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : xn has no consecutive 1s}. (3)
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The size of this subset satisfies (1/n) log |Ln| → 0.69 as
n → ∞. We will show in Example 4 of Section VII that
the optimal (near-)lossless compression rate of this subset is
R∗L = 0.43, and that the rate-distortion function of this subset
satisfies

RL(D) ≤ l.c.e.

(
min

{
0.44−Hb(D),

(0.91 +D)Hb

(
0.09−D
0.91 +D

)
−0.09Hb

(
D

0.09

)})
, (4)

if 0 ≤ D ≤ 0.09, where l.c.e. stands for the lower convex
envelope operation, and RL(D) = 0 if D > 0.09. It is clear
that, entropy and rate-distortion for this subset is completely
different from that of the original source, due to the specific
structure imposed by the subset.

To shed more light on the connections between these results
and the structure of this subset, we consider the following.
The binary sequences in this subset can also be generated
by a certain asymmetric two-state binary Markov chain [11],
[12], namely, with α := Pr[Xn+1 = 1|Xn = 0] and β :=
Pr[Xn+1 = 0|Xn = 1] = 1. Accordingly, we can consider an
infinite continuous set of Markovian types (i.e., a type with
a with a Markov structure) [13] with 0 ≤ α ≤ 1, and so
with different cardinalities, that satisfy the constraint in Ln.
The entropy-rate for such a Markovian type can be calculated
as [1]

H(X) =
1

α+ 1
Hb(α), (5)

If one tries to choose an α that maximizes the entropy rate
H(X), one gets α = 0.38, which leads to H(X) = 0.69,
which is indeed the exponent of the subset size we derived
above. However, if we evaluate (4) at D = 0, we get R(D =
0) = 0.43 coming from the second term in (4).

The reason why R(D = 0) is strictly (and by far) smaller
than the entropy-rate H(X) = limn→∞(1/n) log |Ln| calcu-
lated above is that, the Markovian type with α = 0.38 is
not “the most likely type class within the subset” due to the
bias introduced by the prior of Bernoulli(p = 0.11). In other
words, the generating distribution is closer, in the sense of
KL divergence, to a Markovian type class that is of smaller
cardinality than the Markov type class with the most elements.
This phenomenon biases which elements of Ln need to be
encoded; cf., Figure 1 and its discussion for more details. It
turns out that the parameter for the optimal Markovian type
class is α∗ = 0.0995, for which the corresponding stationary
distribution satisfies Pr[X = 1] = 0.09 and the corresponding
entropy rate is 1/(1 + α∗)Hb(α

∗) = 0.09/0.91.
One notes that, there is a second α = 0.78 that generates the

same entropy-rate value, for which the stationary distribution
has Pr[X = 1] = 0.44. Compared to the optimal solution
with Pr[X = 1] = 0.09, this type class is further from the
generating distribution Bernoulli(p = 0.11) in a KL divergence
sense.

Finally, for further insight into the issues and knobs in this
example, consider for a moment the situation with a Bernoulli
p = Pr[X = 1] = 0.18 that satisfies Hb(0.18) = 0.68. In
such a situation, one can show that the optimal Markovian

type indeed satisfies α∗ = 0.38, namely the largest Markovian
type that satisfies the constraint of subset Ln. Therefore,
in the original setting with p = 0.11, the prior distribution
naturally pulls the most likely Markov type away from the
one with the largest cardinality.

B. Background

Previous efforts sharing similar motivations as in this work
include task encoding in [14] that guarantees certain important
but less likely source events are not ignored in data compres-
sion, and information theory of atypical sequences in [15] with
applications in signal processing and big-data analytics.

The subset source coding problem inherently involves both
probabilistic and combinatorial aspects. On one hand, it has
roots in large deviations theory [16] and relates to the gen-
eralized asymptotic equipartition property (AEP) [17] and
Sanov’s theorem [1], and particularly to the conditional limit
theorem (CoLT) [1], [18], maximum entropy distribution [19],
Gibbs conditioning principle [20], and conditional law of large
numbers [21]. We discuss the latter relations in more details
in Section III-B.

On the other hand, the subset source coding problem has
a combinatorial element in terms of the exponential num-
ber of information sequences that satisfy certain structural
constraints, and therefore relates to the capacity for mag-
netic recording channels with constrained coding [22]–[24];
the notion of Markov types in compression of Markovian
sources [25], [26]; and entropy definitions in statistical me-
chanics models [27].

C. Outline and Contributions

In Section II, we formally introduce the subset source
coding problem in both lossless and lossy versions. In Sec-
tion III, we discuss two possible alternative approaches for
this problem via (i) the Verdú-Han information spectrum
approach [28] and (ii) the conditional limit theorem (CoLT) [1]
with the quasi-independence feature [18]. In this paper, we
instead blueprovide a rather elementary analysis from first
principles of the method of types [29] and large deviations
theory [1], [16] along with elements of combinatorics for the
analysis. In Section IV, we use error exponent results for
conventional source coding to state our first general result for
likely subsets, those with not(-so-fast)-vanishing probabilities.
In Section V, we extend the notion of typical sequences and
present optimality results for a broad class of smooth subsets,
those satisfying certain regularity conditions and continuous
structures. In Section VI, we prove optimal compression rates
for fluctuating subsets that alternate between several structures.
Our key contributions in these three main sections are as
follows.
• For likely subsets, we prove an achievability and a

matching strong converse to show that the fundamental
limits of lossy and lossless compression of the subset are
equal to those of the original source.

• For smooth subsets, we prove an achievability and a
strong converse for the lossless case which shows that the
fundamental limit is the result of a trade-off between the
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source statistics and the subset structure and is given by a
certain subset entropy of the subset-typical distributions,
both defined in this paper. For lossy compression of
smooth subsets, we prove an achievability that relates the
subset rate-distortion function to a certain subset mutual
information corresponding again to the subset-typical
distributions. For the special case of smooth symmetric
subsets, we show that our achievability result for the lossy
case is tight by proving a strong converse.

• For fluctuating subsets, we prove an achievability and a
converse to show that the fundamental limits of lossy
and lossless compression of the subset are equal to those
of the worst structure, i.e., the one which requires the
highest compression rate.

We next present in Section VII several numerical examples of
the subset source coding problem which suggest, when focus-
ing only on a subset instead of the entire source, there is often a
gain in the compression rate, although there are exceptions. We
devote Section VIII to a generalization of our framework to the
case of subsets with weighted priorities, which has relations to
the problem of unequal error protection in channel coding [30],
[31]. We conclude the paper in Section IX with a recap of
the results, some discussions regarding the computability of
our results, and a few remarks about possible extensions. The
proofs of the main results are presented in the main text, while
those of the technical underlying lemmas are relegated to the
Appendices.

In the following, we would like to briefly highlight the main
novel features of our work.

• One key novel aspect of our work is posing a new
basic setup in the source coding literature, including the
problem formulation and the performance metrics.

• We have provided a set of rather elementary proofs from
first principles, which are quite readable for a broad
audience in information theory, but at the same time does
not appear to sacrifice the extent to which performance
results can be developed, e.g., compared to potential
results that one can obtain using CoLT.

• We have treated, among other cases, fluctuating subsets
and subsets with weighted priorities, that do not appear
to be (directly) handled by existing versions of CoLT.

• The lossy compression aspects of subset source coding
and the techniques we have proposed, e.g., the subset-type
covering lemma using “auxiliary subsets” as structure-
preserving images of the original subsets (cf. Lemma 2),
are novel concepts and contributions that are interesting
on their own.

Notation: We use capital letters X and Y to denote random
variables, and lower case letters x and y to denote their
realizations. We use calligraphic letters X and Y to denote
sets or alphabets. We use PX and QY to denote marginal
distributions, and PY |X to denote conditional distributions. We
use P̂X , P̂Y |X , and P̂XY to denote types, conditional types,
and joint types, respectively. Throughout this paper, all log
operations are understood as base 2. We follow the notation
of Csiszár and Körner [29] for denoting entropy and mutual
information. Consider a random variable X with distribution

P (x). The Shannon entropy H(X) is denoted by

H(P ) := −
∑
x∈X

P (x) logP (x). (6)

Analogously, consider a random variable X with marginal dis-
tribution PX(x), and let Y be a random variable conditionally
distributed according to PY |X(y|x). The conditional Shannon
entropy H(Y |X) =

∑
x PX(x)H(Y |X = x) is denoted by

H(PY |X |PX) :=
∑
x∈X

PX(x)H(PY |X=x). (7)

Moreover, the average mutual information I(X;Y ) = H(Y )−
H(Y |X) = H(X)−H(X|Y ) is denoted by

I(PX , PY |X) := H(PY )−H(PY |X |PX)

= H(PX)−H(PX|Y |PY ), (8)

where PY (y) =
∑
x PX(x)PY |X(y|x) is the marginal distri-

bution of Y , and PX|Y (x|y) = PX(x)PY |X(y|x)/PY (y) is
the induced conditional distribution of X given Y . Finally,
the relative entropy is denoted by

D(Q‖P ) :=
∑
x∈X

Q(x) log
Q(x)

P (x)
. (9)

II. PROBLEM SETTING

Consider a discrete memoryless source with distribution
PX(x) over the finite alphabet X , such that the n-fold dis-
tribution of the source, for all n = 1, 2, . . . , satisfies

PXn(xn) =
n∏
t=1

PX(xt). (10)

For simplicity, we will sometimes write PX as P . Let L =
{Ln}∞n=1 be a sequence of subsets of the source realizations
such that Ln ⊆ Xn and Pr[Xn ∈ Ln] 6= 0 for all n. We wish
to find the minimum (near-)lossless and lossy compression rate
for the subset sequence L.

More formally, an (n, 2nR) near-lossless (or simply, loss-
less) code for subset L consists of an encoder m : Ln →
{1, 2, · · · , 2nR} and a decoder x̂n : {1, 2, · · · , 2nR} →
Ln ∪ {E} that assigns to an index 1 ≤ m ≤ 2nR either an
estimate x̂n(m) ∈ Ln or an error E . The error probability of
the code is defined as

Pr[EL] := Pr[X̂n 6= Xn|Xn ∈ Ln]. (11)

A rate R is called achievable if a sequence of (n, 2nR) lossless
source codes for subset L exists with Pr[EL] → 0 as n →
∞. The optimal lossless subset-compression rate R∗L is the
infimum of all achievable rates.

For the lossy subset compression problem, we consider a
reconstruction alphabet Y and an additive distortion measure
d : X × Y → [0, Dmax] for some maximal distortion value
Dmax <∞ and define

d(xn, yn) :=
1

n

n∑
t=1

d(xt, yt). (12)

An (n, 2nR) lossy code for subset L consists of an encoder f :
Ln → {1, 2, · · · , 2nR} and a decoder φ : {1, 2, · · · , 2nR} →
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Yn. For any distortion values D ≥ 0, the probability of excess-
distortion1 is defined as

Pr[EL(D)] := Pr[d(Xn, Y n) > D|Xn ∈ Ln]. (13)

A rate-distortion pair (R,D) is called achievable if a se-
quence of (n, 2nR) lossy source codes for subset L exists
with Pr[EL(D)] → 0 as n → ∞. The subset rate-distortion
function RL(D) is the infimum of all rates R for which the
rate-distortion pair (R,D) is achievable.

Remark 1. The interpretation of the conditioning used in the
problem formulation above is that the encoder never sees or
cares about the source realizations outside the subset L. Note
that, the prior distribution PXn(xn) induces a prior on the
subset Ln; cf., Section III-A for mode details.

Remark 2. The subset rate-distortion function RL(D), similar
to the standard rate-distortion function, is a non-increasing
function of D, by definition. The convexity of RL(D) in D,
however, is not a priori obvious. The latter would normally
build on a time-sharing argument, namely, to combine shorter
codes achieving distortions D1 and D2 with appropriate rates
R1 and R2, respectively, to form a longer code that achieves
the convex combination of those rate-distortion pairs. How-
ever, such an argument is not trivial for the subset source
coding problem. In fact, if a codeword xn belongs to the
subset Ln, it may or may not be true that a portion of it
xαn belongs to Lαn for some 0 < α < 1.

III. ALTERNATIVE APPROACHES

In this section, we discuss two alternative analysis and proof
approaches for the subset source coding problem, namely, the
information spectrum approach and the conditional limit the-
orem approach, and argue that these two approaches although
interesting, are quite challenging and their application to the
subset source coding might not be straightforward.

A. The Information Spectrum Approach

At the outset, one may think that a conditional source
formulation can readily capture the subset compression prob-
lem. In particular, one can define an equivalent conditional
source X̃n as

PX̃n(xn) :=
PXn(xn)

PXn [Xn ∈ Ln]
1{xn ∈ Ln}, (14)

and claim the fundamental lossless and lossy compression
rates of this conditional source to be equivalent to our R∗L
and RL(D) of interest, respectively. This claim is indeed valid,
since the error probability and the excess-distortion probability
for both cases are the same, as readily shown in Appendix A.

The fundamental compression limits of this equivalent con-
ditional source, however, are not in general very straightfor-
ward to analyze. For those subsets for which the equivalent
conditional source is stationary and ergodic, the fundamental
lossless and lossy compression limits are given by average

1While the expected distortion E[d(Xn, Y n)] is more preferred as the
evaluation metric for a lossy source code [1], we adopt the more stringent
requirement of vanishing excess-distortion probability as in [29].

entropy rate and average mutual information rate, respec-
tively [1], [28], [32], [33]:

R∗L = lim
n→∞

1

n
H(X̃n),

RL(D) = lim
n→∞

inf
Y n: 1

nE[d(X̃n,Y n)]≤D

1

n
I(X̃n;Y n). (15)

However, the stationarity and ergodicity assumptions do not
hold for most subsets, even the simplest ones such as our
Example 1 in Section VII; cf. [28, Example 1.5.1]. Therefore,
one would need to utilize the more advanced information-
spectrum approach [28] to characterize the fundamental com-
pression limits of this potentially non-stationary and non-
ergodic equivalent source. In particular, for the lossless case,
the fundamental limit is given by the spectral sup-entropy rate
of the conditional source [34]:

R∗L = H̄(X̃) := p- lim sup
n→∞

1

n
log

1

PX̃n(X̃n)
, (16)

where X̃ = {X̃n}∞n=1 is the equivalent conditional source
process, and the p- lim sup operation, limit superior in proba-
bility, is defined as the supremum of the support set of the
limiting distribution [28]. Analogously, for the lossy case,
the fundamental limit is given by the spectral sup-mutual
information rate of the conditional source [35]:

RL(D) = inf
Y:d̄(X̃,Y)≤D

Ī(X̃;Y), (17)

where Y = {Y n}∞n=1 is a reconstruction process and

Ī(X̃;Y) := p- lim sup
n→∞

1

n
log

PY n|X̃n(Y n|X̃n)

PY n(Y n)
,

d̄(X̃,Y) := p- lim sup
n→∞

1

n
d(X̃n, Y n). (18)

Although the above limiting analysis and information-
spectrum approach yield a complete characterization of the
fundamental compression limits, its numerical evaluation for
arbitrary subsets is cumbersome and may require tedious
manipulations. Moreover, the general form of the fundamental
limit results in (15), (16), (17) are not explicit about the
effect of subset structure and the statistics of the original
source on the compression rate, and each example needs to be
individually analyzed. In Sections IV, V, and VI, we present
a more accessible form of treatment and give three tractable
optimality results that apply to broad classes of subsets.

B. The Conditional Limit Theorem Approach

Large deviations (LD) is indeed a closely related area to
the subset source coding problem we propose in this paper.
In particular, Sanov’s theorem and conditional limit theorem
(CoLT) are two key results in LD that have strong connec-
tions with our problem. In this subsection, we make these
connections clearer: we briefly state these two results, argue
how one could potentially use CoLT to tackle the problem
of subset source coding, and explain the challenges for using
such a CoLT-based approach.

As was hinted in the Introduction and will be also discussed
in Section IV, for most cases of interest, the subset L is an
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unlikely or rare event, in that Pr[Xn ∈ Ln] is vanishing
exponentially fast with n. Treating rare events is the essence of
large deviations. One of the key results in LD is Sanov’s theo-
rem [1] that considers a set E of probability distributions, pos-
sibly with additional regularity conditions (e.g., that E is the
closure of its interior). Then for i.i.d. random variables Xn ∼
P , one gets −(1/n) log Pr[Xn ∈ E]→ D(Q∗‖P ) as n→∞,
where Q∗ = arg minQ∈E D(Q‖P ) is called the (generalized)
I-projection of P on the set E [1], [18]. An important class of
such sets E is defined by the sample mean or empirical block
average constraint (1/n)

∑n
i=1 g(Xi) > α for a given function

g(x) and a given constant α, usually satisfying α > EP [g(X)].
Also, an extension is possible to handle the intersection of
multiple such constraints.

A second key result in LD is to study conditional distribu-
tions given a rare event, which is referred to as the conditional
limit theorem (CoLT). The standard version of CoLT, e.g.,
per [1], states that for an i.i.d. Xn ∼ P and for a closed
convex set E of probability measures, such that P /∈ E, we
have [1]

Pr[X1 = a1, X2 = a2, ..., Xm = am|PXn ∈ E]→
m∏
i=1

Q∗(ai)

in probability

for fixed m as n → ∞, where PXn denotes the empirical
block average or type of Xn, and Q∗ is the (generalized) I-
projection of P on the set E (defined above). This basically
means that, conditioned on the event that type of Xn belongs
to the set E, the first few elements of Xn are asymptotically
conditionally independent with common distribution Q∗.

Recall from our problem formulation in Section II that, the
kind of conditional probabilities that we are interested in are of
the form Pr[Xn ∈ An|Xn ∈ Ln], for which the conditioning
part, in some cases, might reduce to a type (or Markovian
type) constraint Pr[Xn ∈ An|PXn ∈ En]. This is in fact very
similar to what the CoLT result addresses, except for the fact
that here we have m = n.

However, an important observation is that, the standard
version of CoLT does not guarantee independence for long
sequences: “[asymptotic conditional independence] is not true
for m = n, since there are end effects; given that the type of
the sequence is in E, the last elements of the sequence can be
determined from the remaining elements, and the elements
are no longer independent.” [1, pp. 374-375]. In fact, the
asymptotic conditional independence property presented in the
standard version of CoLT is much more limited than just
the case m = n mentioned by [1]. Dembo and Zeitouni
in [20] discuss that, to get such an asymptotic conditional
independence property, one could go beyond a fixed m and
also extend to the case of m = mn being a function of
the blocklength n, but the speed of growth should satisfy
mn

logn
n → 0 as n→∞ or sometimes mn = o(n), but there

is no hope for conditional independence beyond that growth
speed. These results suggest that the standard form of CoLT
cannot be applied to the subset source coding problem.

Nonetheless, a more relaxed result is possible if one is
satisfied with almost independence. Csiszar in [18] proves

that, for certain (almost completely convex) sets E of prob-
ability measures, i.i.d. random variables (X1, ..., Xn) ∼ P
under the condition PXn ∈ E are asymptotically quasi-
independent with limiting distribution Q∗ (defined above),
namely, limn→∞(1/n)D(PXn|E‖(Q∗)n) = 0. It follows that,
in the words of Csiszar (with slight changes in notation),
“whatever probabilistic statement holds, except for an event of
exponentially small probability, for i.i.d. RV’s with common
distribution Q∗, it holds ... with conditional probability tending
to 1 for (X1, ..., Xn) given that PXn ∈ E” [18].

The above-mentioned advanced form of CoLT (with the
quasi-independence feature) is indeed an incredible result that
can potentially serve as an alternative approach to tackle the
subset source coding problem. We believe such a solution
would consist of the following steps: (i) Identify and prove
an appropriately general form of advanced CoLT that can
handle potentially general/arbitrary subsets Ln; (ii) Specialize
the CoLT result to the problem at hand (i.e., the error events
or the excess-distortion events) including appropriate change
of measures to Q∗; and finally (iii) Incorporate any additional
steps needed for the subset compression problem, e.g., rate
calculation via counting arguments, and distortion analysis via
covering lemmas. Note that, in our view, the third step is rather
independent of the first two steps so, regardless of the approach
taken for the first two steps (CoLT-based or not), appropriate
techniques and solutions need to be devised (such as the subset
type covering lemma we have developed in Section V-C2)
which are inherent to the subset source coding problem, and
therefore novel and interesting on their own.

We suspect such an alternative CoLT-based approach, al-
though very interesting and valuable, can be quite challenging.
Firstly, the mere development of advanced CoLT results with
the quasi-independence feature for (rather) generic and arbi-
trary sets E (that directly capture, e.g., fluctuating subsets or
other n-dependent structures), instead of an almost completely
convex set E of probability measures, appears to be difficult.
In fact, based on a rather detailed check of the citations of [18]
within the literature of probability and information theory, very
few works have focused on the quasi-independence property
and its extension for more general E sets [36]–[38]. Secondly,
it is not obvious to us that, wherever the appropriate form of
advanced CoLT is already known or is newly characterized,
such a CoLT-based approach would lead to results far beyond
what we have developed here with a rather elementary anal-
ysis. In fact, in some sense, one could conceive our proof
methods as special cases of (the existing or a potential) CoLT
for the problem at hand.

IV. COMPRESSION OF LIKELY SUBSETS

In this section, we establish our first result asserting that
for likely subsets, ones with not so small probability, not so
unexpectedly, the optimal lossless and lossy compression rates
for the subset turn out identical to those of the original source.

Theorem 1. For a discrete memoryless source P (x) and any
subset L = {Ln ⊆ Xn}∞n=1 that satisfies

lim inf
n→∞

1

n
logPXn [Xn ∈ Ln] = 0, (19)
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the optimal lossless subset-compression rate is R∗L = H(P )
and the subset rate-distortion function is RL(D) = R(D). In
particular, the result holds if PXn [Xn ∈ Ln] as n→∞ either
converges to a constant or decays sub-exponentially to zero.

Theorem 1 is more intuitive for subsets L with an asymptot-
ically constant probability so that PXn [Xn ∈ Ln]→ c where
0 < c ≤ 1, since excluding any constant fraction of sequences
in Xn does not reduce the required compression rate. The case
of subsets with slowly vanishing probability and the case that
subset probability does not converge at all but an asymptotic
lower bound to the subset probability is constant or decaying
at most sub-exponentially to zero are somewhat more subtle,
as explained in the following proof of Theorem 1. The main
idea is to construct subset codes from appropriately selected
source codes and vice versa.

Proof. Below, we first provide the proof for the lossless case.
Then, we describe the few changes needed to make the proof
work for the lossy case. First note that, from the definition of
liminf, the assumption in (19) implies that, for any ε > 0, we
have Pr[Xn ∈ Ln] > exp(−nε) for large enough n.

(Achievability) Fix an arbitrary ε > 0. Choose an error-
exponent-optimal lossless source code in the conventional set-
ting for source P with rate H(P ) + ε and Pr[X̂n 6= Xn]→ 0
exponentially fast as n→∞, so that [29]

lim
n→∞

1

n
log Pr[X̂n 6= Xn] ≤ − min

Q:H(Q)≥R
D(Q‖P ). (20)

Noting that

Pr[X̂n 6= Xn] ≥ Pr[Xn ∈ Ln] · Pr[X̂n 6= Xn|Xn ∈ Ln],
(21)

and that by assumption Pr[Xn ∈ Ln] > exp(−nε), we
conclude that the same lossless source code, when constrained
to only sequences within Ln, achieves Pr[X̂n 6= Xn|Xn ∈
Ln]→ 0 as n→∞. This implies R∗L ≤ H(P ), as the choice
of ε is arbitrary.

(Converse) Fix an arbitrary lossless code for the subset L =
{Ln ⊆ Xn}∞n=1 achieving some rate R with error probability
Pr[X̂n 6= Xn|Xn ∈ Ln] = εn → 0 as n → ∞. We can
consider this code as a conventional lossless source code for
the entire space Xn which maps all sequences in (Xn −Ln)
to an error. We can analyze the error probability as follows.

Pr[X̂n 6= Xn] = Pr[Xn ∈ Ln] · Pr[X̂n 6= Xn|Xn ∈ Ln]

+ Pr[Xn /∈ Ln] · Pr[X̂n 6= Xn|Xn /∈ Ln]
(22)

≤ εn · Pr[Xn ∈ Ln] + Pr[Xn /∈ Ln] (23)
= 1− (1− εn) · Pr[Xn ∈ Ln]. (24)

Since Pr[Xn ∈ Ln] > exp(−nε), the error probability
of this code is at least sub-exponentially away from 1. We
know, however, that strong converse holds for the lossless
compression of a DMS, so that the error probability of any

lossless source code with rate below the entropy, R < H(P ),
approaches one [29]

lim sup
n→∞

1

n
log(1− Pr[X̂n 6= Xn]) ≤ − min

Q:H(Q)≤R
D(Q‖P ).

(25)

Therefore, (24) implies that the rate R is above the source en-
tropy H(P ). Since the choice of the lossless code is arbitrary,
this proves that R∗L ≥ H(P ). 2

The proof for the lossy case is identical after making the
following changes: use R(Q,D) instead of H(Q); R(D)
instead of H(P ); RL(D) instead of R∗(D); and the excess
distortion event d(Xn, Y n) > D instead of the error event
X̂n 6= Xn. Also note [29], [39] for error exponent results
for standard lossy compression, including the following result
about the excess-distortion probability of any lossy source
code with rate below the rate-distortion function, R < R(D):

lim sup
n→∞

1

n
log(1− Pr[d(Xn, Y n) > D])

≤ −min
Q

[
D(Q‖P ) + |R(Q,D)−R|+

]
. (26)

Theorem 1 immediately captures a large class of subsets by
asserting that only subsets with exponentially small probability
need further study. In fact, one might be tempted to think that
subsets with non-negligible probability are already addressed
by this theorem and, since the remaining possible subsets with
exponentially small probability are so rare, their analysis is
not very relevant. In particular, one may be tempted to think
that such subsets with negligible probability only contain the
atypical sequences of the source, which are ignored in conven-
tional compression anyway. However, as will be clarified in
the remainder of the paper, one can find subsets containing
source-typical sequences, which yet have an exponentially
small probability; see Section VII. Moreover, as discussed in
the Introduction, even the atypical sequences of the source
may be important for certain applications.

V. COMPRESSION OF SMOOTH SUBSETS

In this section, we state optimal compression rate results
for a broad class of smooth subsets, ones with continuous
structures, including subsets with exponentially small proba-
bility. We present the results for the lossless and lossy cases in
Subsections V-A and V-B, respectively, and provide the proofs
in Subsection V-C.

A. Lossless Compression of Smooth Subsets

In this subsection, we state our lossless compression result
for smooth subsets. Our result relies on a new quantity termed
the subset entropy, to introduce which we first recall the def-
inition and properties of standard (source-) typical sequences
of a DMS.

In the following definitions, let N(x;xn) be the number of
occurrences of the symbol x ∈ X in the sequence xn.

2An alternative proof of converse for the lossless case follows from [29,
Lemma 2.14 and Problem 2.11].
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Definition 1. [29] Given any distribution Q(x) and any
positive δn, the set Tn[Q]δn of Q-typical sequences is defined
as the set of all sequences xn ∈ Xn that satisfy∣∣∣∣ 1nN(x;xn)−Q(x)

∣∣∣∣ ≤ δn, (27)

for all x ∈ X with Q(x) > 0 and N(x;xn) = 0 otherwise.

Remark 3. In the definition above and throughout the paper,
the sequence δn is assumed to satisfy the Delta-Convention,
i.e., as n→∞, we have δn → 0 and

√
nδn →∞ [29].

One recalls from the properties of the typical sequences that,
for every distribution Q(x), the size of the Q-typical set
satisfies [29]

lim
n→∞

1

n
log |Tn[Q]δn | = H(Q). (28)

We can now define the notion of subset entropy.

Definition 2. We say the subset L = {Ln ⊆ Xn}∞n=1

intersects a distribution Q(x) and write L ∩ T [Q] 6= ∅ if

lim sup
n→∞

|Ln ∩ Tn[Q]δn | 6= 0. (29)

Remark 4. In condition (29) of Definition 2, for any fixed
distribution Q(x), we may have empty intersection for several
(or even many) values of n, but this of course would not violate
the original assumption that Pr[Xn ∈ Ln] 6= 0 for all n.

Definition 3. Consider a subset L = {Ln ⊆ Xn}∞n=1 that
intersects a distribution Q(x), i.e., L ∩ T [Q] 6= ∅. A constant
HL(Q) is called the subset-L entropy of distribution Q(x) if

lim
n→∞

1

n
log |Ln ∩ Tn[Q]δn | = HL(Q), (30)

provided that the limit exists.

Comparing expressions (28) and (30) suggests that, subset
entropy HL(Q) is an analogue of the standard entropy H(Q).
In fact, we readily observe the appealing property 0 ≤
HL(Q) ≤ H(Q) for any distribution Q with L ∩ T [Q] 6= ∅.
In particular, for Ln = Xn, we have HL(Q) = H(Q) for all
distributions Q.

Our focus in this section is on smooth subsets, ones for
which the subset entropy is a continuous function, essentially
suggesting that the subset intersects only a continuous spec-
trum of distributions and nothing outside of it.

Definition 4. We say the subset L = {Ln ⊆ Xn}∞n=1 is
smooth if the subset entropy HL(Q) exists and is continuous
in all distributions Q intersecting the subset, L ∩ T [Q] 6= ∅.

In the following, we state our lossless compression result
for smooth subsets.

Theorem 2. For a discrete memoryless source P (x), the
optimal lossless compression rate for any smooth subset L =
{Ln ⊆ Xn}∞n=1 is

R∗L = max
Q∗X∈Q∗X

HL(Q∗X), (31)

 

 

 

 

 
 
 

𝑄𝑋∗  

 

Fig. 1. Schematic description of Theorem 2 for lossless compression of
smooth subsets. The subset is depicted with a curved shape. The dashed rings
denote the typical sets, which are shown in the order of closeness to the source
statistic P in the sense of relative entropy. The subset-typical distribution Q∗X
corresponds to the typical set that highly intersects the subset but is also close
to the source statistic P .

where the set Q∗X is defined as

Q∗X = arg min
Q:L∩T [Q]6=∅

[H(Q)−HL(Q) +D(Q‖P )], (32)

Q∗X = arg min
Q:L∩T [Q]6=∅

gP (Q), (33)

with the function gP (Q) given by

gP (Q) = H(Q)−HL(Q) +D(Q‖P ). (34)

Proof. Proof is provided in Section V-C1.

Theorem 2 has an interesting interpretation in terms of a
tension between the source statistics and the subset structure.
It suggest that, within a given subset, the most likely sequences
of the source which should be indexed by a lossless subset
code do not necessarily belong to the source-typical set with
distribution P . Rather, they belong to a typical set (i) whose
distribution Q is potentially close to the source statistics in
the sense of relative entropy so that the term D(Q‖P ) is
relatively small; and (ii) with potentially large intersection with
the subset so that the size of its residual part outside the subset,
captured by the term (H(Q)−HL(Q)), is also relatively small.
The subset-typical distributions Q∗X optimize the trade-off
between these two elements by minimizing the function gP (Q)
introduced in (34), and the size of the corresponding subset-
typical set dictates HL(Q∗X) to be the rate of the lossless
compression code for this subset. In most cases, there is only
a single minimizing distribution Q∗X , so the set of subset-
typical distributions Q∗X has a single element, but in case there
are multiple minimizers, one should code for the worst case,
thereby the maxQ∗X∈Q∗X term in (31). This interpretation is
schematically depicted in Figure 1.

As a sanity check for Theorem 2, note for the extreme
case of Ln = Xn that, since the subset L intersects all
distributions Q and HL(Q) = H(Q), our objective function of
interest (34) reduces to gP (Q) = D(Q‖P ) which is minimized
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by Q∗X = P for which HL(Q∗X) = H(Q∗X) = H(P ), which
is consistent with first impressions. Of course, one could
arrive at the same result via Theorem 1, since for this case
PXn [Xn ∈ Ln] = 1 for all n.

An interesting special case is the case of symmetric subsets,
as defined below, where the subset either fully intersects with
a type class [29] or does not intersect at all.

Definition 5. A subset L = {Ln ⊆ Xn}∞n=1 is called sym-
metric if it has the property that, for any sequence xn ∈ Ln,
all permutations of xn also belong to Ln, for all n = 1, 2, · · · .

One readily observes that, a symmetric subset L satisfies the
property HL(Q) = H(Q) for any distributions Q intersecting
the subset, i.e., L ∩ T [Q] 6= ∅. This is because the subset is
fully intersecting a type class, and from the properties proved
in the Method of Types [13], [29], one knows that the size
of a type class Tn(Q) is (on an exponential scale) equal
to exp(nH(Q)). Therefore, a symmetric subset L is smooth
if H(Q) is continuous in all distributions Q intersecting
the subset, L ∩ T [Q] 6= ∅. In such a case, the objective
function (34) reduces to gP (Q) = D(Q‖P ). Hence, we arrive
at the following simpler expression.

Corollary 1. For a discrete memoryless source P (x), the
optimal lossless compression rate for any smooth symmetric
subset L = {Ln ⊆ Xn}∞n=1 is

R∗L = max
Q∗X∈Q

symm
X

H(Q∗X), (35)

where the set Qsymm
X is defined as

Qsymm
X = arg min

Q:L∩T [Q]6=∅
D(Q‖P ). (36)

Remark 5. It turns out that, in the context of subset source
coding, we may face initially counterintuitive situations with
R∗L > R∗ = H(X). That is, we may need more than
H(X) = H(PX) bits for lossless compression of certain
subsets; see, e.g., Examples 1 and 3 in Section VII. The
reason for this phenomenon is that, within the subset com-
pression framework, the typical sequences that we have to
code empirically follow the subset-typical distribution Q∗X(x)
rather than the source-typical distribution PX(x). Since all
such Q∗X -typical sequences are statistically (almost) similar,
we need to index all of them for lossless compression. Now,
if Q∗X(x) is a more uniform distribution than PX(x), then
H(Q∗X) > H(X), so that the total number of Q∗X -typical se-
quences, 2nH(Q∗X), is larger than the number of PX(x)-typical
sequences, 2nH(X). This reasoning is sufficient for symmetric
subsets; cf. Definition 5. For non-symmetric subsets, the subset
structure must also be taken into account, so if Q∗X(x) is more
uniform than PX(x) and the majority of Q∗X -typical sequences
belong to the subset, there is still a possibility for exceeding
the source entropy H(X). Similar arguments can be stated for
exceeding R(D) = R(PX , D) bits in lossy compression of
certain subsets.

B. Lossy Compression for Smooth Subsets

In this subsection, we state our lossy compression result for
smooth subsets. Our result relies on a quantity we term the

subset mutual information, to introduce which we first recall
some definitions and introduce a few notations.

Definition 6. [29] Given any conditional distribu-
tion PY |X(y|x) and any positive δn, the set Tn[PY |X |xn]δn
of conditional PY |X -typical sequences given xn ∈ Xn is
defined as the set of all sequences yn ∈ Yn that satisfy∣∣∣∣ 1nN((x, y); (xn, yn))− 1

n
N(x;xn)PY |X(y|x)

∣∣∣∣ ≤ δn, (37)

for all x ∈ X , y ∈ Y with PY |X(y|x) > 0 and
N((x, y); (xn, yn)) = 0 otherwise.

Remark 6. In the definition above and throughout, the se-
quence δn is assumed to satisfy an extension of the Delta-
Convention mentioned in Remark 3, i.e., (i) as n → ∞, we
have δn → 0 and

√
nδn → ∞ and (ii) when going from

conditional to nonconditional typical sets, the δn sequence,
with some abuse of notation, also stands for sums and constant
multiples like δ′′n := |Y|(δn + δ′n) and so on. [29].

One recalls from the properties of the typical sequences that,
for every conditional distribution PY |X(y|x) and any arbitrary
distribution QX(x), the size of the conditional PY |X -typical
set satisfies [29]

lim
n→∞

min
xn∈Tn[QX ]δn

1

n
log |Tn[PY |X |xn]δn |

= lim
n→∞

max
xn∈Tn[QX ]δn

1

n
log |Tn[PY |X |xn]δn |=H(PY |X |QX).

(38)

We can now define the notions of conditional subset entropy
and subset mutual information.

Definition 7. Consider a subset L = {Ln ⊆ Xn}∞n=1,
a distribution QX(x) and a conditional distribution
PY |X(y|x). Let QY (y) be the induced distribution QY (y) =∑
xQX(x)PY |X(y|x). Consider an auxiliary subset L̄ =

{L̄n ⊆ Yn}∞n=1 for which the subset entropy

HL̄(QY ) = lim
n→∞

1

n
log
∣∣Tn[QY ]δn ∩ L̄n

∣∣ (39)

exists. A constant HL̄|L(PY |X |QX) is called the conditional
subset entropy of PY |X given QX and the subsets L and L̄ if

lim
n→∞

min
xn∈Ln∩Tn[QX ]δn

1

n
log
∣∣L̄n ∩ Tn[PY |X |xn]δn

∣∣
= HL̄|L(PY |X |QX), (40)

provided that the limit exists. Accordingly, the subset mutual
information is defined as

IL,L̄(QX , PY |X) := HL̄(QY )−HL̄|L(PY |X |QX). (41)

Definition 8. Consider a subset L = {Ln ⊆ Xn}∞n=1, a
distribution QX(x), a conditional distribution PY |X(y|x), and
an induced marginal distribution QY (y). We say an auxiliary
subset L̄ = {L̄n ⊆ Yn}∞n=1 is (QX(x), PY |X(y|x),L)-
smooth if both the subset entropy HL̄(QY ) and the conditional
subset entropy HL̄|L(PY |X |QX) exist.
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The quantity HL̄(QY ) is a subset entropy with respect to the
auxiliary subset L̄ on the Y domain. Therefore, as discussed
before, it satisfies the property 0 ≤ HL̄(QY ) ≤ H(QY ).

Comparing expressions (38) and (40) we see that, the
conditional subset entropy HL̄|L(PY |X |QX) is an ana-
logue of the conventional conditional entropy H(PY |X |QX).
We can readily observe the appealing property that 0 ≤
HL̄|L(PY |X |QX) ≤ H(PY |X |QX) for any pair of distribu-
tions PY |X and QX . In particular, for Ln = Xn and L̄n = Yn,
we have HL̄|L(PY |X |QX) = H(PY |X |QX) for all pairs of
distributions PY |X and QX .

We also need a further continuity condition on the con-
ditional subset entropy and subset mutual information as
introduced in the following definition.

Definition 9. Consider a subset L = {Ln ⊆ Xn}∞n=1 and
a conditional distribution PY |X(y|x). We say the auxiliary
subset L̄ = {L̄n ⊆ Yn}∞n=1 is (PY |X(y|x),L)-smooth if (i)
the subset L̄ is (QX(x), PY |X(y|x),L)-smooth in the sense of
Definition 8 for all distributions QX(x) in a δn-neighborhood
of all subset-L-typical distributions Q∗X(x) ∈ Q∗X as defined
in (33) for some δn satisfying the Delta-Convention, and (ii)
the corresponding subset entropy HL̄(QY ) and the conditional
subset entropy HL̄|L(PY |X |QX) and hence the subset mu-
tual information IL,L̄(QX , PY |X) are continuous in all those
QX(x) distributions.

We now state our lossy compression results for smooth
subsets.

Theorem 3. For a discrete memoryless source P (x), the rate-
distortion function for any smooth subset L = {Ln ⊆ Xn}∞n=1

satisfies

RL(D) ≤
max

Q∗X∈Q∗X
inf

PY |X :E[d(X∗,Y ∗)]≤D
inf

L̄:(PY |X ,L)-smooth
IL,L̄(Q∗X , PY |X),

(42)

where: Q∗X is the set of all subset-typical distributions as
defined in (33); IL,L̄(Q∗X , PY |X) is the subset mutual infor-
mation as in Definition 7; L̄ is the smooth auxiliary subset as
in Definition 9; and the pair of random variables (X∗, Y ∗)
are distributed according to Q∗X(x)PY |X(y|x) so that

E[d(X∗, Y ∗)] =
∑
x,y

Q∗X(x)PY |X(y|x)d(x, y). (43)

Proof. Proof is provided in Section V-C2.

Theorem 3 presents a result that is analogous to the
classical rate-distortion result (2) for a DMS. This theo-
rem mainly states that a certain subset mutual information
IL,L̄(Q∗X , PY |X) is critical to this achievability result for
lossy compression of smooth subsets. As in the classical rate-
distortion result (2), a key is minimization of this mutual
information over the conditional distributions PY |X(y|x) that
satisfy the expected distortion constraint E[d(X∗, Y ∗)] ≤ D.
The fact that the collection of subset-typical distributions Q∗X
plays a role in this subset rate-distortion result has an intuition
similar to that for the lossless case, so that the balance between
the source statistics P and the subset structure L determines

𝑃𝑋 𝑃𝑌

𝑄𝑋∗
𝑄𝑌∗

𝑋𝑛 𝑌𝑛

𝐿𝑛
 𝐿𝑛

𝑃𝑌|𝑋(𝑦|𝑥)

Fig. 2. Schematic description of Theorem 3 for lossy compression of
smooth subsets. The transformation of objects in the original Xn domain
to the reconstruction Yn domain via the conditional distribution PY |X(y|x)
is illustrated. The source distribution is denoted by PX and its induced
distribution on the Y domain is denoted by PY . The subset-typical distribution
is denoted by Q∗X and its induced distribution on the Y domain is denoted
by Q∗Y . The dashed rings on both sides denote the typical sets corresponding
to different distributions. The original subset Ln ⊆ Xn and the auxiliary
subset L̄n ⊆ Yn are depicted with the curved shapes. The circles on the
right side depict the conditional typical sets Tn[PY |X |xn]δn for several xn

sequences belonging to Tn[Q∗X ]δn ∩Ln. One observes that, the size of the
intersection of the auxiliary subset L̄n with different conditional typical sets
Tn[PY |X |xn]δn varies with the choice of xn, and the one with the least
intersection size, shown as a hatched circle, dictates the compression rate.

the subset-typical sequences that must be encoded via the lossy
subset compression code, see the discussion below Theorem 2.
Further, if multiple subset-typical distributions Q∗X(x) exist,
one must code for the worst case, hence the maxQ∗X∈Q∗X term
in (42).

The last key element of our lossy compression result in
Theorem 3 is the choice of an auxiliary subset L̄ = {L̄n ⊆
Yn}∞n=1 which is (PY |X(y|x),L)-smooth and minimizes the
subset mutual information IL,L̄(Q∗X , PY |X). Since the original
subset L = {Ln ⊆ Xn}∞n=1 is considered to be smooth,
the (PY |X(y|x),L)-smoothness condition essentially requires
the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 to preserve the
structure of L under the stochastic transformation PY |X(y|x).
On the other hand, since we aim at minimizing the sub-
set mutual information IL,L̄(Q∗X , PY |X) as defined in (41),
we require the auxiliary subset L̄ to be large enough to
prevent an empty intersection L̄n ∩ Tn[PY |X |xn]δn for all
xn ∈ TnL [Q∗X ]δn and therefore an infinite conditional subset
entropy HL̄|L(PY |X |Q∗X), but also small enough to achieve
a small intersection size

∣∣Tn[Q∗Y ]δn ∩ L̄n
∣∣ and thus a small

subset entropy HL̄(Q∗Y ). Hence, the optimal auxiliary sub-
set L̄ = {L̄n ⊆ Yn}∞n=1 should be a good image of the
original subset L = {Ln ⊆ Xn}∞n=1 in terms of the scaling of
the size of L under the stochastic transformation PY |X(y|x).
This interpretation is schematically depicted in Figure 2.

An immediate but possibly suboptimal selection for the
auxiliary subset L̄ is L̄n = Yn for all n. In this case, the subset
mutual information reduces to the average mutual information,
which readily gives the following achievable rate-distortion
result.

Corollary 2. For a discrete memoryless source P (x), the rate-
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distortion function for any smooth subset L = {Ln ⊆ Xn}∞n=1

satisfies

RL(D) ≤ max
Q∗X∈Q∗X

R(Q∗X , D), (44)

where Q∗X is the set of all subset-typical distributions as
defined in (33), and R(Q∗X , D) is the standard rate-distortion
function (2) for distribution Q∗X(x).

For the special case of symmetric subsets, the subset L fully
intersects the subset-typical distributions Q∗X(x), therefore the
role of subset structure vanishes and a standard rate-distortion
code for this distribution is sufficient for the lossy compression
of the subset. By stating a proof of converse, we show that
the achievable rate-distortion in Corollary 2 is optimal for the
case of smooth symmetric subsets for which Q∗X is unique.
Hence, we find the following simpler characterization for such
subsets.

Theorem 4. Consider a discrete memoryless source P (x) and
any smooth symmetric subset L = {Ln ⊆ Xn}∞n=1 as in
Definition 5 for which the solution to

Q∗X = arg min
Q:L∩T [Q]6=∅

D(Q‖P ) (45)

is unique. Then, the rate-distortion function for the subset L
is

RL(D) = R(Q∗X , D), (46)

where R(Q∗X , D) is the standard rate-distortion function (2)
for distribution Q∗X(x).

Proof. Proof is provided in Section V-C3.

As a sanity check, we can again observe that for the
standard case of Ln = Xn, the subset-typical distribution
is uniquely given by Q∗X ≡ P . Therefore, the specific
characterization (46) and in turn the more general bound (42)
on the subset rate-distortion formula reduce to the standard
rate-distortion function (2). It is worth mentioning that, one
could also arrive at the same result via Theorem 1 for likely
subsets, since for this case PXn [Xn ∈ Ln] = 1 for all n.

C. Proofs for Smooth Subsets

In the remainder of this section, we state the proof of our
compression results for smooth subsets. We provide the proofs
for achievability and strong converse of our lossless result,
Theorem 2, in Subsection V-C1; achievability of our lossy
result, Theorem 3, in Subsection V-C2; and strong converse
of the lossy result for smooth symmetric subsets, Theorem 4,
in Subsection V-C3.

Before starting with the proofs, we recall the notion of type
classes used frequently herein.

Definition 10. [29] The type of a sequence xn is the empirical
distribution P̂xn(x) defined as

P̂xn(x) :=
1

n
N(x;xn), ∀x ∈ X . (47)

Accordingly, the set of all sequences in Xn with type P̂ is
denoted by Tn(P̂ ) and called the type class of P̂ .

One recalls from the method of types that, the number of the
distinct types in Xn is only polynomial in n and does not
exceed (n + 1)|X |, a result referred to as the Type Counting
Lemma [29]. In the following, we frequently use the notations

TnL (P̂ ) := Ln ∩ Tn(P̂ ), TnL [Q]δn := Ln ∩ Tn[Q]δn , (48)

for the intersection of subset Ln ⊆ Xn with type class Tn(P̂ )
and typical set Tn[Q]δn , respectively.

1) Proof of the Lossless Result: In this part, we provide
the proof of Theorem 2 on lossless compression of smooth
subsets. The strong converse proof is inspired by [29, Pr. 2.6],
while the achievability proof readily builds upon the following
lemma, which is related to Sanov’s theorem [29, Pr. 2.12] and
summarizes the properties of typical sequences intersecting a
subset of the source.

Lemma 1. Consider a discrete memoryless source P (x),
a subset L = {Ln ⊆ Xn}∞n=1, and a distribution Q(x)
intersecting the subset, L ∩ T [Q] 6= ∅. If the subset entropy
HL(Q) exists, then there exists some εn → 0 as n→∞ such
that

2−n[gP (Q)+εn] ≤ PXn [Xn ∈ TnL [Q]δn ] ≤ 2−n[gP (Q)−εn],
(49)

where function gP (Q) is defined in (34). Moreover, if L is a
smooth subset, then

2
−n

[
min

Q:L∩T [Q]6=∅
gP (Q)+εn

]

≤ PXn [Xn ∈ Ln] ≤ (n+ 1)|X |2
−n

[
min

Q:L∩T [Q]6=∅
gP (Q)−εn

]
.

(50)

Proof. Proof is provided in Appendix B.

We are now ready to prove Theorem 2, which is inspired
by [29, Th. 2.15 and Pr. 2.6].

Proof. (of Theorem 2) To prove the achievability side, we
consider the following code for the subset L = {Ln}∞n=1.
Fix an arbitrary ε > 0. The encoder indexes all sequences xn

belonging to the set An defined as

An :=
⋃

P̂ :n-type,P̂∈Ω(3ε)

TnL (P̂ ), (51)

where

Ω(ε):=

{
Q :L ∩ T [Q] 6= ∅, gP (Q)< min

Q:L∩T [Q]6=∅
gP (Q)+ε

}
.

(52)

All other sequences in (Ln −An) lead to an error. Note that,
the use of min for gP (Q) in the definition (52) is justified
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by the continuity of the subset entropy HL(Q) and thus the
function gP (Q). We can write

Pr[Xn ∈ (Acn ∩ Ln)]

=
∑

P̂ :n-type,P̂ /∈Ω(3ε)

PXn [Xn ∈ TnL (P̂ )] (53)

≤ (n+ 1)|X | max
P̂ :n-type

P̂ /∈Ω(3ε),TnL (P̂ )6=∅

PXn [Xn ∈ TnL (P̂ )] (54)

≤ (n+ 1)|X | max
Q/∈Ω(3ε),L∩T [Q]6=∅

PXn [Xn ∈ TnL [Q]δn ]. (55)

Combining (55) and Lemma 1, the error probability is bounded
as

Pr[EL] = Pr[Xn /∈ An|Xn ∈ Ln] (56)

=
Pr[Xn ∈ (Acn ∩ Ln)]

Pr[Xn ∈ Ln]
(57)

≤(n+ 1)|X |2
−n

[
min

Q/∈Ω(3ε),L∩T [Q]6=∅
gP (Q)−εn

]

2
−n

[
min

Q:L∩T [Q]6=∅
gP (Q)+εn

] . (58)

Therefore, from definition (52) of the set Ω(ε), we have proved
the existence of a source code for subset L with vanishing
error probability, Pr[EL] ≤ (n+ 1)|X |2−nε, and achieving the
compression rate

1

n
log |An| =

1

n
log

∑
P̂ :n-type,P̂∈Ω(3ε)

|TnL (P̂ )| (59)

≤ 1

n
log

(
(n+ 1)|X | max

P̂ :n-type,P̂∈Ω(3ε)
|TnL (P̂ )|

)
(60)

≤ 1

n
log

(
(n+ 1)|X | max

Q∈Ω(3ε)
|TnL [Q]δn |

)
(61)

≤ max
Q∈Ω(3ε)

HL(Q) + ξn +
|X | log(n+ 1)

n
, (62)

where (60) follows from the Type Counting Lemma, and (62)
from (30) and the continuity of the subset entropy HL(Q).
This completes the achievability proof for Theorem 2 since
n→∞ and the choice of ε > 0 is arbitrary.

In the following, we prove a strong converse for Theorem 2,
that is, we prove any arbitrary lossless code for the subset L
with rate R < R∗L has an error probability approaching one.
To this end, first let An := {xn(j)}2nRj=1 be the set of encoded
sequences which will be correctly decoded, and note that the
Type Counting Lemma implies

Pr[Xn ∈ (An ∩ Ln)]

=
∑

P̂ :n-type

PXn [Xn ∈ (An ∩ TnL (P̂ ))] (63)

≤ (n+ 1)|X | max
P̂ :n-type
TnL (P̂ ) 6=∅

PXn [Xn ∈ (An ∩ TnL (P̂ ))] (64)

≤ (n+ 1)|X | max
Q:L∩T [Q]6=∅

PXn [Xn ∈ (An ∩ TnL [Q]δn)]. (65)

However, we have for any distribution Q(x) that

PXn [Xn ∈ (An ∩ TnL [Q]δn)]

≤ |An ∩ TnL [Q]δn | max
xn∈Tn[Q]δn

PXn(xn) (66)

≤ min{2nR, 2n[HL(Q)+ξn]} × 2−n[H(Q)+D(Q‖P )−ξ′n] (67)

= 2−n[gP (Q)+|HL(Q)−R+ξn|+−εn], (68)

where (67) follows form (30) and that PXn(xn) =

2−n[H(P̂xn )+D(P̂xn‖P )] with some ξn → 0 and ξ′n → 0 as
n → ∞ [1], [29], and (68) follows from the definition of
gP (Q) and εn := ξn+ξ′n. Combining (65), (68) and Lemma 1,
the correct decoding probability is bounded as

1− Pr[EL]

= Pr[Xn ∈ An|Xn ∈ Ln] (69)

=
PXn [Xn ∈ (An ∩ Ln)]

PXn [Xn ∈ Ln]
(70)

≤ (n+ 1)|X |2
−n

[
min

Q:L∩T [Q]6=∅
gP (Q)+|HL(Q)−R+ξn|+−εn

]

2
−n

[
min

Q:L∩T [Q]6=∅
gP (Q)+εn

] .

(71)

Inspecting the lower bound (71) on error probability suggests
that, if R < HL(Q∗X)−2εn for any distribution Q∗X satisfying
gP (Q∗X) ≤ min

Q:L∩T [Q]6=∅
gP (Q)+3εn, then the error probability

is bounded at least as Pr[EL] ≥ 1 − (n + 1)|X |2−nξn . Since
εn and (n + 1)|X |2−nξn are both vanishing3 as n → ∞,
this proves the strong converse and completes the proof of
Theorem 2.

2) Proof of the Lossy Result: In this part, we provide
the proof of Theorem 3 on lossy compression of smooth
subsets. The proof of this achievability result builds upon the
following lemma, which is an analogue of the Type Covering
Lemma [29, Lemma 9.1] and states the rate sufficient for the
lossy compression of the intersection of the subset of interest
with a single type class.

Lemma 2. (The Subset-Type Covering Lemma) For any
type P̂X(x) of sequences in Xn, any smooth subset L =
{Ln ⊆ Xn}∞n=1, any distortion measure d(x, y), any target
distortion level D ≥ 0, and any arbitrary constant δ, there
exist a set B(P̂X ,L) ⊆ Yn that satisfies

d(xn, B(P̂X ,L)) := min
yn∈B(P̂X ,L)

d(xn, yn) ≤ D,

∀xn ∈ TnL (P̂X), (72)

for sufficiently large n, and whose size is bounded as

1

n
log |B(P̂X ,L)| ≤

inf
PY |X :E[d(X,Y )]≤D

inf
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X) + 3ξn,

(73)

3A sequence ξ̃n ≥ ξn can be found such that, as n→∞, not only ξ̃n → 0
but also nξ̃n → ∞ and furthermore n|X||Y| exp(−nξ̃n) → 0. Therefore,
we always assume that ξn satisfies the latter conditions.
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where ξn → 0 as n → ∞, and L̄ := {L̄n ⊆ Yn}∞n=1 is a
(P̂X , PY |X ,L)-smooth auxiliary subset, and IL,L̄(P̂X , PY |X)
is the subset mutual information, both as introduced in Defi-
nitions 7 and 8; and the expected distortion is calculated with
respect to the type distribution,

E[d(X,Y )] =
∑
x,y

P̂X(x)PY |X(y|x)d(x, y). (74)

Proof. Proof is provided in Appendix C.

We are now ready to prove Theorem 3 with elements similar
to the proof of error exponents for the classical rate-distortion
problem [29, Theorem 9.5] and our proof of the lossless subset
compression in Theorem 2.

Proof. (of Theorem 3) As in the achievability proof of The-
orem 2, we fix an arbitrary ε > 0 and consider the following
lossy code for the subset L = {Ln ⊆ Xn}∞n=1. Using
the Subset-Type Covering lemma above, we aim the lossy
compression of the following set of xn sequences.

An :=
⋃

P̂ :n-type,P̂∈Ω(3ε)

TnL (P̂ ), (75)

where

Ω(ε):=

{
Q :L ∩ T [Q] 6= ∅, gP (Q)< min

Q:L∩T [Q]6=∅
gP (Q)+ε

}
.

(76)

Our lossy source code consists of the following reconstructions
sequences:

B(L) :=
⋃

P̂X :n-type,P̂X∈Ω(3ε)

B(P̂X ,L), (77)

where B(P̂X ,L) is the cover set for TnL (P̂X) as defined in
the Subset-Type Covering lemma above, so it has the size

1

n
log |B(P̂X ,L)| ≤

inf
PY |X :E[d(X,Y )]≤D

inf
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X) + 3ξn,

(78)

and satisfies d(xn, B(P̂X ,L)) ≤ D for all sequences xn ∈
TnL (P̂X). Therefore, we get for all sequences xn ∈ An that

d(xn, B(L)) ≤ d(xn, B(P̂xn ,L)) ≤ D, (79)

where P̂xn denotes the type of the sequence xn. We can
therefore bound the excess-distortion probability as follows.

Pr[EL(D)] = Pr[d(Xn, Y n) > D|Xn ∈ Ln] (80)
≤ Pr[Xn /∈ An|Xn ∈ Ln] (81)

≤ (n+ 1)|X |2
−n

[
min

Q/∈Ω(3ε),L∩T [Q]6=∅
gP (Q)−εn

]

2
−n

[
min

Q:L∩T [Q]6=∅
gP (Q)+εn

]
≤ (n+ 1)|X |2−nε, (82)

where the last line follows from our calculations in the lossless
case; cf. (53)-(58). Hence, it only remains to determine the

compression rate. From the Subset-Type Covering Lemma
above and the Type Counting Lemma, we have

1

n
log |B(L)|

=
1

n
log

∑
P̂X :n-type,P̂X∈Ω(3ε)

|B(P̂X ,L)| (83)

≤ 1

n
log

(
(n+ 1)|X | max

P̂X :n-type,P̂X∈Ω(3ε)
|B(P̂X ,L)|

)
(84)

≤ max
P̂X :n-type,P̂X∈Ω(3ε)

inf
PY |X :E[d(X,Y )]≤D

inf
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X)

+ 3ξn +
|X | log(n+ 1)

n
(85)

≤ max
Q∈Ω(3ε)

inf
PY |X :E[d(X,Y )]≤D

inf
L̄:(PY |X ,L)-smooth

IL,L̄(Q,PY |X)

+ 5ξn, (86)

where the last line follows from the continuity of the subset
mutual information IL,L̄(Q,PY |X) for all distributions in a
neighborhood of the subset-typical distributions. Since n→∞
and the choice of ε > 0 is arbitrary, this completes the proof
of Theorem 3.

3) Proof of the Lossy Result for Symmetric Subsets: In this
part, we prove Theorem 4 on lossy compression of smooth
symmetric subsets. The achievability immediately follows
from Corollary 2. The converse is analogous to that for the
standard rate-distortion theorem [29, Theorem 7.3] and uses
the following two technical lemmas.

The first technical lemma is a generalized asymptotic
equipartition property (AEP) and an analogue of [29, Lm.
2.12] which asserts that essentially all of the probability mass
of a smooth subset, symmetric or not, is concentrated only in
the subset-typical sequences.

Lemma 3. Consider a discrete memoryless source P (x) and
a smooth subset L = {Ln ⊆ Xn}∞n=1 with the set of subset-
typical distributions Q∗X as defined in (33). Then, there exists
a sequence εn → 0 as n→∞ such that

Pr

Xn ∈
⋃

Q∗X∈Q∗X

TnL [Q∗X ]δn

∣∣∣∣∣Xn ∈ Ln

 ≥ 1− εn. (87)

Proof. Proof is provided in Appendix D.

The second technical lemma is an analogue of [29, Lm.
2.14] and states that, when constrained to only a smooth subset
of the source realizations, symmetric or not, any set with high
probability has a size essentially no smaller than the subset-
typical set.

Lemma 4. Consider a discrete memoryless source P (x) and
a smooth subset L = {Ln ⊆ Xn}∞n=1 for which the subset-
typical distribution Q∗X(x) per (33) is unique. Given 0 < η <
1, there exists a sequence εn → 0 as n → ∞ such that, if a
set A ⊆ Xn satisfies

Pr [Xn ∈ A | Xn ∈ Ln] ≥ η, (88)
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then
|A| ≥ 2n[HL(Q∗X)−εn]. (89)

Proof. Proof is provided in Appendix E.

We are now ready to prove the result for smooth symmetric
subsets.

Proof. (of Theorem 4) We only state the proof of (strong)
converse, since the achievability readily follows from Corol-
lary 2 as well as the fact that for smooth symmetric subsets
the function gP (Q) defined in (34) reduces to D(Q‖P ).

Consider any arbitrary lossy code for subset L that uses M
codewords and satisfies

Pr [d (Xn, φ(f(Xn))) ≤ D | Xn ∈ Ln] ≥ 1− ε, (90)

for a potentially non-vanishing 0 < ε < 1. Define the set A
as follows:

A := {xn ∈ TnL [Q∗X ]δn : d(xn, φ(f(xn))) ≤ D} . (91)

From Lemma 3, we have

Pr [Xn ∈ TnL [Q∗X ]δn | Xn ∈ Ln] ≥ 1− τn, (92)

for some τn → 0 as n → ∞. Then, the simple inequality
Pr[A ∩B] ≥ Pr[A]− Pr[Bc] implies

Pr [Xn ∈ A | Xn ∈ Ln] ≥ 1− ε− τn, (93)

which, on account of Lemma 4 and since HL(QX) = H(QX)
for all distributions QX(x) intersecting the subset L, yields

|A| ≥ 2n[H(Q∗X)−εn]. (94)

On the other hand, define the set of reconstruction codewords
corresponding to the set A as

C := {yn ∈ Yn : yn = φ(f(xn)) for some xn ∈ A} , (95)

and accordingly decompose the set A as follows.

A :=
⋃
yn∈C

A(yn), (96)

where for any fixed yn ∈ C we have defined

A(yn) := {xn ∈ A : φ(f(xn)) = yn} . (97)

We can further decompose all xn sequences belonging to
A(yn) according to their joint type P̂XY (x, y) with yn, so
that

A(yn) =
⋃

P̂XY (x,y): n-joint type
E[d(X̂,Ŷ )]≤D

|P̂X(x)−Q∗X(x)|≤δn

(
A(yn) ∩ TnL (P̂X|Y |yn)

)
,

(98)
where the constraints hold (i) since d(xn, φ(f(xn))) ≤ D for
all xn ∈ A implies E[d(X̂, Ŷ )] ≤ D, and (ii) since xn ∈ A ⊆
Tn[Q∗X ]δn implies |P̂X(x) − Q∗X(x)| ≤ δn for all x ∈ X .
Recalling that the size of the conditional type Tn(P̂X|Y |yn)

for all yn ∈ Tn(P̂Y ) satisfies∣∣∣Tn(P̂X|Y |yn)
∣∣∣ ≤ 2nH(P̂X|Y |P̂Y ), (99)

we get

|A| ≤
∑
yn∈C

|A(yn)|

≤ |C| · (n+ 1)|X ||Y| max
P̂XY (x,y): n-joint type

E[d(X̂,Ŷ )]≤D
|P̂X(x)−Q∗X(x)|≤δn

2nH(P̂X|Y |P̂Y ).

(100)

Combining (94) and (100), we have proved that the size of
any lossy code for the smooth symmetric subset L satisfies

M ≥ |C| ≥ (n+ 1)−|X||Y|

×exp

n min
P̂XY (x,y): n-joint type

E[d(X̂,Ŷ )]≤D
|P̂X(x)−Q∗X(x)|≤δn

[
H(Q∗X)−H(P̂X|Y |P̂Y )−εn

]
.

(101)

Due to the continuity of the conditional Shannon entropy, we
have proved that

RL(D) ≥ min
PY |X :E[d(X∗,Y ∗)]≤D

I(Q∗X , PY |X)− 3εn. (102)

This concludes the proof of the strong converse and that of
Theorem 4.

VI. FLUCTUATING SUBSETS

In this section, we consider fluctuating subsets which are
constructed by superimposing several subsets so that the
resulting subset takes the structure of each component for
certain time indices. In particular, we focus on subsets that
are not likely or smooth, but are fluctuating among a finite
number of such components. In such cases, one should code
for the worst subset component as described below. Before
stating our result, let us formally define these subsets.

Definition 11. Consider a finite collection of subsets Lj =
{Lj,n}∞n=1 with 1 ≤ j ≤ J as well as a finite collection of
infinite index subsequences nj = {nj,k}∞k=1 with 1 ≤ j ≤ J
such that for each n = 1, 2, · · · we have n = nj,k for a unique
pair (j, k). We say L = {Ln}∞n=1 is an (Lj , nj)Jj=1-fluctuating
subset when Ln = Lj,n if n ∈ {nj,k}∞k=1.

We are now ready to state our result for fluctuating subsets.

Theorem 5. Consider a discrete memoryless source P (x) and
an (Lj , nj)Jj=1-fluctuating subset. Then, the optimal lossless
compression rate and rate-distortion function for the subset L
respectively satisfy:

R∗L = max
1≤j≤J

R∗Lj , (103)

RL(D) = max
1≤j≤J

RLj (D). (104)

Proof. We state only the proof for the lossless case; that for the
lossy case is very similar and we skip the details for brevity.
(Achievability) Fix an arbitrary ε > 0. For each 1 ≤ j ≤ J , let
{(mj,n, x̂

n
j )}∞n=1 be the optimal encoder and decoder sequence

for lossless compression of the subset Lj , achieving a rate
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R∗Lj + ε with vanishing error probability Pr[X̂n
j 6= Xn|Xn ∈

Lj,n] → 0 as n → ∞. We consider the following code for
the fluctuating subset: let mn ≡ mj,n and x̂n ≡ x̂nj if n ∈
{nj,k}∞k=1. Then, we have

lim sup
n→∞

Pr[X̂n 6= Xn|Xn ∈ Ln]

= max
1≤j≤J

lim sup
n→∞

Pr[X̂n
j 6= Xn|Xn ∈ Lj,n] = 0. (105)

The rate of this code is max
1≤j≤J

R∗Lj + ε. Since ε is arbitrary,

this completes the achievability proof in the lossless case.
(Converse) Assume R < max

1≤j≤J
R∗Lj , then at least one 1 ≤

j̄ ≤ J exists such that R < R∗Lj̄ . By the definition of R∗Lj̄ ,
we have lim supn→∞ Pr[X̂n

j̄
6= Xn|Xn ∈ Lj̄,n] > 0 for any

arbitrary lossless code for the subset Lj̄ with rate R. Hence,

lim sup
n→∞

Pr[X̂n 6= Xn|Xn ∈ Ln]

≥ lim sup
n→∞

Pr[X̂n
j̄ 6= Xn|Xn ∈ Lj̄,n] > 0, (106)

which proves the converse for the fluctuating subset L for the
lossless case.

If all components of a fluctuating subset are smooth, The-
orem 5 readily specializes as follows, using Theorem 2 and
Corollary 2.

Corollary 3. Consider a discrete memoryless source P (x);
an (Lj , nj)Jj=1-fluctuating subset whose components are all
smooth with subset typical distributions given by

Q∗j = arg min
Q:Lj∩T [Q]6=∅

[H(Q)−HLj (Q)+D(Q‖P )]. (107)

Then, the optimal lossless compression rate for the fluctuating
subset L is

R∗L = max
1≤j≤J

max
Q∗j∈Q∗j

HLj (Q
∗
j ), (108)

and the rate-distortion function for the subset L satisfies

RL(D) ≤ max
1≤j≤J

max
Q∗j∈Q∗j

R(Q∗j , D), (109)

where R(Q∗j , D) is the standard rate-distortion function (2)
for distribution Q∗j (x).

VII. EXAMPLES

In this section, we present several examples to better
illustrate our models and results. In all of these examples,
we consider a binary DMS, X = {0, 1}, with a Bernoulli
distribution B(p) with parameter 0 ≤ p ≤ 1/2. The
fundamental limit of lossless compression is given by the
source entropy, which is R∗ = Hb(p) for this source. The
lossy compression is considered with respect to the Hamming
distance. In particular, the rate-distortion function of the source
is R(D) = Hb(p) −Hb(D) if 0 ≤ D ≤ p and R(D) = 0 if
D > p [1]. In this section, we frequently use some notations:
the Hamming weight wH(xn) of a binary sequence xn, the
binary convolution operation p ∗ q := pq̄ + p̄q, the binary
entropy function Hb(p) := −p log p− (1− p) log(1− p), and
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Fig. 3. Comparison of the subset rate-distortion function of Example 1,
binary sequences with normalized Hamming weight q, with the rate-distortion
function of the source for a Bernoulli DMS with parameter p = 0.11.

the binary divergence function Db(q‖p) := q log(q/p) + (1−
q) log ((1− q)/(1− p)).

We first focus on two examples with symmetric subsets.

Example 1. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : wH(xn) = bnqc}, 0 ≤ q ≤ 1. (110)

This subset is smooth and symmetric, and B(q) is the only
distribution that intersects the subset L. One can verify the
latter by computing HL(B(q)) as defined in Definition 3 based
on the normalized log-size of the intersection of the subset Ln
with the typical set corresponding to B(q). The symmetric
property is trivial based on the weight constraint. Finally, the
smoothness property comes from the fact that the function
gP (Q) = Db(q‖p) introduced in (34) is defined only at one
q point, so is trivially continuous in q. Therefore, Q∗X = B(q).
We obtain from Corollary 1 for the lossless compression that

R∗L = H(Q∗X) = Hb(q), (111)

and from Theorem 4 for the lossy compression that

RL(D) = R(Q∗X , D)

=

{
Hb(q)−Hb(D), 0 ≤ D ≤ min{q, q̄}
0, D > min{q, q̄},

(112)

where the latter follows from the calculations for the standard
rate-distortion function of the binary source [1], [2]. It is
evident that the optimal lossless compression rate (111) for this
subset can be below or above the source entropy. Similarly,
the subset rate-distortion function (112) in this example can
be below or above the rate-distortion function of the source;
cf., Remark 5. We illustrate the latter comparison in Figure 3.
The subset in this example, in the limit of large n, converges
to an i.i.d. probability distribution, therefore falls in the
framework of CoLT as discussed in [1] and [18]. Accordingly,
a CoLT-based analysis, as discussed in Section III-B, can be
also invoked to derive similar results for this example.
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Example 2. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : 0 ≤ wH(xn) ≤ nq}, 0 ≤ q ≤ 1.
(113)

For the case q ≥ p, the subset is likely so Theorem 1 implies
that R∗L = R∗ = Hb(p), and RL(D) = R(D) = Hb(p) −
Hb(D) for 0 ≤ D ≤ p and RL(D) = R(D) = 0 for D > p.
This subset is again smooth and symmetric. Moreover, B(q̄)
with 0 ≤ q̄ ≤ q are the only distributions that intersect the
subset L and Hb(q̄) is continuous over the interval 0 ≤ q̄ ≤ q.
One can verify these properties similar to Example 1, with the
only exception that smoothness now follows from the function
gP (Q) = Db(q̄‖p) being continuous in q̄ over the interval
0 ≤ q̄ ≤ q. Therefore, the subset-typical distribution is given
by Q∗X = B(q∗), where

q∗ = arg min
q̄:0≤q̄≤q

Db(q̄‖p) = min{q, p}. (114)

Hence, we can use Corollary 1 to obtain for the optimal
lossless compression rate that

R∗L = H(Q∗X) = Hb (min{q, p}) . (115)

Analogously, we can use Theorem 4 to obtain for the subset
rate-distortion that

RL(D) = R(Q∗X , D)

=

{
Hb (min{q, p})−Hb(D), 0 ≤ D ≤ min{q, p}
0, D > min{q, p}.

(116)

It is evident that the optimal lossless compression rate for this
subset never exceeds the source entropy. Similarly, the rate-
distortion satisfies RL(D) ≤ R(D) for all distortion values D.
We illustrate the latter comparison in Figure 4. As both the
formulas and the figures suggest, if q < p, a strictly positive
rate gain can be achieved in both the lossless and lossy case
by focusing only on the subset.
The subset in this example, in the limit of large n, converges
to a convex set of i.i.d. probability distributions, therefore
falls in the framework of CoLT as discussed in [1] and
[18]. Accordingly, a CoLT-based analysis, as discussed in
Section III-B, can be also invoked to derive similar results
for this example.

In the following, we consider two smooth but non-
symmetric examples to which Corollary 1 and Theorem 4
do not apply and instead require Theorems 2 and 3 and
Corollary 2.

Example 3. Consider L = {Ln}∞n=1 with

Ln :={xn ∈ Xn:wH(xn)=bnqc, xn has no consecutive 1s},
(117)

where 0 ≤ q ≤ 1/2, since clearly Ln = ∅ with q > 1/2.
This subset is not likely since it has exponentially small
probability. However, it is smooth, and the only distribution
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Fig. 4. Comparison of the subset rate-distortion function of Example 2, binary
sequences with normalized Hamming weight not exceeding q, with the rate-
distortion function of the source for a Bernoulli DMS with parameter p =
0.11.

that intersects the subset L is B(q) with a subset entropy given
by

HL(B(q)) = lim
n→∞

1

n
log

(
n− bnqc+ 1

bnqc

)
= (1− q)Hb

(
q

1− q

)
. (118)

Therefore, we obtain from Theorem 2 for the lossless com-
pression rate of this subset that

R∗L = HL(B(q)) = (1− q)Hb

(
q

1− q

)
. (119)

A plot of this compression rate is illustrated in Figure 5, which
shows the subset compression rate (119) can be below or above
the source entropy.
For the lossy compression, we can use Corollary 2 to obtain
the following achievable rate-distortion pair:

R
(1)
L (D) =

{
Hb(q)−Hb(D), 0 ≤ D ≤ q,
0, D > q.

(120)

We can also use Theorem 3 to obtain another achievable rate-
distortion pair. Let 0 ≤ D ≤ q, and consider the following
conditional distribution:

PY |X(0|0) = 1, PY |X(0|1) = D/q, (121)

so that Q∗Y = B(q − D). Note that, PY |X(1|0) = 0 under
this conditional distribution, thus no 0 in xn will flip to a 1
in yn, hence the no-consecutive-1 structure will be preserved
by the stochastic transformation from x to y. Also, note that
E[d(X∗, Y ∗)] = Pr[X∗ 6= Y ∗] = D. Now, consider the
auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 with

L̄n :={yn ∈ Yn : yn has no consecutive 1s}. (122)
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Fig. 5. Comparison of the optimal lossless subset-compression rate of
Example 3, binary sequences with normalized Hamming weight q and with no
consecutive 1s, with the source entropy for a Bernoulli DMS with parameter
p = 0.11.

In this case, we get

HL̄(Q∗Y ) = lim
n→∞

1

n
log

(
n− n(q −D) + 1

n(q −D)

)
= (1− q +D)Hb

(
q −D

1− q +D

)
(123)

and

HL̄|L(PY |X |Q∗X) = lim
n→∞

1

n
log

(
nq

nD

)
= qHb

(
D

q

)
,

(124)

so we obtain the following achievable rate-distortion pair:

R
(2)
L (D)=

{
(1−q+D)Hb

(
q−D

1−q+D

)
−qHb

(
D
q

)
, 0≤D≤q,

0, D > q.

(125)

Hence, we arrive at the following result:

RL(D) ≤ min{R(1)
L (D), R

(2)
L (D)}. (126)

Note that, (126) is not a convex function in D, and it is
unclear whether time-sharing can be applied to this subset to
convexify the result, since a portion of a sequence belonging
to this subset may not retain the same weight condition as in
the original sequence; see Remark 2. In any case, even the
achievable rate-distortion (126) already shows gains over the
rate-distortion function of the original source for some cases,
as shown in Figure 6.
The subset in this example, in the limit of large n, converges to
a Markov chain, therefore falls in the framework of CoLT for
Markov processes as discussed in [40] and [36]. In principle, a
CoLT-based analysis with appropriate extensions, as discussed
in Section III-B, can be also invoked to derive similar results
for this example.
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Fig. 6. Comparison of the subset rate-distortion function of Example 3, binary
sequences with normalized Hamming weight q and with no consecutive 1s,
with the rate-distortion function of the source for a Bernoulli DMS with
parameter p = 0.11.

Example 4. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : xn has no consecutive 1s}. (127)

Again, Theorem 1 does not apply since the subset is not likely.
In order to employ Theorems 2 and 3, we first note that all
distributions B(q) with 0 ≤ q ≤ 1/2 intersect the subset L,
and each has a subset entropy given by (118). Therefore, this
subset is smooth, and its subset-typical distribution is Q∗X =
B(q∗) where

q∗=arg min
0≤q≤1/2

[
Hb(q)−(1− q)Hb

(
q

1− q

)
+Db(q‖p)

]
.

(128)

Hence, we obtain from Theorem 2 for the optimal lossless
compression rate of this subset that

R∗L = (1− q∗)Hb

(
q∗

1− q∗

)
. (129)

A plot of this subset-compression rate is illustrated in Figure 7,
which shows the optimal lossless compression rate (129) of
this subset is always below the source entropy.
For the lossy compression of this subset, we can use Corol-
lary 2 to find an achievable rate-distortion pair as follows.

R
(1)
L (D) =

{
Hb(q

∗)−Hb(D), 0 ≤ D ≤ q∗

0, D > q∗.
(130)

We can also build on Theorem 3 to obtain another achievable
rate-distortion pair. Let 0 ≤ D ≤ q∗, and consider the
following conditional distribution:

PY |X(0|0) = 1, PY |X(0|1) = D/q∗, (131)

so that Q∗Y = B(q∗ − D). Note that, PY |X(1|0) = 0 under
this conditional distribution, thus no 0 in xn will flip to a 1
in yn, hence the no-consecutive-1 structure will be preserved.
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Also, note that E[d(X∗, Y ∗)] = Pr[X∗ 6= Y ∗] = D. Now,
consider the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 with

L̄n :={yn ∈ Yn : yn has no consecutive 1s}. (132)

In this case, similar to (123) and (124), we get

HL̄(Q∗Y ) = (1− q∗ +D)Hb

(
q∗ −D

1− q∗ +D

)
, (133)

HL̄|L(PY |X |Q∗X) = q∗Hb

(
D

q∗

)
, (134)

and obtain the following achievable rate-distortion pair:

R
(2)
L (D)=

{
(1−q∗+D)Hb

(
q∗−D

1−q∗+D

)
−q∗Hb

(
D
q∗

)
, 0 ≤D≤ q∗

0, D > q∗.

(135)

Note that, unlike Example 3, we can use time-sharing for this
subset, since any portion of a sequence belonging to this subset
will also have no consecutive ones. Hence, we arrive at the
following result:

RL(D) ≤ l.c.e.
(

min{R(1)
L (D), R

(2)
L (D)}

)
, (136)

where l.c.e. stands for the lower convex envelope operation.
This immediately implies that RL(D) = 0 for D > q∗, but
since no converse for our Theorem 3 is currently known, we
cannot guarantee that (136) is optimal for 0 ≤ D ≤ q∗.
However, Figure 8 shows that even the achievable subset
rate-distortion in (136) can sometimes outperform the rate-
distortion function of the original source and already provide
lossy compression gains.
The subset in this example, in the limit of large n, converges
to a set of Markov chains, therefore falls in the framework of
CoLT for Markov processes as discussed in [40] and [36]. In
principle, a CoLT-based analysis with appropriate extensions,
as discussed in Section III-B, can be also invoked to derive
similar results for this example.

Finally, we present a fluctuating example for which The-
orems 2 and 3 are not directly applicable. However, the
characterizations of Theorem 5 and Corollary 3 facilitate the
analysis.

Example 5. Consider a subset L1 = {L1,n}∞n=1 with

L1,n := {xn ∈ Xn : nq1 ≤ wH(xn) ≤ nq2,

xn has no consecutive 1s}, (137)

for some 0 ≤ q1 ≤ q2 ≤ 1/2, and another subset L2 =
{L2,n}∞n=1 with

L2,n := {xn ∈ Xn : nw1 ≤ wH(xn) ≤ nw2,

xn has 1s only in even positions}, (138)

for some 0 ≤ w1 ≤ w2 ≤ 1/2. Now, consider the fluctuating
subset L = {Ln}∞n=1 with

Ln :=

{
L1,n if n odd
L2,n if n even

. (139)
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Fig. 7. Comparison of the optimal lossless subset-compression rate of
Example 4, binary sequences with no consecutive 1s, with the source entropy
for a Bernoulli DMS with parameter p.
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Fig. 8. Comparison of the achievable rate-distortion pair (136) and its
components for the subset in Example 4, binary sequences with no consecutive
1s, with the rate-distortion function of the source for a Bernoulli DMS with
parameter p = 0.11.

Note that, Theorem 1 does not apply since the fluctuating
subset L is not likely, and Theorems 2 and 3 do not apply
since the subset is not smooth. However, both components are
smooth subsets. In particular, the first subset component L1 is
smooth and intersects all distributions B(q) with q1 ≤ q ≤ q2,
so that its subset-typical distribution is Q∗(1)

X = B(q∗) where

q∗=arg min
q1≤q≤q2

[
Hb(q)−(1− q)Hb

(
q

1− q

)
+Db(q‖p)

]
.

(140)

An analysis similar to those in Examples 3 and 4 implies for
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the lossless compression that

R∗L1
= (1− q∗)Hb

(
q∗

1− q∗

)
, (141)

and for lossy compression that

RL1(D) ≤ min{R(1)
L1

(D), R
(2)
L1

(D)}, (142)

where R
(1)
L1

(D) and R
(2)
L2

(D) are as in (130) and (135),
respectively, with q∗ as given in (140). Note that, (142) is
not a convex function in D, and it is unclear whether a time-
sharing argument can be applied to this subset to convexify the
result, since a portion of a sequence belonging to this subset
may not retain the same weight structure as that in the original
sequence.

The second subset component L2 is also smooth and
intersects all distributions B(w) with w1 ≤ w ≤ w2 with
a subset entropy given by

HL(B(w)) = lim
n→∞

1

n
log

(
bn/2c
bnwc

)
=

1

2
Hb(2w), (143)

so that Q∗(2)
X = B(w∗) where

w∗= arg min
w1≤w≤w2

[
Hb(w)− 1

2
Hb(2w) +Db(w‖p)

]
. (144)

We can then use Theorem 2 to find for the optimal lossless
compression rate of this subset that

R∗L2
=

1

2
Hb(2w

∗), (145)

and apply Corollary 2 to get for the lossy compression that

RL2
(D) ≤

{
Hb(w

∗)−Hb(D), 0 ≤ D ≤ w∗

0, D > w∗.
(146)

Substituting (141) and (145) in Theorem 5 yields for the
lossless compression of the fluctuating that

R∗L = max
{
R∗L1

, R∗L2

}
= max

{
(1− q∗)Hb

(
q∗

1− q∗

)
,

1

2
Hb(2w

∗)

}
. (147)

To show the different aspects of this scenario, we make two
comparisons for the lossless case. In one case, we fix the
source distribution to p = 0.08 and vary the subset parameters
as q1 = 0, q2 = 0.4w and w1 = w2 = w where 0 ≤ w ≤ 1/2.
The lossless compression rate for this fluctuating subset is
shown in Figure 9. The compression rate is observed to be
dominated by that of the second subset for smaller values
of w and by that of the first subset for larger values of w.
One also notes that the optimal subset-compression rate in this
case can be below or above the source entropy Hb(p). In the
second case, we fix the subset parameters to q1 = 0, q2 = 0.09
and w1 = 0, w2 = 0.18 and vary the source distribution as
0 ≤ p ≤ 1/2. The lossless compression rate for this fluctuating
subset is shown in Figure 10. In this case, the compression
rate of the fluctuating subset is observed to be dominated by
that of the first subset for smaller values of p and by that of
the second subset for larger values of p. In either situations,
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Fig. 9. The optimal lossless compression rate of the fluctuating subset of
Example 5 for a binary DMS with fixed parameter p = 0.08 and varying
subset parameters q1 = 0, q2 = 0.4w, w1 = w2 = w where 0 ≤ w ≤ 1/2.
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Fig. 10. The optimal lossless compression rate of the fluctuating subset of
Example 5 for fixed subset parameters q1 = 0, q2 = 0.09 and w1 = 0,
w2 = 0.18 and a binary DMS with varying parameter 0 ≤ p ≤ 1/2.

however, the subset-compression rate always remains below
the source entropy.

Analogously, substituting (142) and (146) in Theorem 5
yields for lossy compression of the fluctuating subset that

RL(D) ≤ max
{

min{R(1)
L1

(D), R
(2)
L1

(D)}, RL2(D)
}
. (148)

This readily implies RL(D) = 0 for D > max{q∗, w∗}, but
the optimality of (148) for 0 ≤ D ≤ max{q∗, w∗} is unknown
in the absence of a converse for our Theorem 3. For instance,
the compression rate currently achieved by (148) for the zero-
distortion case, D = 0, is

max

{
(1− q∗)Hb

(
q∗

1− q∗

)
, Hb(w

∗)

}
, (149)

which is strictly worse than the anticipated result from the
lossless analysis (147). However, Figure 12 shows that even
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Fig. 11. The achievable rate-distortion pair via (142) and (146) for the
fluctuating subset of Example 5 with parameters q1 = 0, q2 = 0.4w,
w1 = w2 = w = 0.05 and a binary DMS with parameter p = 0.08.

the achievable subset rate-distortion in (148) can sometimes
outperform the rate-distortion function of the original source
and already provide lossy compression gains. Furthermore,
depending on the parameter selection and the distortion value,
the performance of the fluctuating subset may be dominated
by that of one subset component or the other.
The subset components in this example, in the limit of
large n, are intersections of a convex set of i.i.d. probability
distributions with a Markov chain. Therefore, in principle, one
might be able to invoke certain methods (e.g., Bayes’ rule)
to apply the framework of CoLT for i.i.d. distributions as in
[1] and [18] and that for Markov processes as in [40] and
[36], after appropriate extensions as discussed in Section III-B.
However, the fluctuating source property is a different aspect,
which apparently needs new forms of CoLT (with the quasi-
independence feature).

VIII. GENERALIZATION TO SUBSETS WITH WEIGHTED
PRIORITIES

In this section, we describe a generalization of our frame-
work to subsets with weighted priorities. Our main framework,
as explained in Section II, can be thought of as a 0-1 priority
setting, in which the sequences xn belonging to the subset
Ln are the only focus and have a weight of 1, and all
other sequences xn outside Ln are not important at all and
have a weight of 0. A more general setting can be one in
which different weights between 0 and 1 can be assigned to
sequences, each capturing the relative importance or priorities
of the sequences. One can consider this as a source coding dual
of the unequal error protection problem in channel coding [30],
[31].

In particular, consider the subset L = {Ln ⊆ Xn}nn=1 and
a fixed partition of it such that

Ln =
K⋃
k=1

Sn,k , (150)
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Fig. 12. The achievable rate-distortion pair via (142) and (146) for the
fluctuating subset of Example 5 with parameters q1 = 0, q2 = 0.09 and
w1 = 0, w2 = 0.18 and a binary DMS with parameter p = 0.08.

with Sn,k ∩ Sn,k′ = ∅ for all n = 1, 2, · · · and any k 6= k′ ∈
{1, · · · ,K} for a fixed finite number K. Accordingly, for each
k = 1, · · · ,K, consider the partition components as individual
subsets as defined below.

Sk = {Sn,k}∞n=1 , (151)

and denote the overall partition by S = (S1, · · · ,SK). Now,
consider a priority or weight vector w = (w1, · · · , wK) such
that 0 ≤ wk ≤ 1 and

∑K
k=1 wk = 1. Here, wk represents the

priority of the partition Sk.
We define an (n, 2nR) lossless code for the subset L with

partition S and weight vector w to consist of an encoder m :
Ln → {1, 2, · · · , 2nR} and a decoder x̂n : {1, 2, · · · , 2nR} →
Ln ∪ {E} with error probability

Pr[ES,w] :=
K∑
k=1

wk Pr[X̂n 6= Xn|Xn ∈ Sn,k]. (152)

A rate R is called achievable if a sequence of (n, 2nR) lossless
codes for the subset L with partition S and weight vector w
exists such that Pr[ES,w]→ 0 as n→∞. The optimal lossless
subset compression rate R∗S,w is the infimum of all achievable
rates.

Analogously, we define an (n, 2nR) lossy code with distor-
tion level D for the subset L with partition S and weight vector
w to consist of an encoder f : Ln → {1, 2, · · · , 2nR} and a
decoder φ : {1, 2, · · · , 2nR} → Yn with the excess-distortion
probability

Pr[ES,w(D)] :=
K∑
k=1

wk Pr[d(Xn, Y n) > D|Xn ∈ Sn,k].

(153)

A rate-distortion pair (R,D) is called achievable if a sequence
of (n, 2nR) lossy codes for the subset L with partition S
and weight vector w exists such that Pr[ES,w(D)] → 0 as
n → ∞. The subset rate-distortion function RS,w(D) is the
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infimum of all rates R for which the rate-distortion pair (R,D)
is achievable.

Our main result below states that, the performance is
dictated by that of the worst partition component. In particular,
the priority or weight vector does not affect the performance,
so long as the number or weight of the partition does not
vary with n. Hence, an immediate consequence of Theorem 6
below is that, even for this generalized model with weighted
priorities, we can stay within the original framework of
Section II and use the results we have already developed in
Sections IV, V, and VI.

Theorem 6. For a discrete memoryless source P (x) and a
subset L = {Ln ⊆ Xn}∞n=1 with partition S = (S1, · · · ,SK)
and weight vector w = (w1, · · · , wK), where K is a finite
integer, the optimal lossless subset-compression rate is

R∗S,w = max
1≤k≤K

R∗Sk , (154)

and the subset rate-distortion function is

RS,w(D) = max
1≤k≤K

RSk(D). (155)

Proof. We state only the proof for the lossless case; that for the
lossy case is very similar and we skip the details for brevity.
(Achievability) Fix an arbitrary ε > 0. For each 1 ≤ k ≤ K,
let {(mn,k, x̂

n
k )}∞n=1 be the optimal encoder and decoder se-

quence for lossless compression of the partition component Sk,
achieving a rate R∗Sk + ε with vanishing error probability
Pr[X̂n

k 6= Xn|Xn ∈ Sn,k] → 0 as n → ∞. We consider
the following code for the weighted subset L: let mn(xn) =
(k,mn,k(xn)) if xn ∈ Sn,k, and set x̂n(k,m) = x̂nk (m);
basically, we juxtapose the partition index with the codeword
used within that partition. Then, we have

lim sup
n→∞

K∑
k=1

wk Pr[X̂n
k 6= Xn|Xn ∈ Sn,k]

=
K∑
k=1

wk lim sup
n→∞

Pr[X̂n
k 6= Xn|Xn ∈ Sn,k] = 0. (156)

The rate of this code is

lim
n→∞

1

n
log

K∑
k=1

2n(R∗Sk
+ε) = max

1≤k≤K
R∗Sk + ε. (157)

Since ε is arbitrary, this completes the achievability proof in
the lossless case.

(Converse) Consider any arbitrary code of rate R for sub-
set L with partition S and weight vector w such that

lim sup
n→∞

K∑
k=1

wk Pr[X̂n
k 6= Xn|Xn ∈ Sn,k] = 0. (158)

Then, since none of the weights wk varies with n, we must
have for all 1 ≤ k ≤ K that

lim sup
n→∞

Pr[X̂n
k 6= Xn|Xn ∈ Sn,k] = 0. (159)

The definition of R∗Sk then implies that R > R∗Sk for all 1 ≤
k ≤ K, which in turn implies R > max

1≤k≤K
R∗Sk and proves the

converse for the weighted subset L in the lossless case.

IX. CONCLUDING REMARKS

A. Recap of the Results

We have provided a framework for lossless and lossy com-
pression of subsets of discrete memoryless sources as well as
several optimality results for broad classes of subsets including
likely subsets, smooth subsets, fluctuating subsets, and subsets
with weighted priorities. In particular, for smooth subsets that
intersect only a continuous range of distributions, we have
demonstrated that the lossless compression performance is
mainly dictated by subset-typical distributions that optimize
the trade-off between the closeness to the source statistics
and the size of intersection with the subset. Moreover, lossy
compression of smooth subsets involves covering the subset-
typical sequences with those conditionally typical sequences of
the reconstruction alphabet that belong to an auxiliary subset,
which is smooth by selection. In our proposed achievability,
the number of cover sequences is related to the size of the
smallest intersection of the conditional typical sets with the
selected auxiliary subset. Therefore, achieving lower compres-
sion rates requires a smart selection of the auxiliary subset
that is a good image of the original subset and preserves its
structure.

B. Discussion on Computability of the Results

One very valid concern about the results presented in this
paper is regarding the extent to which computation of these
fundamental results is possible for various subset structures.
We believe, the end goal of such studies as ours, at least in
part, is to facilitate computable fundamental limits. In this
subsection, we would like to clarify this issue and (at least
partially) resolve this concern.

In this paper, we have identified several classes of subsets
(likely, smooth, fluctuating, weighted priorities) for which we
can compute the fundamental limits exactly or via bounds.
We have also presented, in Section VII, several examples
from more basic structures to more complex ones to showcase
some computation scenarios. Of course, our main intention
from providing these examples has been to demonstrate the
implications of imposing structures on the data compression
problem and to show in what situations one might get a gain
(or, perhaps surprisingly, loss) by only focusing on a subset
of realizations, rather than the entire ensemble.

Our results, similar to many well-known results in prob-
ability and information theory, facilitate rather nice, closed-
form, and computable solutions provided a “nice structure”
is considered in the problem setting. For example, in Sanvo’s
theorem and CoLT (with exact or quasi independence), one
obtains computable results by focusing on closed and (almost
completely) convex sets E of probability distributions, such
as those resulting from empirical block average or Marko-
vian/sliding empirical block average constraints. Similarly,
we focus on smooth subsets that satisfy certain regularity
conditions. Our results for fluctuating subsets and subset
with weighted priorities are attempts towards more general
subsets/structures.

In the problem of subset source coding, our objective
functions are the subset entropy HL(PX) or the subset mu-
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tual information terms IL,L̄(PX , PY |X) that are, in general,
non-convex objective functions. Moreover, the optimization
is over subsets that are, in general, non-convex domains.
Therefore, the limits might not be necessarily computable if
we consider arbitrary structures. Following the discussion in
section III-A, imposing completely arbitrary structures on the
subset L quickly turns the problem into compression of non-
stationary and non-ergodic equivalent sources, for which a
closed-form, computable solution usually appears far from rich
and therefore outside the scope of our work.

As a final remark, we would like to mention that, our generic
results on performance limits of rather arbitrary subsets pro-
vide at least some insights into the key issues arising in the
problem of subset source coding. In that sense, at least to
some extent, we may compare our treatment with that of the
information spectrum approach of Verdú-Han [28] for non-
stationary and non-ergodic sources, whose results are very
interesting and insightful but, in general, non-computable.
Arguably, the only new scenario for which the information
spectrum approach can provide computable results is for
the fundamental performance limits of mixed sources and
channels with general mixtures [28]. In our work, the category
of fluctuating subsets, whose structure switches among a few
options as showcased in our Example 5, has a similar spirit
and facilitate computable results.

C. Future Directions

We envision at least two immediate directions for future
research on this topic. One is to expand the setting of
subsets with weighted priorities in Section VIII to partitions
whose number Kn or weight vector wn rapidly varies with
blocklength n. Additionally, compression limits of subsets not
covered by our current analysis is of future interest.

APPENDIX A
ANALYSIS OF THE EQUIVALENT CONDITIONAL SOURCE

For the equivalent conditional source X̃n defined as

PX̃n(xn) :=
PXn(xn)

PXn [Xn ∈ Ln]
1{xn ∈ Ln}, (160)

the fundamental lossless compression rate is identical to our
R∗L of interest since the error probability for both cases is the
same:

Pr[X̂n 6= Xn|Xn ∈ Ln]

=
PXn [X̂n 6= Xn, Xn ∈ Ln]

PXn [Xn ∈ Ln]
(161)

=

∑
xn PXn(xn)1{x̂(m(xn)) 6= xn, xn ∈ Ln}

PXn [Xn ∈ Ln]
(162)

=
∑
xn

PXn(xn)

PXn [Xn ∈ Ln]
1{xn ∈ Ln} · 1{x̂(m(xn)) 6= xn}

(163)

=
∑
xn

PX̃n(xn)1{x̂(m(xn)) 6= xn} (164)

= Pr[̂̃Xn 6= X̃n]. (165)

Analogously, the fundamental lossy compression rate of this
equivalent conditional source is identical to our RL(D) of
interest since the probability of excess-distortion for both cases
is the same:

Pr[d(Xn, Y n) > D|Xn ∈ Ln]

=
PXn [d(Xn, Y n) > D,Xn ∈ Ln]

PXn [Xn ∈ Ln]
(166)

=

∑
xn PXn(xn)1{d(xn, φ(f(xn))) > D,xn ∈ Ln}

PXn [Xn ∈ Ln]
(167)

=
∑
xn

PXn(xn)

PXn [Xn∈Ln]
1{xn ∈ Ln}·1{d(xn, φ(f(xn)))>D}

(168)

=
∑
xn

PX̃n(xn)1{d(xn, φ(f(xn))) > D} (169)

= Pr[d(X̃n, Y n) > D]. (170)

APPENDIX B
PROOF OF LEMMA 1

Recall from the properties of type classes that, all se-
quences xn ∈ Tn(P̂ ) satisfy [29]

PXn(xn) = 2−n[H(P̂ )+D(P̂‖P )]. (171)

On the other hand, the existence of the subset entropy HL(Q)
as defined in (30) implies that, there exists some ξn → 0 as
n→∞ such that

HL(Q)− ξn ≤
1

n
log |TnL [Q]δn | ≤ HL(Q) + ξn. (172)

Now, note that

|TnL [Q]δn | min
xn∈Tn[Q]δn

PXn(xn) ≤ PXn [Xn ∈ TnL [Q]δn ]

≤ |TnL [Q]δn | max
xn∈Tn[Q]δn

PXn(xn). (173)

But, (171) and the continuity of the Shannon entropy and
relative entropy implies the existence of some ξ′n → 0 such
that

min
xn∈Tn[Q]δn

PXn(xn) ≥ 2−n[H(Q)+D(Q‖P )+ξ′n],

max
xn∈Tn[Q]δn

PXn(xn) ≤ 2−n[H(Q)+D(Q‖P )−ξ′n]. (174)

Combining (173) with (172), (174), and recalling the definition
of the function gP (Q) in (34) completes the proof of the first
part of the lemma in (49) with εn := ξn + ξ′n.
To prove the second part, we note that

PXn [Xn ∈ Ln] = PXn [Xn ∈
⋃

P̂ :n-type

TnL (P̂ )]

=
∑

P̂ :n-type,TnL (P̂ )6=∅

PXn [Xn ∈ TnL (P̂ )]. (175)

We can lower bound the summation in (175) by any group of
summands including the ones belonging to the Q-typical set
with maximum probability,

PXn [Xn ∈ Ln] ≥ max
Q:L∩T [Q]6=∅

PXn [Xn ∈ TnL [Q]δn ], (176)
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and we can upper bound (175) by recalling the Type Counting
Lemma and upper bounding each term with the one having
the maximum probability, and noting that expanding the
maximization domain from types to general distributions can
not decrease the probability.

PXn [Xn ∈ Ln]

≤ (n+ 1)|X | max
P̂ :n-type,TnL (P̂ )6=∅

PXn [Xn ∈ TnL (P̂ )] (177)

≤ (n+ 1)|X | max
Q:L∩T [Q]6=∅

PXn [Xn ∈ TnL [Q]δn ]. (178)

Combining (176) and (178) with the result in (49) completes
the proof of (50) and that of Lemma 1.

APPENDIX C
PROOF OF LEMMA 2

Fix an arbitrarily small constant η > 0, and consider a pair
of random variables (X,Y ) such that E[d(X,Y )] ≤ |D− η|+
and X is distributed according to P̂ (x). Let the Y ’s distribu-
tion be PY (y). Fix an auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1

which is (P̂X , PY |X ,L)-smooth per Definition 7. We use the
following random coding argument to prove the existence
of the set B(P̂X ,L) as described in the lemma. Generate
M independently and identically distributed (i.i.d.) sequences
{Y n(m)}Mm=1 at random according to the uniform distribution
over the set L̄n ∩Tn[PY ]δn ; the value of M will be specified
later in the proof. We define the set of uncovered xn sequences
in TnL (P̂ ) by these Y n sequences as follows.

U
(
{Y n(m)}Mm=1

)
:=
{
xn ∈ TnL (P̂ ) : d

(
xn, {Y n(m)}Mm=1

)
> D

}
. (179)

Our goal is to prove that, if M is chosen appropriately, then
for sufficiently large n we obtain E

[∣∣U ({Y n(m)}Mm=1

)∣∣] <
1, which implies that a deterministic set B(P̂X ,L) :=
{yn(m)}Mm=1 with elements belonging to L̄n ∩ Tn[PY ]δn
exists such that all sequences xn ∈ TnL (P̂X) are covered in
the sense d(xn, B(P̂X ,L)) ≤ D.

We first note that

E
[∣∣U ({Y n(m)}Mm=1

)∣∣]
= E

 ∑
xn∈TnL (P̂ )

1
{
d
(
xn, {Y n(m)}Mm=1

)
> D

} (180)

=
∑

xn∈TnL (P̂ )

Pr
[
d
(
xn, {Y n(m)}Mm=1

)
> D

]
. (181)

However, due to the i.i.d. generation of the sequences
{Y n(m)}Mm=1, we find for all sequences in TnL (P̂X) that,

Pr
[
d
(
xn, {Y n(m)}Mm=1

)
> D

]
= Pr

[
M⋂
m=1

d (xn, Y n(m)) > D

]
(182)

=

M∏
m=1

Pr [d (xn, Y n(m)) > D] (183)

= (1− Pr [d (xn, Y n(1)) ≤ D])
M (184)

≤ 2−M ·Pr[d(xn,Y n(1))≤D], (185)

where the last line follows from the inequality (1−x)n ≤ 2−nx

for all 0 ≤ x ≤ 1 and n > 0.
We now analyze the probability in (185) using the specific

generation of the {Y n(m)}Mm=1 sequences. In particular, since
these sequences are generated uniformly over the set L̄n ∩
Tn[PY ]δn , we obtain

Pr [d (xn, Y n(1)) ≤ D]

=
|{yn ∈ L̄n ∩ Tn[PY ]δn : d(xn, yn) ≤ D}|

|L̄n ∩ Tn[PY ]δn |
(186)

≥
|L̄n ∩ Tn[PY |X |xn]δn |
|L̄n ∩ Tn[PY ]δn |

, (187)

where (187) follows from the properties of typical sequences
xn ∈ Tn(P̂X) and yn ∈ Tn[PY |X |xn]δn that, for sufficiently
large n, we have

d(xn, yn) =
∑
x,y

1

n
N((x, y); (xn, yn))d(x, y) (188)

≤
∑
x,y

(P̂X(x)PY |X(y|x) + δn)d(x, y) (189)

≤ E[d(X,Y )] + |X ||Y|δnDmax (190)
≤ (D − η) + |X ||Y|δnDmax (191)
≤ D, (192)

for the case D > η. The last result (192) also holds for the case
of target distortion level satisfying D ≤ η, since the condition
E[d(X,Y )] ≤ |D − η|+ = 0 implies that for all (x, y) pairs,
either d(x, y) = 0 or P̂X(x)PY |X(y|x) = 0, which in turn
implies d(xn, yn) = 0 ≤ D for all n and all xn ∈ Tn(P̂X)
and yn ∈ Tn[PY |X |xn]δn .

Now, recall from Definition 7 and 8 of (P̂X , PY |X ,L)-
smooth auxiliary subset that, there exists some ξn → 0 as
n→∞ such that, for any xn ∈ TnL [P̂X ]δn ,

|L̄n ∩ Tn[PY |X |xn]δn | ≥ min
xn∈TnL [P̂X ]δn

|L̄n ∩ Tn[PY |X |xn]δn |

≥ 2n[HL̄|L(PY |X |P̂X)−ξn], (193)

and that

|L̄n ∩ Tn[PY ]δn | ≤ 2n[HL̄(PY )+ξn]. (194)

Substituting (193) and (194) into (187) yields for all sequences
in TnL (P̂X) that,

Pr [d (xn, Y n(1)) ≤ D] ≥ 2−n[HL̄(PY )−HL̄|L(PY |X |P̂X)+2ξn]

= 2−n[IL,L̄(P̂X ,PY |X)+2ξn], (195)

which along with (181) and (185) implies

E
[∣∣U ({Y n(m)}Mm=1

)∣∣]
≤
∣∣∣TnL (P̂ )

∣∣∣ · 2−M ·2−n[IL,L̄(P̂X,PY |X )+2ξn]
(196)

≤ 2n log |X |−M ·2−n[IL,L̄(P̂X,PY |X )+2ξn]
. (197)

If we choose

M = 2n[IL,L̄(P̂X ,PY |X)+3ξn], (198)
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we get for sufficiently large n that,

E
[∣∣U ({Y n(m)}Mm=1

)∣∣] ≤ 2n log |X |−2nξn < 1. (199)

Since the choice of η > 0 is arbitrary, and the pair of
random variables (X,Y ) can be arbitrarily selected subject
to distortion and X-marginal distribution constraints, and the
auxiliary subset L̄ can be any (P̂X , PY |X ,L)-smooth subset,
we have proved the existence of the set B(P̂X ,L) as claimed
in the lemma and with size

1

n
logB(P̂X ,L) =

1

n
logM

≤ inf
PY |X :E[d(X,Y )]≤D

inf
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X)+3ξn.

(200)

APPENDIX D
PROOF OF LEMMA 3

If δn is chosen large enough yet still satisfying the Delta
Convention, we can write

gP (Q̄) > gP (Q∗X) + 3εn (201)

for all Q̄-typical sets which do not intersect at all with the
subset-typical sets ∪Q∗X∈Q∗T

n
L [Q∗X ]δn . Therefore, we get from

Lemma 1 that

Pr

Xn /∈
⋃

Q∗X∈Q∗X

TnL [Q∗X ]δn

∣∣∣∣∣Xn ∈ Ln


=
PXn

[
Xn ∈

⋃
Q̄:gP (Q̄)>gP (Q∗X)+3εn

TnL [Q̄]δn

]
PXn [Xn ∈ Ln]

(202)

≤ (n+ 1)|X |2−n[gP (Q∗X)+3εn−εn]

2−n[gP (Q∗X)+εn]
(203)

≤ (n+ 1)|X |2−nεn , (204)

which goes to 0 as n→∞.

APPENDIX E
PROOF OF LEMMA 4

We build upon Lemma 1, Lemma 3, and inequality (174)
to find

1

2
η ≤ Pr

[
Xn ∈ (A ∩ TnL [Q∗X ]δn)

∣∣∣Xn ∈ Ln
]

(205)

≤ |A ∩ TnL [Q∗X ]δn | max
xn∈Tn[Q∗X ]δn

Pr [Xn = xn | Xn ∈ Ln]

(206)

≤ |A| 2
−n[gPX (Q∗X)+HL(Q∗X)−εn]

2−n[gPX (Q∗X)+εn]
, (207)

which implies

|A| ≥ 1

2
η2n[HL(Q∗X)−2εn] ≥ 2n[HL(Q∗X)−3εn]. (208)
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