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Abstract— This paper studies the fundamental limits of storage
for structured data, where statistics and structure are both
critical to the application. Accordingly, a framework is pro-
posed for optimal lossless and lossy compression of subsets
of the possible realizations of a discrete memoryless source
(DMS). For the lossless subset-compression problem, it turns out
that the optimal source code may not index the conventional
source-typical sequences, but rather index certain subset-typical
sequences consistent with the subset of interest. Building upon
an achievability and a strong converse, an analytic expression
is given, based on the Shannon entropy, relative entropy, and
subset entropy, which identifies such subset-typical sequences
for a broad class of subsets of a DMS. Intuitively, subset-
typical sequences belong to those typical sets which highly
intersect the subset of interest but are still closest to the source
distribution in the sense of relative entropy. For the lossy subset-
compression problem, an upper bound is derived on the subset
rate-distortion function in terms of the subset mutual information
optimized over the set of conditional distributions that satisfy
the expected distortion constraint with respect to the subset-
typical distribution and over a set of certain auxiliary subsets.
By proving a strong converse result, this upper bound is shown
to be tight for a class of symmetric subsets. As shown in our
numerical examples, more often than not, one achieves a gain in
the fundamental limits, in that the optimal compression rate for
the subset in both the lossless and lossy settings can be strictly
smaller than the source entropy and the source rate-distortion
function, respectively, although exceptions are also possible.

Index Terms— Subset-typical sequences, subset entropy, subset
mutual information, subset-type covering lemma, method of
types, semantic information processing.

I. INTRODUCTION

SOURCE coding addresses compression, with or without
fidelity, of an information source. In particular, in (near-)

lossless compression of a discrete memoryless source (DMS),
one identifies and indexes source-typical sequences that cap-
ture essentially all the probability mass of the source. For a
DMS X with probability distribution P(x) over alphabet X ,
the number of such typical sequences is approximately 2nH(X),
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so the fundamental limit of lossless compression is given by
the Shannon entropy [1], [2]:

R∗ = H(X). (1)

In lossy compression of a DMS, on the other hand, one essen-
tially groups source-typical sequences and covers each group
with a sequence that is within a certain distortion distance of
them [1], [2]. For a DMS X ∼ P(x), the number of such cover
sequences is approximately 2nR(D), so the fundamental limit
of lossy compression with a distortion requirement D is given
by the rate-distortion function, defined as the average mutual
information optimized over the set of conditional distributions
that satisfy the expected distortion constraint [1], [3]:

R(D) = R(P, D) := min
PY |X :E[d(X,Y )]≤D

I(X; Y ). (2)

These basic settings have been studied extensively and
extended to scenarios with unknown statistics [4] and to
network and distributed settings [5], [6] and find applications
in database management [7], [8]. An implicit but pivotal con-
sideration in all of these works is that important realizations of
interest for the source to reconstruct consist only of the likely
and source-typical sequences.

In some emerging applications in information processing
including database management and bioinformatics, however,
the likelihood and typicality of a source realization may
not be the main factor to determine the importance of that
sequence. In particular, in semantic communications [9], [10],
only information with certain patterns and structures might be
meaningful according to semantic and logic rules. In such sce-
narios, therefore, one is interested in processing and conveying
only certain source outputs with potentially low probability,
rather than capturing the collective probability mass of the
source embodied in the source-typical sequences.

The goal of this paper is to provide a treatment of a subset
source coding problem, where the encoder and decoder aim
at providing a (near-)lossless or lossy description of only a
subset of all possible source realizations as determined by the
application. To explain the subset source coding problem more
concretely, we provide in the following a motivating example
with a toy setup to showcase the kind of results we obtain,
and the connections with and distinctions from the standard
source coding problem.

A. Motivating Example

Consider a binary DMS, X = {0, 1}, with a Bernoulli
distribution with parameter Pr[X = 1] = p = 0.11, so that the
Shannon entropy of the source is simply the binary entropy
Hb(p) = −p log p − (1 − p) log(1 − p) = 0.5, and its
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rate-distortion function with respect to the Hamming distance
is R(D) = 0.5 − Hb(D) for 0 ≤ D ≤ 0.11 and R(D) = 0
otherwise. Now, consider the subset L = {Ln}∞n=1 with

Ln := {xn ∈ X n : xn has no consecutive 1s}. (3)

The size of this subset satisfies (1/n) log |Ln| → 0.69 as
n → ∞. We will show in Example 4 of Section VII that
the optimal (near-)lossless compression rate of this subset is
R∗
L = 0.43, and that the rate-distortion function of this subset

satisfies

RL(D) ≤ l.c.e.

(
min

{
0.44 − Hb(D), (0.91 + D)Hb

×
(

0.09 − D

0.91 + D

)
0.09Hb

(
D

0.09

)})
, (4)

if 0 ≤ D ≤ 0.09, where l.c.e. stands for the lower convex
envelope operation, and RL(D) = 0 if D > 0.09. It is clear
that, entropy and rate-distortion for this subset is completely
different from that of the original source, due to the specific
structure imposed by the subset.

To shed more light on the connections between these
results and the structure of this subset, we consider the
following. The binary sequences in this subset can also be
generated by a certain asymmetric two-state binary Markov
chain [11], [12], namely, with α := Pr[Xn+1 = 1|Xn = 0]
and β := Pr[Xn+1 = 0|Xn = 1] = 1. Accordingly,
we can consider an infinite continuous set of Markovian types
(i.e., a type with a with a Markov structure) [13] with
0 ≤ α ≤ 1, and so with different cardinalities, that satisfy
the constraint in Ln . The entropy-rate for such a Markovian
type can be calculated as [1]

H(X) = 1

α + 1
Hb(α), (5)

If one tries to choose an α that maximizes the entropy
rate H(X), one gets α = 0.38, which leads to H(X) = 0.69,
which is indeed the exponent of the subset size we derived
above. However, if we evaluate (4) at D = 0, we get
R(D = 0) = 0.43 coming from the second term in (4).

The reason why R(D = 0) is strictly (and by far) smaller
than the entropy-rate H(X) = limn→∞(1/n) log |Ln | calcu-
lated above is that, the Markovian type with α = 0.38 is
not “the most likely type class within the subset” due to the
bias introduced by the prior of Bernoulli(p = 0.11). In other
words, the generating distribution is closer, in the sense of
KL divergence, to a Markovian type class that is of smaller
cardinality than the Markov type class with the most elements.
This phenomenon biases which elements of Ln need to be
encoded; cf., Figure 1 and its discussion for more details.
It turns out that the parameter for the optimal Markovian type
class is α∗ = 0.0995, for which the corresponding stationary
distribution satisfies Pr[X = 1] = 0.09 and the corresponding
entropy rate is 1/(1 + α∗)Hb(α

∗) = 0.09/0.91.
One notes that, there is a second α = 0.78 that generates

the same entropy-rate value, for which the stationary distri-
bution has Pr[X = 1] = 0.44. Compared to the optimal
solution with Pr[X = 1] = 0.09, this type class is further

from the generating distribution Bernoulli(p = 0.11) in a
KL divergence sense.

Finally, for further insight into the issues and knobs in this
example, consider for a moment the situation with a Bernoulli
p = Pr[X = 1] = 0.18 that satisfies Hb(0.18) = 0.68.
In such a situation, one can show that the optimal Markovian
type indeed satisfies α∗ = 0.38, namely the largest Markovian
type that satisfies the constraint of subset Ln . Therefore,
in the original setting with p = 0.11, the prior distribution
naturally pulls the most likely Markov type away from the
one with the largest cardinality.

B. Background

Previous efforts sharing similar motivations as in this work
include task encoding in [14] that guarantees certain important
but less likely source events are not ignored in data compres-
sion, and information theory of atypical sequences in [15] with
applications in signal processing and big-data analytics.

The subset source coding problem inherently involves both
probabilistic and combinatorial aspects. On one hand, it has
roots in large deviations theory [16] and relates to the gen-
eralized asymptotic equipartition property (AEP) [17] and
Sanov’s theorem [1], and particularly to the conditional limit
theorem (CoLT) [1], [18], maximum entropy distribution [19],
Gibbs conditioning principle [20], and conditional law of large
numbers [21]. We discuss the latter relations in more details
in Section III-B.

On the other hand, the subset source coding problem has
a combinatorial element in terms of the exponential num-
ber of information sequences that satisfy certain structural
constraints, and therefore relates to the capacity for mag-
netic recording channels with constrained coding [22]–[24];
the notion of Markov types in compression of Markov-
ian sources [25], [26]; and entropy definitions in statistical
mechanics models [27].

C. Outline and Contributions
In Section II, we formally introduce the subset source

coding problem in both lossless and lossy versions.
In Section III, we discuss two possible alternative approaches
for this problem via (i) the Verdú-Han information spectrum
approach [28] and (ii) the conditional limit theorem (CoLT) [1]
with the quasi-independence feature [18]. In this paper, we
instead blueprovide a rather elementary analysis from first
principles of the method of types [29] and large deviations
theory [1], [16] along with elements of combinatorics for the
analysis. In Section IV, we use error exponent results for
conventional source coding to state our first general result for
likely subsets, those with not(-so-fast)-vanishing probabilities.
In Section V, we extend the notion of typical sequences and
present optimality results for a broad class of smooth subsets,
those satisfying certain regularity conditions and continuous
structures. In Section VI, we prove optimal compression rates
for fluctuating subsets that alternate between several structures.
Our key contributions in these three main sections are as
follows.

• For likely subsets, we prove an achievability and a
matching strong converse to show that the fundamental
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limits of lossy and lossless compression of the subset are
equal to those of the original source.

• For smooth subsets, we prove an achievability and a
strong converse for the lossless case which shows that the
fundamental limit is the result of a trade-off between the
source statistics and the subset structure and is given by a
certain subset entropy of the subset-typical distributions,
both defined in this paper. For lossy compression of
smooth subsets, we prove an achievability that relates the
subset rate-distortion function to a certain subset mutual
information corresponding again to the subset-typical
distributions. For the special case of smooth symmetric
subsets, we show that our achievability result for the lossy
case is tight by proving a strong converse.

• For fluctuating subsets, we prove an achievability and a
converse to show that the fundamental limits of lossy and
lossless compression of the subset are equal to those of
the worst structure, i.e., the one which requires the highest
compression rate.

We next present in Section VII several numerical examples
of the subset source coding problem which suggest, when
focusing only on a subset instead of the entire source, there
is often a gain in the compression rate, although there are
exceptions. We devote Section VIII to a generalization of
our framework to the case of subsets with weighted prior-
ities, which has relations to the problem of unequal error
protection in channel coding [30], [31]. We conclude the
paper in Section IX with a recap of the results, some dis-
cussions regarding the computability of our results, and a
few remarks about possible extensions. The proofs of the
main results are presented in the main text, while those
of the technical underlying lemmas are relegated to the
Appendices.

In the following, we would like to briefly highlight the main
novel features of our work.

• One key novel aspect of our work is posing a new
basic setup in the source coding literature, including the
problem formulation and the performance metrics.

• We have provided a set of rather elementary proofs from
first principles, which are quite readable for a broad
audience in information theory, but at the same time does
not appear to sacrifice the extent to which performance
results can be developed, e.g., compared to potential
results that one can obtain using CoLT.

• We have treated, among other cases, fluctuating subsets
and subsets with weighted priorities, that do not appear
to be (directly) handled by existing versions of CoLT.

• The lossy compression aspects of subset source coding
and the techniques we have proposed, e.g., the subset-type
covering lemma using “auxiliary subsets” as structure-
preserving images of the original subsets (cf. Lemma 2),
are novel concepts and contributions that are interesting
on their own.

Notation: We use capital letters X and Y to denote random
variables, and lower case letters x and y to denote their
realizations. We use calligraphic letters X and Y to denote
sets or alphabets. We use PX and QY to denote marginal
distributions, and PY |X to denote conditional distributions.

We use P̂X , P̂Y |X , and P̂XY to denote types, conditional
types, and joint types, respectively. Throughout this paper,
all log operations are understood as base 2. We follow the
notation of Csiszár and Körner [29] for denoting entropy
and mutual information. Consider a random variable X with
distribution P(x). The Shannon entropy H(X) is denoted by

H(P) := −
∑
x∈X

P(x) log P(x). (6)

Analogously, consider a random variable X with marginal dis-
tribution PX (x), and let Y be a random variable conditionally
distributed according to PY |X (y|x). The conditional Shannon
entropy H(Y |X) =∑x PX (x)H(Y |X = x) is denoted by

H(PY |X |PX ) :=
∑
x∈X

PX (x)H(PY |X=x). (7)

Moreover, the average mutual information I(X; Y ) = H(Y ) −
H(Y |X) = H(X) − H(X |Y ) is denoted by

I(PX , PY |X ) := H(PY ) − H(PY |X |PX )

= H(PX ) − H(PX |Y |PY ), (8)

where PY (y) = ∑
x PX (x)PY |X (y|x) is the marginal distri-

bution of Y , and PX |Y (x |y) = PX (x)PY |X (y|x)/PY (y) is
the induced conditional distribution of X given Y . Finally,
the relative entropy is denoted by

D(Q�P) :=
∑
x∈X

Q(x) log
Q(x)

P(x)
. (9)

II. PROBLEM SETTING

Consider a discrete memoryless source with distribution
PX (x) over the finite alphabet X , such that the n-fold dis-
tribution of the source, for all n = 1, 2, . . . , satisfies

PXn (xn) =
n∏

t=1

PX (xt ). (10)

For simplicity, we will sometimes write PX as P .
Let L = {Ln}∞n=1 be a sequence of subsets of the source
realizations such that Ln ⊆ X n and Pr[Xn ∈ Ln] 
= 0 for
all n. We wish to find the minimum (near-)lossless and lossy
compression rate for the subset sequence L.

More formally, an (n, 2nR) near-lossless (or simply, loss-
less) code for subset L consists of an encoder m : Ln →
{1, 2, · · · , 2nR} and a decoder x̂ n : {1, 2, · · · , 2nR} → Ln ∪
{E} that assigns to an index 1 ≤ m ≤ 2nR either an
estimate x̂ n(m) ∈ Ln or an error E . The error probability of
the code is defined as

Pr[EL] := Pr[X̂n 
= Xn |Xn ∈ Ln]. (11)

A rate R is called achievable if a sequence of (n, 2nR)
lossless source codes for subset L exists with Pr[EL] → 0 as
n → ∞. The optimal lossless subset-compression rate R∗

L is
the infimum of all achievable rates.

For the lossy subset compression problem, we consider a
reconstruction alphabet Y and an additive distortion measure
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d : X × Y → [0, Dmax] for some maximal distortion value
Dmax < ∞ and define

d(xn, yn) := 1

n

n∑
t=1

d(xt , yt ). (12)

An (n, 2nR) lossy code for subset L consists of an encoder f :
Ln → {1, 2, · · · , 2nR} and a decoder φ : {1, 2, · · · , 2nR} →
Yn . For any distortion values D ≥ 0, the probability of excess-
distortion1 is defined as

Pr[EL(D)] := Pr[d(Xn, Y n) > D|Xn ∈ Ln]. (13)

A rate-distortion pair (R, D) is called achievable if a
sequence of (n, 2nR) lossy source codes for subset L exists
with Pr[EL(D)] → 0 as n → ∞. The subset rate-distortion
function RL(D) is the infimum of all rates R for which the
rate-distortion pair (R, D) is achievable.

Remark 1: The interpretation of the conditioning used in
the problem formulation above is that the encoder never
sees or cares about the source realizations outside the subset L.
Note that, the prior distribution PXn (xn) induces a prior on the
subset Ln; cf., Section III-A for mode details.

Remark 2: The subset rate-distortion function RL(D), sim-
ilar to the standard rate-distortion function, is a non-increasing
function of D, by definition. The convexity of RL(D) in D,
however, is not a priori obvious. The latter would normally
build on a time-sharing argument, namely, to combine shorter
codes achieving distortions D1 and D2 with appropriate rates
R1 and R2, respectively, to form a longer code that achieves
the convex combination of those rate-distortion pairs. How-
ever, such an argument is not trivial for the subset source
coding problem. In fact, if a codeword xn belongs to the
subset Ln , it may or may not be true that a portion of it xαn

belongs to Lαn for some 0 < α < 1.

III. ALTERNATIVE APPROACHES

In this section, we discuss two alternative analysis and
proof approaches for the subset source coding problem,
namely, the information spectrum approach and the conditional
limit theorem approach, and argue that these two approaches
although interesting, are quite challenging and their application
to the subset source coding might not be straightforward.

A. The Information Spectrum Approach

At the outset, one may think that a conditional source
formulation can readily capture the subset compression prob-
lem. In particular, one can define an equivalent conditional
source X̃n as

PX̃n (xn) := PXn (xn)

PXn [Xn ∈ Ln]1{xn ∈ Ln}, (14)

and claim the fundamental lossless and lossy compression
rates of this conditional source to be equivalent to our R∗

L
and RL(D) of interest, respectively. This claim is indeed

1While the expected distortion E[d(Xn , Y n)] is more preferred as the
evaluation metric for a lossy source code [1], we adopt the more stringent
requirement of vanishing excess-distortion probability as in [29].

valid, since the error probability and the excess-distortion
probability for both cases are the same, as readily shown
in Appendix A.

The fundamental compression limits of this equivalent con-
ditional source, however, are not in general very straight-
forward to analyze. For those subsets for which the equiv-
alent conditional source is stationary and ergodic, the fun-
damental lossless and lossy compression limits are given by
average entropy rate and average mutual information rate,
respectively [1], [28], [32], [33]:

R∗
L = lim

n→∞
1

n
H(X̃n),

RL(D) = lim
n→∞ inf

Y n : 1
n E[d(X̃n,Y n)]≤D

1

n
I(X̃n; Y n). (15)

However, the stationarity and ergodicity assumptions do not
hold for most subsets, even the simplest ones such as our
Example 1 in Section VII; cf. [28, Example 1.5.1]. Therefore,
one would need to utilize the more advanced information-
spectrum approach [28] to characterize the fundamental
compression limits of this potentially non-stationary and non-
ergodic equivalent source. In particular, for the lossless case,
the fundamental limit is given by the spectral sup-entropy rate
of the conditional source [34]:

R∗
L = H̄(X̃) := p- lim sup

n→∞
1

n
log

1

PX̃n (X̃n)
, (16)

where X̃ = {X̃n}∞n=1 is the equivalent conditional source
process, and the p- lim sup operation, limit superior in proba-
bility, is defined as the supremum of the support set of the
limiting distribution [28]. Analogously, for the lossy case,
the fundamental limit is given by the spectral sup-mutual
information rate of the conditional source [35]:

RL(D) = inf
Y:d̄(X̃,Y)≤D

Ī (X̃; Y), (17)

where Y = {Y n}∞n=1 is a reconstruction process and

Ī (X̃; Y) := p- lim sup
n→∞

1

n
log

PY n |X̃n (Y n|X̃n)

PY n (Y n)
,

d̄(X̃, Y) := p- lim sup
n→∞

1

n
d(X̃n, Y n). (18)

Although the above limiting analysis and information-
spectrum approach yield a complete characterization of the
fundamental compression limits, its numerical evaluation for
arbitrary subsets is cumbersome and may require tedious
manipulations. Moreover, the general form of the fundamental
limit results in (15), (16), (17) are not explicit about the
effect of subset structure and the statistics of the original
source on the compression rate, and each example needs to be
individually analyzed. In Sections IV, V, and VI, we present
a more accessible form of treatment and give three tractable
optimality results that apply to broad classes of subsets.
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B. The Conditional Limit Theorem Approach

Large deviations (LD) is indeed a closely related area
to the subset source coding problem we propose in this
paper. In particular, Sanov’s theorem and conditional limit
theorem (CoLT) are two key results in LD that have strong
connections with our problem. In this subsection, we make
these connections clearer: we briefly state these two results,
argue how one could potentially use CoLT to tackle the
problem of subset source coding, and explain the challenges
for using such a CoLT-based approach.

As was hinted in the Introduction and will be also discussed
in Section IV, for most cases of interest, the subset L is
an unlikely or rare event, in that Pr[Xn ∈ Ln] is vanishing
exponentially fast with n. Treating rare events is the essence
of large deviations. One of the key results in LD is Sanov’s
theorem [1] that considers a set E of probability dis-
tributions, possibly with additional regularity conditions
(e.g., that E is the closure of its interior). Then for i.i.d. ran-
dom variables Xn ∼ P , one gets −(1/n) log Pr[Xn ∈ E] →
D(Q∗�P) as n → ∞, where Q∗ = arg minQ∈E D(Q�P)
is called the (generalized) I -projection of P on the set
E [1], [18]. An important class of such sets E is defined
by the sample mean or empirical block average constraint
(1/n)

∑n
i=1 g(Xi ) > α for a given function g(x) and a

given constant α, usually satisfying α > EP [g(X)]. Also,
an extension is possible to handle the intersection of multiple
such constraints.

A second key result in LD is to study conditional distribu-
tions given a rare event, which is referred to as the conditional
limit theorem (CoLT). The standard version of CoLT, e.g.,
per [1], states that for an i.i.d. Xn ∼ P and for a closed convex
set E of probability measures, such that P /∈ E , we have [1]

Pr[X1 = a1, X2 = a2, . . . , Xm = am |PXn ∈ E]
→

m∏
i=1

Q∗(ai ) in probability

for fixed m as n → ∞, where PXn denotes the empirical
block average or type of Xn , and Q∗ is the (generalized)
I -projection of P on the set E (defined above). This basically
means that, conditioned on the event that type of Xn belongs
to the set E , the first few elements of Xn are asymptotically
conditionally independent with common distribution Q∗.

Recall from our problem formulation in Section II that,
the kind of conditional probabilities that we are interested
in are of the form Pr[Xn ∈ An |Xn ∈ Ln], for which the
conditioning part, in some cases, might reduce to a type
(or Markovian type) constraint Pr[Xn ∈ An |PXn ∈ En]. This
is in fact very similar to what the CoLT result addresses, except
for the fact that here we have m = n.

However, an important observation is that, the standard
version of CoLT does not guarantee independence for long
sequences: “[asymptotic conditional independence] is not true
for m = n, since there are end effects; given that the type
of the sequence is in E , the last elements of the sequence
can be determined from the remaining elements, and the
elements are no longer independent.” [1, pp. 374–375]. In fact,
the asymptotic conditional independence property presented in

the standard version of CoLT is much more limited than just
the case m = n mentioned by Cover and Thomas [1]. Dembo
and Zeitouni [20] discuss that, to get such an asymptotic
conditional independence property, one could go beyond a
fixed m and also extend to the case of m = mn being a function
of the blocklength n, but the speed of growth should satisfy
mn

log n
n → 0 as n → ∞ or sometimes mn = o(n), but there

is no hope for conditional independence beyond that growth
speed. These results suggest that the standard form of CoLT
cannot be applied to the subset source coding problem.

Nonetheless, a more relaxed result is possible if one is
satisfied with almost independence. Csiszár [18] proves that,
for certain (almost completely convex) sets E of probabil-
ity measures, i.i.d. random variables (X1, . . . , Xn) ∼ P
under the condition PXn ∈ E are asymptotically quasi-
independent with limiting distribution Q∗ (defined above),
namely, limn→∞(1/n)D(PXn |E�(Q∗)n) = 0. It follows that,
in the words of Csiszar (with slight changes in notation),
“whatever probabilistic statement holds, except for an event of
exponentially small probability, for i.i.d. RV’s with common
distribution Q∗, it holds …with conditional probability tending
to 1 for (X1, . . . , Xn) given that PXn ∈ E" [18].

The above-mentioned advanced form of CoLT (with the
quasi-independence feature) is indeed an incredible result that
can potentially serve as an alternative approach to tackle the
subset source coding problem. We believe such a solution
would consist of the following steps: (i) Identify and prove
an appropriately general form of advanced CoLT that can
handle potentially general/arbitrary subsets Ln ; (ii) Special-
ize the CoLT result to the problem at hand (i.e., the error
events or the excess-distortion events) including appropriate
change of measures to Q∗; and finally (iii) Incorporate any
additional steps needed for the subset compression problem,
e.g., rate calculation via counting arguments, and distortion
analysis via covering lemmas. Note that, in our view, the third
step is rather independent of the first two steps so, regardless of
the approach taken for the first two steps (CoLT-based or not),
appropriate techniques and solutions need to be devised
(such as the subset type covering lemma we have developed
in Section V-C2) which are inherent to the subset source
coding problem, and therefore novel and interesting on
their own.

We suspect such an alternative CoLT-based approach,
although very interesting and valuable, can be quite chal-
lenging. Firstly, the mere development of advanced CoLT
results with the quasi-independence feature for (rather) generic
and arbitrary sets E (that directly capture, e.g., fluctuating
subsets or other n-dependent structures), instead of an almost
completely convex set E of probability measures, appears to
be difficult. In fact, based on a rather detailed check of the
citations of Csiszár [18] within the literature of probability
and information theory, very few works have focused on
the quasi-independence property and its extension for more
general E sets [36]–[38]. Secondly, it is not obvious to us that,
wherever the appropriate form of advanced CoLT is already
known or is newly characterized, such a CoLT-based approach
would lead to results far beyond what we have developed here
with a rather elementary analysis. In fact, in some sense, one
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could conceive our proof methods as special cases of (the
existing or a potential) CoLT for the problem at hand.

IV. COMPRESSION OF LIKELY SUBSETS

In this section, we establish our first result asserting that
for likely subsets, ones with not so small probability, not
so unexpectedly, the optimal lossless and lossy compression
rates for the subset turn out identical to those of the original
source.

Theorem 1: For a discrete memoryless source P(x) and
any subset L = {Ln ⊆ X n}∞n=1 that satisfies

lim inf
n→∞

1

n
log PXn [Xn ∈ Ln] = 0, (19)

the optimal lossless subset-compression rate is R∗
L = H(P)

and the subset rate-distortion function is RL(D) = R(D).
In particular, the result holds if PXn [Xn ∈ Ln] as n → ∞
either converges to a constant or decays sub-exponentially to
zero.

Theorem 1 is more intuitive for subsets L with an asymptot-
ically constant probability so that PXn [Xn ∈ Ln] → c where
0 < c ≤ 1, since excluding any constant fraction of sequences
in X n does not reduce the required compression rate. The case
of subsets with slowly vanishing probability and the case that
subset probability does not converge at all but an asymptotic
lower bound to the subset probability is constant or decaying
at most sub-exponentially to zero are somewhat more subtle,
as explained in the following proof of Theorem 1. The main
idea is to construct subset codes from appropriately selected
source codes and vice versa.

Proof: Below, we first provide the proof for the lossless
case. Then, we describe the few changes needed to make
the proof work for the lossy case. First note that, from the
definition of liminf, the assumption in (19) implies that, for
any � > 0, we have Pr[Xn ∈ Ln] > exp(−n�) for large
enough n.

(Achievability) Fix an arbitrary � > 0. Choose an error-
exponent-optimal lossless source code in the conventional
setting for source P with rate H(P)+� and Pr[X̂n 
= Xn] → 0
exponentially fast as n → ∞, so that [29]

lim
n→∞

1

n
log Pr[X̂n 
= Xn] ≤ − min

Q:H(Q)≥R
D(Q�P). (20)

Noting that

Pr[X̂n 
= Xn] ≥ Pr[Xn ∈ Ln] · Pr[X̂n 
= Xn |Xn ∈ Ln], (21)

and that by assumption Pr[Xn ∈ Ln] > exp(−n�), we con-
clude that the same lossless source code, when constrained to
only sequences within Ln , achieves Pr[X̂n 
= Xn |Xn ∈ Ln] →
0 as n → ∞. This implies R∗

L ≤ H(P), as the choice of � is
arbitrary.

(Converse) Fix an arbitrary lossless code for the subset L =
{Ln ⊆ X n}∞n=1 achieving some rate R with error probability
Pr[X̂n 
= Xn |Xn ∈ Ln] = �n → 0 as n → ∞. We can
consider this code as a conventional lossless source code for
the entire space X n which maps all sequences in (X n −

Ln) to an error. We can analyze the error probability as
follows.

Pr[X̂n 
= Xn]
= Pr[Xn ∈ Ln] · Pr[X̂n 
= Xn |Xn ∈ Ln]

+ Pr[Xn /∈ Ln] · Pr[X̂n 
= Xn |Xn /∈ Ln] (22)

≤ �n · Pr[Xn ∈ Ln] + Pr[Xn /∈ Ln] (23)

= 1 − (1 − �n) · Pr[Xn ∈ Ln]. (24)

Since Pr[Xn ∈ Ln] > exp(−n�), the error probability of this
code is at least sub-exponentially away from 1. We know, how-
ever, that strong converse holds for the lossless compression
of a DMS, so that the error probability of any lossless source
code with rate below the entropy, R < H(P), approaches
one [29]

lim sup
n→∞

1

n
log(1 − Pr[X̂n 
= Xn]) ≤ − min

Q:H(Q)≤R
D(Q�P).

(25)

Therefore, (24) implies that the rate R is above the source
entropy H(P). Since the choice of the lossless code is arbi-
trary, this proves that R∗

L ≥ H(P). 2

The proof for the lossy case is identical after making the
following changes: use R(Q, D) instead of H(Q); R(D)
instead of H(P); RL(D) instead of R∗(D); and the excess
distortion event d(Xn, Y n) > D instead of the error event
X̂n 
= Xn . Also note [29], [39] for error exponent results
for standard lossy compression, including the following result
about the excess-distortion probability of any lossy source
code with rate below the rate-distortion function, R < R(D):

lim sup
n→∞

1

n
log(1 − Pr[d(Xn, Y n) > D])

≤ − min
Q

[
D(Q�P) + |R(Q, D) − R|+]. (26)

�
Theorem 1 immediately captures a large class of subsets by

asserting that only subsets with exponentially small probability
need further study. In fact, one might be tempted to think that
subsets with non-negligible probability are already addressed
by this theorem and, since the remaining possible subsets with
exponentially small probability are so rare, their analysis is
not very relevant. In particular, one may be tempted to think
that such subsets with negligible probability only contain the
atypical sequences of the source, which are ignored in conven-
tional compression anyway. However, as will be clarified in
the remainder of the paper, one can find subsets containing
source-typical sequences, which yet have an exponentially
small probability; see Section VII. Moreover, as discussed in
the Introduction, even the atypical sequences of the source
may be important for certain applications.

V. COMPRESSION OF SMOOTH SUBSETS

In this section, we state optimal compression rate results
for a broad class of smooth subsets, ones with continuous

2An alternative proof of converse for the lossless case follows
from [29, Lemma 2.14 and Problem 2.11].
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structures, including subsets with exponentially small proba-
bility. We present the results for the lossless and lossy cases in
Subsections V-A and V-B, respectively, and provide the proofs
in Subsection V-C.

A. Lossless Compression of Smooth Subsets
In this subsection, we state our lossless compression result

for smooth subsets. Our result relies on a new quantity termed
the subset entropy, to introduce which we first recall the def-
inition and properties of standard (source-) typical sequences
of a DMS.

In the following definitions, let N(x; xn) be the number of
occurrences of the symbol x ∈ X in the sequence xn .

Definition 1 [29]: Given any distribution Q(x) and any
positive δn, the set T n[Q]δn of Q-typical sequences is defined
as the set of all sequences xn ∈ X n that satisfy∣∣∣∣1n N(x; xn) − Q(x)

∣∣∣∣ ≤ δn, (27)

for all x ∈ X with Q(x) > 0 and N(x; xn) = 0 otherwise.
Remark 3: In the definition above and throughout the paper,

the sequence δn is assumed to satisfy the Delta-Convention,
i.e., as n → ∞, we have δn → 0 and

√
nδn → ∞ [29].

One recalls from the properties of the typical sequences that,
for every distribution Q(x), the size of the Q-typical set
satisfies [29]

lim
n→∞

1

n
log |T n[Q]δn | = H(Q). (28)

We can now define the notion of subset entropy.
Definition 2: We say the subset L = {Ln ⊆ X n}∞n=1

intersects a distribution Q(x) and write L ∩ T [Q] 
= ∅ if

lim sup
n→∞

|Ln ∩ T n[Q]δn | 
= 0. (29)

Remark 4: In condition (29) of Definition 2, for any fixed
distribution Q(x), we may have empty intersection for several
(or even many) values of n, but this of course would not
violate the original assumption that Pr[Xn ∈ Ln] 
= 0 for
all n.

Definition 3: Consider a subset L = {Ln ⊆ X n}∞n=1 that
intersects a distribution Q(x), i.e., L∩ T [Q] 
= ∅. A constant
HL(Q) is called the subset-L entropy of distribution Q(x) if

lim
n→∞

1

n
log
∣∣Ln ∩ T n[Q]δn

∣∣ = HL(Q), (30)

provided that the limit exists.
Comparing expressions (28) and (30) suggests that, subset

entropy HL(Q) is an analog of the standard entropy H(Q).
In fact, we readily observe the appealing property 0 ≤
HL(Q) ≤ H(Q) for any distribution Q with L ∩ T [Q] 
= ∅.
In particular, for Ln = X n , we have HL(Q) = H(Q) for all
distributions Q.

Our focus in this section is on smooth subsets, ones for
which the subset entropy is a continuous function, essentially
suggesting that the subset intersects only a continuous spec-
trum of distributions and nothing outside of it.

Definition 4: We say the subset L = {Ln ⊆ X n}∞n=1 is
smooth if the subset entropy HL(Q) exists and is continuous
in all distributions Q intersecting the subset, L ∩ T [Q] 
= ∅.

Fig. 1. Schematic description of Theorem 2 for lossless compression of
smooth subsets. The subset is depicted with a curved shape. The dashed rings
denote the typical sets, which are shown in the order of closeness to the source
statistic P in the sense of relative entropy. The subset-typical distribution Q∗

X
corresponds to the typical set that highly intersects the subset but is also close
to the source statistic P .

In the following, we state our lossless compression result
for smooth subsets.

Theorem 2: For a discrete memoryless source P(x),
the optimal lossless compression rate for any smooth sub-
set L = {Ln ⊆ X n}∞n=1 is

R∗
L = max

Q∗
X ∈Q∗

X

HL(Q∗
X ), (31)

where the set Q∗
X is defined as

Q∗
X = arg min

Q:L∩T [Q]
=∅
[H(Q) − HL(Q) + D(Q�P)], (32)

Q∗
X = arg min

Q:L∩T [Q]
=∅
gP(Q), (33)

with the function gP(Q) given by

gP(Q) = H(Q) − HL(Q) + D(Q�P). (34)

Proof: Proof is provided in Section V-C1. �
Theorem 2 has an interesting interpretation in terms of a

tension between the source statistics and the subset structure.
It suggest that, within a given subset, the most likely sequences
of the source which should be indexed by a lossless subset
code do not necessarily belong to the source-typical set with
distribution P . Rather, they belong to a typical set (i) whose
distribution Q is potentially close to the source statistics in
the sense of relative entropy so that the term D(Q�P) is
relatively small; and (ii) with potentially large intersection with
the subset so that the size of its residual part outside the subset,
captured by the term (H(Q)−HL(Q)), is also relatively small.
The subset-typical distributions Q∗

X optimize the trade-off
between these two elements by minimizing the function gP(Q)
introduced in (34), and the size of the corresponding subset-
typical set dictates HL(Q∗

X ) to be the rate of the lossless
compression code for this subset. In most cases, there is only
a single minimizing distribution Q∗

X , so the set of subset-
typical distributions Q∗

X has a single element, but in case there
are multiple minimizers, one should code for the worst case,
thereby the maxQ∗

X ∈Q∗
X

term in (31). This interpretation is
schematically depicted in Figure 1.
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As a sanity check for Theorem 2, note for the extreme
case of Ln = X n that, since the subset L intersects all
distributions Q and HL(Q) = H(Q), our objective function
of interest (34) reduces to gP(Q) = D(Q�P) which is min-
imized by Q∗

X = P for which HL(Q∗
X ) = H(Q∗

X ) = H(P),
which is consistent with first impressions. Of course, one could
arrive at the same result via Theorem 1, since for this case
PXn [Xn ∈ Ln] = 1 for all n.

An interesting special case is the case of symmetric subsets,
as defined below, where the subset either fully intersects with
a type class [29] or does not intersect at all.

Definition 5: A subset L = {Ln ⊆ X n}∞n=1 is called sym-
metric if it has the property that, for any sequence xn ∈ Ln,
all permutations of xn also belong to Ln, for all n = 1, 2, · · · .

One readily observes that, a symmetric subset L satisfies the
property HL(Q) = H(Q) for any distributions Q intersecting
the subset, i.e., L ∩ T [Q] 
= ∅. This is because the subset is
fully intersecting a type class, and from the properties proved
in the Method of Types [13], [29], one knows that the size
of a type class Tn(Q) is (on an exponential scale) equal
to exp(nH(Q)). Therefore, a symmetric subset L is smooth
if H(Q) is continuous in all distributions Q intersecting
the subset, L ∩ T [Q] 
= ∅. In such a case, the objective
function (34) reduces to gP(Q) = D(Q�P). Hence, we arrive
at the following simpler expression.

Corollary 1: For a discrete memoryless source P(x),
the optimal lossless compression rate for any smooth sym-
metric subset L = {Ln ⊆ X n}∞n=1 is

R∗
L = max

Q∗
X ∈Qsymm

X

H(Q∗
X ), (35)

where the set Qsymm
X is defined as

Qsymm
X = arg min

Q:L∩T [Q]
=∅
D(Q�P). (36)

Remark 5: It turns out that, in the context of subset source
coding, we may face initially counterintuitive situations with
R∗

L > R∗ = H(X). That is, we may need more than
H(X) = H(PX ) bits for lossless compression of certain
subsets; see, e.g., Examples 1 and 3 in Section VII. The
reason for this phenomenon is that, within the subset com-
pression framework, the typical sequences that we have to
code empirically follow the subset-typical distribution Q∗

X (x)
rather than the source-typical distribution PX (x). Since all
such Q∗

X -typical sequences are statistically (almost) similar,
we need to index all of them for lossless compression. Now,
if Q∗

X (x) is a more uniform distribution than PX (x), then
H(Q∗

X ) > H(X), so that the total number of Q∗
X -typical

sequences, 2nH(Q∗
X ), is larger than the number of PX (x)-typical

sequences, 2nH(X). This reasoning is sufficient for symmetric
subsets; cf. Definition 5. For non-symmetric subsets, the subset
structure must also be taken into account, so if Q∗

X (x) is more
uniform than PX (x) and the majority of Q∗

X -typical sequences
belong to the subset, there is still a possibility for exceeding
the source entropy H(X). Similar arguments can be stated for
exceeding R(D) = R(PX , D) bits in lossy compression of
certain subsets.

B. Lossy Compression for Smooth Subsets

In this subsection, we state our lossy compression result for
smooth subsets. Our result relies on a quantity we term the
subset mutual information, to introduce which we first recall
some definitions and introduce a few notations.

Definition 6 [29]: Given any conditional distribu-
tion PY |X (y|x) and any positive δn, the set T n[PY |X |xn]δn of
conditional PY |X -typical sequences given xn ∈ X n is defined
as the set of all sequences yn ∈ Yn that satisfy∣∣∣∣1n N((x, y); (xn, yn)) − 1

n
N(x; xn)PY |X (y|x)

∣∣∣∣ ≤ δn, (37)

for all x ∈ X , y ∈ Y with PY |X (y|x) > 0 and N((x, y);
(xn, yn)) = 0 otherwise.

Remark 6: In the definition above and throughout,
the sequence δn is assumed to satisfy an extension of
the Delta-Convention mentioned in Remark 3, i.e., (i) as
n → ∞, we have δn → 0 and

√
nδn → ∞ and (ii) when

going from conditional to nonconditional typical sets, the δn

sequence, with some abuse of notation, also stands for
sums and constant multiples like δ��

n := |Y|(δn + δ�
n) and so

on [29].
One recalls from the properties of the typical sequences that,

for every conditional distribution PY |X (y|x) and any arbitrary
distribution QX (x), the size of the conditional PY |X -typical
set satisfies [29]

lim
n→∞ min

xn∈T n [Q X ]δn

1

n
log |T n[PY |X |xn]δn |

= lim
n→∞ max

xn∈T n[Q X ]δn

1

n
log |T n[PY |X |xn]δn |=H(PY |X |QX ).

(38)

We can now define the notions of conditional subset entropy
and subset mutual information.

Definition 7: Consider a subset L = {Ln ⊆ X n}∞n=1,
a distribution QX (x) and a conditional distribution
PY |X (y|x). Let QY (y) be the induced distribution
QY (y) = ∑

x QX (x)PY |X (y|x). Consider an auxiliary
subset L̄ = {L̄n ⊆ Yn}∞n=1 for which the subset entropy

HL̄(QY ) = lim
n→∞

1

n
log
∣∣T n[QY ]δn ∩ L̄n

∣∣ (39)

exists. A constant HL̄|L(PY |X |QX ) is called the conditional
subset entropy of PY |X given QX and the subsets L and L̄ if

lim
n→∞ min

xn∈Ln∩T n [Q X ]δn

1

n
log
∣∣L̄n ∩ T n[PY |X |xn]δn

∣∣
= HL̄|L(PY |X |QX ), (40)

provided that the limit exists. Accordingly, the subset mutual
information is defined as

IL,L̄(QX , PY |X ) := HL̄(QY ) − HL̄|L(PY |X |QX ). (41)

Definition 8: Consider a subset L = {Ln ⊆ X n}∞n=1, a dis-
tribution QX (x), a conditional distribution PY |X (y|x), and
an induced marginal distribution QY (y). We say an auxiliary
subset L̄ = {L̄n ⊆ Yn}∞n=1 is (QX (x), PY |X (y|x),L)-smooth
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if both the subset entropy HL̄(QY ) and the conditional subset
entropy HL̄|L(PY |X |QX ) exist.

The quantity HL̄(QY ) is a subset entropy with respect to the
auxiliary subset L̄ on the Y domain. Therefore, as discussed
before, it satisfies the property 0 ≤ HL̄(QY ) ≤ H(QY ).

Comparing expressions (38) and (40) we see that, the con-
ditional subset entropy HL̄|L(PY |X |QX ) is an analog of the
conventional conditional entropy H(PY |X |QX ). We can readily
observe the appealing property that 0 ≤ HL̄|L(PY |X |QX ) ≤
H(PY |X |QX ) for any pair of distributions PY |X and QX .
In particular, for Ln = X n and L̄n = Yn , we have
HL̄|L(PY |X |QX ) = H(PY |X |QX ) for all pairs of distribu-
tions PY |X and QX .

We also need a further continuity condition on the con-
ditional subset entropy and subset mutual information as
introduced in the following definition.

Definition 9: Consider a subset L = {Ln ⊆ X n}∞n=1 and
a conditional distribution PY |X (y|x). We say the auxiliary
subset L̄ = {L̄n ⊆ Yn}∞n=1 is (PY |X (y|x),L)-smooth if
(i) the subset L̄ is (QX (x), PY |X (y|x),L)-smooth in the
sense of Definition 8 for all distributions QX (x) in a δn-
neighborhood of all subset-L-typical distributions Q∗

X (x) ∈
Q∗

X as defined in (33) for some δn satisfying the Delta-
Convention, and (ii) the corresponding subset entropy
HL̄(QY ) and the conditional subset entropy HL̄|L(PY |X |QX )
and hence the subset mutual information IL,L̄(QX , PY |X ) are
continuous in all those QX (x) distributions.

We now state our lossy compression results for smooth
subsets.

Theorem 3: For a discrete memoryless source P(x),
the rate-distortion function for any smooth subset L = {Ln ⊆
X n}∞n=1 satisfies

RL(D) ≤
max

Q∗
X ∈Q∗

X

inf
PY |X :E[d(X∗,Y ∗)]≤D

inf
L̄:(PY |X ,L)-smooth

IL,L̄(Q∗
X , PY |X ),

(42)

where: Q∗
X is the set of all subset-typical distributions as

defined in (33); IL,L̄(Q∗
X , PY |X ) is the subset mutual infor-

mation as in Definition 7; L̄ is the smooth auxiliary subset
as in Definition 9; and the pair of random variables (X∗, Y ∗)
are distributed according to Q∗

X (x)PY |X (y|x) so that

E[d(X∗, Y ∗)] =
∑
x,y

Q∗
X (x)PY |X (y|x)d(x, y). (43)

Proof: Proof is provided in Section V-C2. �
Theorem 3 presents a result that is analogous to the classical

rate-distortion result (2) for a DMS. This theorem mainly
states that a certain subset mutual information IL,L̄(Q∗

X , PY |X )
is critical to this achievability result for lossy compression of
smooth subsets. As in the classical rate-distortion result (2),
a key is minimization of this mutual information over the
conditional distributions PY |X (y|x) that satisfy the expected
distortion constraint E[d(X∗, Y ∗)] ≤ D. The fact that the
collection of subset-typical distributions Q∗

X plays a role in
this subset rate-distortion result has an intuition similar to
that for the lossless case, so that the balance between the

Fig. 2. Schematic description of Theorem 3 for lossy compression of
smooth subsets. The transformation of objects in the original X n domain
to the reconstruction Yn domain via the conditional distribution PY |X (y|x)
is illustrated. The source distribution is denoted by PX and its induced
distribution on the Y domain is denoted by PY . The subset-typical distribution
is denoted by Q∗

X and its induced distribution on the Y domain is denoted
by Q∗

Y . The dashed rings on both sides denote the typical sets corresponding to
different distributions. The original subset Ln ⊆ X n and the auxiliary subset
L̄n ⊆ Yn are depicted with the curved shapes. The circles on the right side
depict the conditional typical sets T n [PY |X |xn ]δn for several xn sequences
belonging to T n [Q∗

X ]δn ∩Ln . One observes that, the size of the intersection of
the auxiliary subset L̄n with different conditional typical sets T n [PY |X |xn ]δn
varies with the choice of xn , and the one with the least intersection size,
shown as a hatched circle, dictates the compression rate.

source statistics P and the subset structure L determines the
subset-typical sequences that must be encoded via the lossy
subset compression code, see the discussion below Theorem 2.
Further, if multiple subset-typical distributions Q∗

X (x) exist,
one must code for the worst case, hence the maxQ∗

X ∈Q∗
X

term
in (42).

The last key element of our lossy compression result in
Theorem 3 is the choice of an auxiliary subset L̄ = {L̄n ⊆
Yn}∞n=1 which is (PY |X (y|x),L)-smooth and minimizes the
subset mutual information IL,L̄(Q∗

X , PY |X ). Since the original
subset L = {Ln ⊆ X n}∞n=1 is considered to be smooth,
the (PY |X (y|x),L)-smoothness condition essentially requires
the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 to preserve the
structure of L under the stochastic transformation PY |X (y|x).
On the other hand, since we aim at minimizing the sub-
set mutual information IL,L̄(Q∗

X , PY |X ) as defined in (41),
we require the auxiliary subset L̄ to be large enough to
prevent an empty intersection L̄n ∩ T n[PY |X |xn]δn for all
xn ∈ T n

L[Q∗
X ]δn and therefore an infinite conditional subset

entropy HL̄|L(PY |X |Q∗
X ), but also small enough to achieve

a small intersection size
∣∣T n[Q∗

Y ]δn ∩ L̄n
∣∣ and thus a small

subset entropy HL̄(Q∗
Y ). Hence, the optimal auxiliary sub-

set L̄ = {L̄n ⊆ Yn}∞n=1 should be a good image of
the original subset L = {Ln ⊆ X n}∞n=1 in terms of the
scaling of the size of L under the stochastic transforma-
tion PY |X (y|x). This interpretation is schematically depicted
in Figure 2.

An immediate but possibly suboptimal selection for the
auxiliary subset L̄ is L̄n = Yn for all n. In this case, the subset
mutual information reduces to the average mutual information,
which readily gives the following achievable rate-distortion
result.
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Corollary 2: For a discrete memoryless source P(x),
the rate-distortion function for any smooth subset L = {Ln ⊆
X n}∞n=1 satisfies

RL(D) ≤ max
Q∗

X ∈Q∗
X

R(Q∗
X , D), (44)

where Q∗
X is the set of all subset-typical distributions as

defined in (33), and R(Q∗
X , D) is the standard rate-distortion

function (2) for distribution Q∗
X (x).

For the special case of symmetric subsets, the subset L fully
intersects the subset-typical distributions Q∗

X (x), therefore the
role of subset structure vanishes and a standard rate-distortion
code for this distribution is sufficient for the lossy compression
of the subset. By stating a proof of converse, we show that
the achievable rate-distortion in Corollary 2 is optimal for the
case of smooth symmetric subsets for which Q∗

X is unique.
Hence, we find the following simpler characterization for such
subsets.

Theorem 4: Consider a discrete memoryless source P(x)
and any smooth symmetric subset L = {Ln ⊆ X n}∞n=1 as in
Definition 5 for which the solution to

Q∗
X = arg min

Q:L∩T [Q]
=∅
D(Q�P) (45)

is unique. Then, the rate-distortion function for the subset L
is

RL(D) = R(Q∗
X , D), (46)

where R(Q∗
X , D) is the standard rate-distortion function (2)

for distribution Q∗
X (x).

Proof: Proof is provided in Section V-C3. �
As a sanity check, we can again observe that for the standard

case of Ln = X n , the subset-typical distribution is uniquely
given by Q∗

X ≡ P . Therefore, the specific characterization (46)
and in turn the more general bound (42) on the subset
rate-distortion formula reduce to the standard rate-distortion
function (2). It is worth mentioning that, one could also arrive
at the same result via Theorem 1 for likely subsets, since for
this case PXn [Xn ∈ Ln] = 1 for all n.

C. Proofs for Smooth Subsets

In the remainder of this section, we state the proof of our
compression results for smooth subsets. We provide the proofs
for achievability and strong converse of our lossless result,
Theorem 2, in Subsection V-C1; achievability of our lossy
result, Theorem 3, in Subsection V-C2; and strong converse
of the lossy result for smooth symmetric subsets, Theorem 4,
in Subsection V-C3.

Before starting with the proofs, we recall the notion of type
classes used frequently herein.

Definition 10 [29]: The type of a sequence xn is the
empirical distribution P̂xn (x) defined as

P̂xn (x) := 1

n
N(x; xn), ∀x ∈ X . (47)

Accordingly, the set of all sequences in X n with type P̂ is
denoted by T n(P̂) and called the type class of P̂.

One recalls from the method of types that, the number of the
distinct types in X n is only polynomial in n and does not
exceed (n + 1)|X |, a result referred to as the Type Counting
Lemma [29]. In the following, we frequently use the notations

T n
L(P̂) := Ln ∩ T n(P̂), T n

L[Q]δn := Ln ∩ T n[Q]δn , (48)

for the intersection of subset Ln ⊆ X n with type class T n(P̂)
and typical set T n[Q]δn , respectively.

1) Proof of the Lossless Result: In this part, we provide
the proof of Theorem 2 on lossless compression of smooth
subsets. The strong converse proof is inspired by [29, Pr. 2.6],
while the achievability proof readily builds upon the following
lemma, which is related to Sanov’s theorem [29, Pr. 2.12] and
summarizes the properties of typical sequences intersecting a
subset of the source.

Lemma 1: Consider a discrete memoryless source P(x),
a subset L = {Ln ⊆ X n}∞n=1, and a distribution Q(x)
intersecting the subset, L ∩ T [Q] 
= ∅. If the subset entropy
HL(Q) exists, then there exists some �n → 0 as n → ∞ such
that

2−n[gP (Q)+�n] ≤ PXn [Xn ∈ T n
L[Q]δn ] ≤ 2−n[gP (Q)−�n], (49)

where function gP(Q) is defined in (34). Moreover, if L is a
smooth subset, then

2
−n

[
min

Q:L∩T [Q]
=∅ gP (Q)+�n

]

≤ PXn [Xn ∈ Ln] ≤ (n + 1)|X |2
−n

[
min

Q:L∩T [Q]
=∅ gP (Q)−�n

]
.

(50)

Proof: Proof is provided in Appendix B. �
We are now ready to prove Theorem 2, which is inspired

by [29, Th. 2.15 and Pr. 2.6].
Proof (of Theorem 2): To prove the achievability side,

we consider the following code for the subset L = {Ln}∞n=1.
Fix an arbitrary � > 0. The encoder indexes all sequences xn

belonging to the set An defined as

An :=
⋃

P̂ :n-type, P̂∈�(3�)

T n
L(P̂), (51)

where

�(�):=
{

Q :L ∩ T [Q] 
= ∅, gP(Q)< min
Q:L∩T [Q]
=∅

gP(Q)+�

}
.

(52)

All other sequences in (Ln −An) lead to an error. Note that,
the use of min for gP(Q) in the definition (52) is justified
by the continuity of the subset entropy HL(Q) and thus the
function gP(Q). We can write

Pr[Xn ∈ (Ac
n ∩ Ln)]

=
∑

P̂:n-type, P̂ /∈�(3�)

PXn [Xn ∈ T n
L(P̂)] (53)

≤ (n + 1)|X | max
P̂ :n-type

P̂ /∈�(3�),T n
L( P̂) 
=∅

PXn [Xn ∈ T n
L(P̂)] (54)

≤ (n + 1)|X | max
Q /∈�(3�),L∩T [Q]
=∅

PXn [Xn ∈ T n
L[Q]δn ]. (55)
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Combining (55) and Lemma 1, the error probability is bounded
as

Pr[EL] = Pr[Xn /∈ An |Xn ∈ Ln] (56)

= Pr[Xn ∈ (Ac
n ∩ Ln)]

Pr[Xn ∈ Ln] (57)

≤ (n + 1)|X |2
−n

[
min

Q /∈�(3�),L∩T [Q]
=∅ gP (Q)−�n

]

2
−n

[
min

Q:L∩T [Q]
=∅ gP (Q)+�n

] . (58)

Therefore, from definition (52) of the set �(�), we have
proved the existence of a source code for subset L with
vanishing error probability, Pr[EL] ≤ (n + 1)|X |2−n� , and
achieving the compression rate

1

n
log |An| = 1

n
log

∑
P̂:n-type, P̂∈�(3�)

|T n
L(P̂)| (59)

≤ 1

n
log

(
(n + 1)|X | max

P̂:n-type, P̂∈�(3�)
|T n

L(P̂)|
)

(60)

≤ 1

n
log

(
(n + 1)|X | max

Q∈�(3�)
|T n

L[Q]δn |
)

(61)

≤ max
Q∈�(3�)

HL(Q) + ξn + |X | log(n + 1)

n
, (62)

where (60) follows from the Type Counting Lemma, and (62)
from (30) and the continuity of the subset entropy HL(Q).
This completes the achievability proof for Theorem 2 since
n → ∞ and the choice of � > 0 is arbitrary.

In the following, we prove a strong converse for Theorem 2,
that is, we prove any arbitrary lossless code for the subset L
with rate R < R∗

L has an error probability approaching one.

To this end, first let An := {xn( j)}2nR

j=1 be the set of encoded
sequences which will be correctly decoded, and note that the
Type Counting Lemma implies

Pr[Xn ∈ (An ∩ Ln)]
=

∑
P̂ :n-type

PXn [Xn ∈ (An ∩ T n
L(P̂))] (63)

≤ (n + 1)|X | max
P̂:n-type

T n
L( P̂) 
=∅

PXn [Xn ∈ (An ∩ T n
L(P̂))] (64)

≤ (n + 1)|X | max
Q:L∩T [Q]
=∅

PXn [Xn ∈ (An ∩ T n
L[Q]δn )].

(65)

However, we have for any distribution Q(x) that

PXn [Xn ∈ (An ∩ T n
L[Q]δn )]

≤ |An ∩ T n
L[Q]δn | max

xn∈T n[Q]δn

PXn (xn) (66)

≤ min{2nR, 2n[HL(Q)+ξn]} × 2−n[H(Q)+D(Q�P)−ξ �
n] (67)

= 2−n[gP (Q)+|HL(Q)−R+ξn|+−�n], (68)

where (67) follows form (30) and that PXn (xn) =
2−n[H( P̂xn )+D( P̂xn�P)] with some ξn → 0 and ξ �

n → 0 as
n → ∞ [1], [29], and (68) follows from the definition of

gP(Q) and �n := ξn +ξ �
n . Combining (65), (68) and Lemma 1,

the correct decoding probability is bounded as

1 − Pr[EL]
= Pr[Xn ∈ An |Xn ∈ Ln] (69)

= PXn [Xn ∈ (An ∩ Ln)]
PXn [Xn ∈ Ln] (70)

≤ (n + 1)|X |2
−n

[
min

Q:L∩T [Q]
=∅ gP (Q)+|HL(Q)−R+ξn|+−�n

]

2
−n

[
min

Q:L∩T [Q]
=∅ gP (Q)+�n

] .

(71)

Inspecting the lower bound (71) on error probability suggests
that, if R < HL(Q∗

X )−2�n for any distribution Q∗
X satisfying

gP(Q∗
X ) ≤ min

Q:L∩T [Q]
=∅
gP(Q)+3�n , then the error probability

is bounded at least as Pr[EL] ≥ 1 − (n + 1)|X |2−nξn . Since
�n and (n + 1)|X |2−nξn are both vanishing3 as n → ∞,
this proves the strong converse and completes the proof
of Theorem 2. �

2) Proof of the Lossy Result: In this part, we provide
the proof of Theorem 3 on lossy compression of smooth
subsets. The proof of this achievability result builds upon the
following lemma, which is an analog of the Type Covering
Lemma [29, Lemma 9.1] and states the rate sufficient for the
lossy compression of the intersection of the subset of interest
with a single type class.

Lemma 2 (The Subset-Type Covering Lemma): For any
type P̂X (x) of sequences in X n, any smooth subset L = {Ln ⊆
X n}∞n=1, any distortion measure d(x, y), any target distortion
level D ≥ 0, and any arbitrary constant δ, there exist a set
B(P̂X ,L) ⊆ Yn that satisfies

d(xn, B(P̂X ,L)) := min
yn∈B( P̂X ,L)

d(xn, yn) ≤ D,

∀xn ∈ T n
L(P̂X ), (72)

for sufficiently large n, and whose size is bounded as

1

n
log |B(P̂X ,L)| ≤

inf
PY |X :E[d(X,Y )]≤D

inf
L̄:( P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X ) + 3ξn,

(73)

where ξn → 0 as n → ∞, and L̄ := {L̄n ⊆ Yn}∞n=1 is a
(P̂X , PY |X ,L)-smooth auxiliary subset, and IL,L̄(P̂X , PY |X )
is the subset mutual information, both as introduced in
Definitions 7 and 8; and the expected distortion is calculated
with respect to the type distribution,

E[d(X, Y )] =
∑
x,y

P̂X (x)PY |X (y|x)d(x, y). (74)

Proof: Proof is provided in Appendix C. �
We are now ready to prove Theorem 3 with elements similar

to the proof of error exponents for the classical rate-distortion
problem [29, Th. 9.5] and our proof of the lossless subset
compression in Theorem 2.

3A sequence ξ̃n ≥ ξn can be found such that, as n → ∞, not only ξ̃n → 0
but also nξ̃n → ∞ and furthermore n|X ||Y| exp(−nξ̃n) → 0. Therefore,
we always assume that ξn satisfies the latter conditions.
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Proof (of Theorem 3): As in the achievability proof of
Theorem 2, we fix an arbitrary � > 0 and consider the
following lossy code for the subset L = {Ln ⊆ X n}∞n=1.
Using the Subset-Type Covering lemma above, we aim the
lossy compression of the following set of xn sequences.

An :=
⋃

P̂:n-type, P̂∈�(3�)

T n
L(P̂), (75)

where

�(�):=
{

Q :L ∩ T [Q] 
= ∅, gP(Q)< min
Q:L∩T [Q]
=∅

gP(Q)+�

}
.

(76)

Our lossy source code consists of the following reconstructions
sequences:

B(L) :=
⋃

P̂X :n-type, P̂X ∈�(3�)

B(P̂X ,L), (77)

where B(P̂X ,L) is the cover set for T n
L(P̂X ) as defined

in the Subset-Type Covering lemma above, so it has the
size

1

n
log |B(P̂X ,L)|

≤ inf
PY |X :E[d(X,Y )]≤D

inf
L̄:( P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X )+3ξn,

(78)

and satisfies d(xn, B(P̂X ,L)) ≤ D for all sequences xn ∈
T n
L(P̂X ). Therefore, we get for all sequences xn ∈ An that

d(xn, B(L)) ≤ d(xn, B(P̂xn ,L)) ≤ D, (79)

where P̂xn denotes the type of the sequence xn . We can
therefore bound the excess-distortion probability as
follows.

Pr[EL(D)] = Pr[d(Xn, Y n) > D|Xn ∈ Ln] (80)

≤ Pr[Xn /∈ An |Xn ∈ Ln] (81)

≤ (n + 1)|X |2
−n

[
min

Q /∈�(3�),L∩T [Q]
=∅ gP (Q)−�n

]

2
−n

[
min

Q:L∩T [Q]
=∅ gP (Q)+�n

]

≤ (n + 1)|X |2−n� , (82)

where the last line follows from our calculations in the
lossless case; cf. (53)-(58). Hence, it only remains to deter-
mine the compression rate. From the Subset-Type Cov-
ering Lemma above and the Type Counting Lemma, we
have

1

n
log |B(L)|

= 1

n
log

∑
P̂X :n-type, P̂X ∈�(3�)

|B(P̂X ,L)| (83)

≤ 1

n
log

(
(n + 1)|X | max

P̂X :n-type, P̂X ∈�(3�)
|B(P̂X ,L)|

)
(84)

≤ max
P̂X :n-type, P̂X ∈�(3�)

inf
PY |X :E[d(X,Y )]≤D

× inf
L̄:( P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X )

+ 3ξn + |X | log(n + 1)

n
(85)

≤ max
Q∈�(3�)

inf
PY |X :E[d(X,Y )]≤D

inf
L̄:(PY |X ,L)-smooth

IL,L̄(Q, PY |X )

+ 5ξn, (86)

where the last line follows from the continuity of the
subset mutual information IL,L̄(Q, PY |X ) for all distributions
in a neighborhood of the subset-typical distributions. Since
n → ∞ and the choice of � > 0 is arbitrary, this completes
the proof of Theorem 3. �

3) Proof of the Lossy Result for Symmetric Subsets: In this
part, we prove Theorem 4 on lossy compression of smooth
symmetric subsets. The achievability immediately follows
from Corollary 2. The converse is analogous to that for the
standard rate-distortion theorem [29, Th. 7.3] and uses the
following two technical lemmas.

The first technical lemma is a generalized
asymptotic equipartition property (AEP) and an analog
of [29, Lemma 2.12] which asserts that essentially all of
the probability mass of a smooth subset, symmetric or not,
is concentrated only in the subset-typical sequences.

Lemma 3: Consider a discrete memoryless source P(x)
and a smooth subset L = {Ln ⊆ X n}∞n=1 with the set of
subset-typical distributions Q∗

X as defined in (33). Then, there
exists a sequence �n → 0 as n → ∞ such that

Pr

⎡
⎣Xn ∈

⋃
Q∗

X ∈Q∗
X

T n
L[Q∗

X ]δn

∣∣∣∣Xn ∈ Ln

⎤
⎦ ≥ 1 − �n . (87)

Proof: Proof is provided in Appendix D. �
The second technical lemma is an analog of

[29, Lemma 2.14] and states that, when constrained to only
a smooth subset of the source realizations, symmetric or not,
any set with high probability has a size essentially no smaller
than the subset-typical set.

Lemma 4: Consider a discrete memoryless source P(x)
and a smooth subset L = {Ln ⊆ X n}∞n=1 for which the
subset-typical distribution Q∗

X (x) per (33) is unique. Given
0 < η < 1, there exists a sequence �n → 0 as n → ∞ such
that, if a set A ⊆ X n satisfies

Pr
[
Xn ∈ A | Xn ∈ Ln

] ≥ η, (88)

then

|A| ≥ 2n[HL(Q∗
X )−�n]. (89)

Proof: Proof is provided in Appendix E. �
We are now ready to prove the result for smooth symmetric

subsets.
Proof of Theorem 4): We only state the proof of

(strong) converse, since the achievability readily follows from
Corollary 2 as well as the fact that for smooth symmetric sub-
sets the function gP(Q) defined in (34) reduces to D(Q�P).
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Consider any arbitrary lossy code for subset L that uses M
codewords and satisfies

Pr
[
d
(
Xn, φ( f (Xn))

) ≤ D | Xn ∈ Ln
] ≥ 1 − �, (90)

for a potentially non-vanishing 0 < � < 1. Define the set A
as follows:

A := {xn ∈ T n
L[Q∗

X ]δn : d(xn, φ( f (xn))) ≤ D
}
. (91)

From Lemma 3, we have

Pr
[
Xn ∈ T n

L[Q∗
X ]δn | Xn ∈ Ln

] ≥ 1 − τn, (92)

for some τn → 0 as n → ∞. Then, the simple inequality
Pr[A ∩ B] ≥ Pr[A] − Pr[Bc] implies

Pr
[
Xn ∈ A | Xn ∈ Ln

] ≥ 1 − � − τn, (93)

which, on account of Lemma 4 and since HL(QX ) =
H(QX ) for all distributions QX (x) intersecting the subset L,
yields

|A| ≥ 2n[H(Q∗
X )−�n]. (94)

On the other hand, define the set of reconstruction codewords
corresponding to the set A as

C := {yn ∈ Yn : yn = φ( f (xn)) for some xn ∈ A} , (95)

and accordingly decompose the set A as follows.

A :=
⋃

yn∈C
A(yn), (96)

where for any fixed yn ∈ C we have defined

A(yn) := {xn ∈ A : φ( f (xn)) = yn} . (97)

We can further decompose all xn sequences belonging to
A(yn) according to their joint type P̂XY (x, y) with yn ,
so that

A(yn) =
⋃

P̂XY (x,y): n-joint type
E[d(X̂,Ŷ )]≤D

| P̂X (x)−Q∗
X(x)|≤δn

(
A(yn) ∩ T n

L(P̂X |Y |yn)
)

, (98)

where the constraints hold (i) since d(xn, φ( f (xn))) ≤ D for
all xn ∈ A implies E[d(X̂ , Ŷ )] ≤ D, and (ii) since xn ∈
A ⊆ T n[Q∗

X ]δn implies |P̂X (x) − Q∗
X (x)| ≤ δn for all x ∈ X .

Recalling that the size of the conditional type T n(P̂X |Y |yn)

for all yn ∈ T n(P̂Y ) satisfies∣∣∣T n(P̂X |Y |yn)
∣∣∣ ≤ 2nH( P̂X |Y | P̂Y ), (99)

we get

|A| ≤
∑
yn∈C

∣∣A(yn)
∣∣

≤ |C| · (n + 1)|X ||Y | max
P̂XY (x,y): n-joint type

E[d(X̂,Ŷ )]≤D
| P̂X (x)−Q∗

X(x)|≤δn

2nH( P̂X |Y | P̂Y ).

(100)

Combining (94) and (100), we have proved that the size of
any lossy code for the smooth symmetric subset L satisfies

M ≥ |C| ≥ (n + 1)−|X ||Y |

× exp

⎛
⎜⎜⎜⎜⎜⎝
n min

P̂XY (x,y): n-joint type
E[d(X̂,Ŷ )]≤D

| P̂X (x)−Q∗
X (x)|≤δn

[
H(Q∗

X )−H(P̂X |Y |P̂Y ) − �n

]
⎞
⎟⎟⎟⎟⎟⎠

.

(101)

Due to the continuity of the conditional Shannon entropy,
we have proved that

RL(D) ≥ min
PY |X :E[d(X∗,Y ∗)]≤D

I(Q∗
X , PY |X ) − 3�n. (102)

This concludes the proof of the strong converse and that
of Theorem 4. �

VI. FLUCTUATING SUBSETS

In this section, we consider fluctuating subsets which are
constructed by superimposing several subsets so that the
resulting subset takes the structure of each component for
certain time indices. In particular, we focus on subsets that
are not likely or smooth, but are fluctuating among a finite
number of such components. In such cases, one should code
for the worst subset component as described below. Before
stating our result, let us formally define these subsets.

Definition 11: Consider a finite collection of subsets L j =
{L j,n}∞n=1 with 1 ≤ j ≤ J as well as a finite collection of
infinite index subsequences n j = {n j,k}∞k=1 with 1 ≤ j ≤ J
such that for each n = 1, 2, · · · we have n = n j,k for a unique
pair ( j, k). We say L = {Ln}∞n=1 is an (L j , n j )

J
j=1-fluctuating

subset when Ln = L j,n if n ∈ {n j,k}∞k=1.
We are now ready to state our result for fluctuating subsets.
Theorem 5: Consider a discrete memoryless source P(x)

and an (L j , n j )
J
j=1-fluctuating subset. Then, the optimal loss-

less compression rate and rate-distortion function for the
subset L respectively satisfy:

R∗
L = max

1≤ j≤J
R∗
L j

, (103)

RL(D) = max
1≤ j≤J

RL j (D). (104)

Proof: We state only the proof for the lossless case; that
for the lossy case is very similar and we skip the details
for brevity. (Achievability) Fix an arbitrary � > 0. For each
1 ≤ j ≤ J , let {(m j,n, x̂ n

j )}∞n=1 be the optimal encoder and
decoder sequence for lossless compression of the subset L j ,
achieving a rate R∗

L j
+ � with vanishing error probability

Pr[X̂n
j 
= Xn |Xn ∈ L j,n] → 0 as n → ∞. We consider

the following code for the fluctuating subset: let mn ≡ m j,n

and x̂ n ≡ x̂ n
j if n ∈ {n j,k}∞k=1. Then, we have

lim sup
n→∞

Pr[X̂n 
= Xn |Xn ∈ Ln]
= max

1≤ j≤J
lim sup

n→∞
Pr[X̂n

j 
= Xn |Xn ∈ L j,n] = 0. (105)
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The rate of this code is max
1≤ j≤J

R∗
L j

+ �. Since � is arbitrary,

this completes the achievability proof in the lossless case.
(Converse) Assume R < max

1≤ j≤J
R∗
L j

, then at least one 1 ≤
j̄ ≤ J exists such that R < R∗

L j̄
. By the definition of R∗

L j̄
,

we have lim supn→∞ Pr[X̂n
j̄


= Xn |Xn ∈ L j̄ ,n] > 0 for any
arbitrary lossless code for the subset L j̄ with rate R. Hence,

lim sup
n→∞

Pr[X̂n 
= Xn |Xn ∈ Ln]
≥ lim sup

n→∞
Pr[X̂n

j̄

= Xn |Xn ∈ L j̄ ,n] > 0, (106)

which proves the converse for the fluctuating subset L for the
lossless case. �

If all components of a fluctuating subset are smooth, The-
orem 5 readily specializes as follows, using Theorem 2 and
Corollary 2.

Corollary 3: Consider a discrete memoryless source P(x);
an (L j , n j )

J
j=1-fluctuating subset whose components are all

smooth with subset typical distributions given by

Q∗
j = arg min

Q:L j∩T [Q]
=∅
[H(Q)−HL j(Q)+D(Q�P)]. (107)

Then, the optimal lossless compression rate for the fluctuating
subset L is

R∗
L = max

1≤ j≤J
max

Q∗
j ∈Q∗

j

HL j (Q∗
j ), (108)

and the rate-distortion function for the subset L satisfies

RL(D) ≤ max
1≤ j≤J

max
Q∗

j∈Q∗
j

R(Q∗
j , D), (109)

where R(Q∗
j , D) is the standard rate-distortion function (2)

for distribution Q∗
j (x).

VII. EXAMPLES

In this section, we present several examples to better
illustrate our models and results. In all of these examples,
we consider a binary DMS, X = {0, 1}, with a Bernoulli
distribution B(p) with parameter 0 ≤ p ≤ 1/2. The funda-
mental limit of lossless compression is given by the source
entropy, which is R∗ = Hb(p) for this source. The lossy
compression is considered with respect to the Hamming dis-
tance. In particular, the rate-distortion function of the source is
R(D) = Hb(p)− Hb(D) if 0 ≤ D ≤ p and R(D) = 0 if D >
p [1]. In this section, we frequently use some notations: the
Hamming weight wH (xn) of a binary sequence xn , the binary
convolution operation p ∗ q := pq̄ + p̄q , the binary entropy
function Hb(p) := −p log p − (1 − p) log(1 − p), and the
binary divergence function Db(q�p) := q log(q/p) + (1 −
q) log ((1 − q)/(1 − p)).

We first focus on two examples with symmetric subsets.
Example 1: Consider L = {Ln}∞n=1 with

Ln := {xn ∈ X n : wH (xn) = �nq�}, 0 ≤ q ≤ 1. (110)

This subset is smooth and symmetric, and B(q) is the only
distribution that intersects the subset L. One can verify the
latter by computing HL(B(q)) as defined in Definition 3 based

Fig. 3. Comparison of the subset rate-distortion function of Example 1,
binary sequences with normalized Hamming weight q, with the rate-distortion
function of the source for a Bernoulli DMS with parameter p = 0.11.

on the normalized log-size of the intersection of the subset Ln

with the typical set corresponding to B(q). The symmetric
property is trivial based on the weight constraint. Finally,
the smoothness property comes from the fact that the function
gP(Q) = Db(q�p) introduced in (34) is defined only at one
q point, so is trivially continuous in q . Therefore, Q∗

X = B(q).
We obtain from Corollary 1 for the lossless compression that

R∗
L = H(Q∗

X ) = Hb(q), (111)

and from Theorem 4 for the lossy compression that

RL(D) = R(Q∗
X , D)

=
{

Hb(q) − Hb(D), 0 ≤ D ≤ min{q, q̄}
0, D > min{q, q̄}, (112)

where the latter follows from the calculations for the standard
rate-distortion function of the binary source [1], [2]. It is
evident that the optimal lossless compression rate (111) for this
subset can be below or above the source entropy. Similarly,
the subset rate-distortion function (112) in this example can
be below or above the rate-distortion function of the source;
cf., Remark 5. We illustrate the latter comparison in Figure 3.
The subset in this example, in the limit of large n, converges
to an i.i.d. probability distribution, therefore falls in the
framework of CoLT as discussed in [1] and [18]. Accordingly,
a CoLT-based analysis, as discussed in Section III-B, can be
also invoked to derive similar results for this example.

Example 2: Consider L = {Ln}∞n=1 with

Ln := {xn ∈ X n : 0 ≤ wH (xn) ≤ nq}, 0 ≤ q ≤ 1. (113)

For the case q ≥ p, the subset is likely so Theorem 1 implies
that R∗

L = R∗ = Hb(p), and RL(D) = R(D) = Hb(p) −
Hb(D) for 0 ≤ D ≤ p and RL(D) = R(D) = 0 for D > p.
This subset is again smooth and symmetric. Moreover, B(q̄)
with 0 ≤ q̄ ≤ q are the only distributions that intersect the
subset L and Hb(q̄) is continuous over the interval 0 ≤ q̄ ≤ q .
One can verify these properties similar to Example 1, with the
only exception that smoothness now follows from the function
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Fig. 4. Comparison of the subset rate-distortion function of Example 2,
binary sequences with normalized Hamming weight not exceeding q, with
the rate-distortion function of the source for a Bernoulli DMS with parameter
p = 0.11.

gP(Q) = Db(q̄�p) being continuous in q̄ over the interval
0 ≤ q̄ ≤ q . Therefore, the subset-typical distribution is given
by Q∗

X = B(q∗), where

q∗ = arg min
q̄:0≤q̄≤q

Db(q̄�p) = min{q, p}. (114)

Hence, we can use Corollary 1 to obtain for the optimal
lossless compression rate that

R∗
L = H(Q∗

X ) = Hb (min{q, p}) . (115)

Analogously, we can use Theorem 4 to obtain for the subset
rate-distortion that

RL(D) = R(Q∗
X , D)

=
{

Hb (min{q, p}) − Hb(D), 0 ≤ D ≤ min{q, p}
0, D > min{q, p}.

(116)

It is evident that the optimal lossless compression rate for this
subset never exceeds the source entropy. Similarly, the rate-
distortion satisfies RL(D) ≤ R(D) for all distortion values D.
We illustrate the latter comparison in Figure 4. As both the
formulas and the figures suggest, if q < p, a strictly positive
rate gain can be achieved in both the lossless and lossy case
by focusing only on the subset.
The subset in this example, in the limit of large n, converges to
a convex set of i.i.d. probability distributions, therefore falls in
the framework of CoLT as discussed in [1] and [18]. Accord-
ingly, a CoLT-based analysis, as discussed in Section III-B,
can be also invoked to derive similar results for this example.

In the following, we consider two smooth but non-
symmetric examples to which Corollary 1 and Theorem 4
do not apply and instead require Theorems 2 and 3 and
Corollary 2.

Example 3: Consider L = {Ln}∞n=1 with

Ln :={xn ∈ X n:wH (xn)=�nq�, xn has no consecutive 1s},
(117)

where 0 ≤ q ≤ 1/2, since clearly Ln = ∅ with q > 1/2.

Fig. 5. Comparison of the optimal lossless subset-compression rate of
Example 3, binary sequences with normalized Hamming weight q and with no
consecutive 1s, with the source entropy for a Bernoulli DMS with parameter
p = 0.11.

This subset is not likely since it has exponentially small
probability. However, it is smooth, and the only distribution
that intersects the subset L is B(q) with a subset entropy given
by

HL(B(q)) = lim
n→∞

1

n
log

(
n − �nq� + 1

�nq�
)

= (1 − q)Hb

(
q

1 − q

)
. (118)

Therefore, we obtain from Theorem 2 for the lossless com-
pression rate of this subset that

R∗
L = HL(B(q)) = (1 − q)Hb

(
q

1 − q

)
. (119)

A plot of this compression rate is illustrated in Figure 5, which
shows the subset compression rate (119) can be below or above
the source entropy.
For the lossy compression, we can use Corollary 2 to obtain
the following achievable rate-distortion pair:

R(1)
L (D) =

{
Hb(q) − Hb(D), 0 ≤ D ≤ q,

0, D > q.
(120)

We can also use Theorem 3 to obtain another achievable rate-
distortion pair. Let 0 ≤ D ≤ q , and consider the following
conditional distribution:

PY |X (0|0) = 1, PY |X (0|1) = D/q, (121)

so that Q∗
Y = B(q − D). Note that, PY |X (1|0) = 0 under

this conditional distribution, thus no 0 in xn will flip to a 1
in yn , hence the no-consecutive-1 structure will be preserved
by the stochastic transformation from x to y. Also, note that
E[d(X∗, Y ∗)] = Pr[X∗ 
= Y ∗] = D. Now, consider the
auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 with

L̄n :={yn ∈ Yn : yn has no consecutive 1s}. (122)
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Fig. 6. Comparison of the subset rate-distortion function of Example 3,
binary sequences with normalized Hamming weight q and with no consecutive
1s, with the rate-distortion function of the source for a Bernoulli DMS with
parameter p = 0.11.

In this case, we get

HL̄(Q∗
Y ) = lim

n→∞
1

n
log

(
n − n(q − D) + 1

n(q − D)

)

= (1 − q + D)Hb

(
q − D

1 − q + D

)
(123)

and

HL̄|L(PY |X |Q∗
X ) = lim

n→∞
1

n
log

(
nq

nD

)
= q Hb

(
D

q

)
, (124)

so we obtain the following achievable rate-distortion pair:

R(2)
L (D)=

{
(1−q+D)Hb

(
q−D

1−q+D

)
−q Hb

(
D
q

)
, 0≤ D ≤q,

0, D > q.

(125)

Hence, we arrive at the following result:

RL(D) ≤ min{R(1)
L (D), R(2)

L (D)}. (126)

Note that, (126) is not a convex function in D, and it is
unclear whether time-sharing can be applied to this subset to
convexify the result, since a portion of a sequence belonging
to this subset may not retain the same weight condition as in
the original sequence; see Remark 2. In any case, even the
achievable rate-distortion (126) already shows gains over the
rate-distortion function of the original source for some cases,
as shown in Figure 6.
The subset in this example, in the limit of large n, converges to
a Markov chain, therefore falls in the framework of CoLT for
Markov processes as discussed in [36] and [40]. In principle,
a CoLT-based analysis with appropriate extensions, as dis-
cussed in Section III-B, can be also invoked to derive similar
results for this example.

Example 4: Consider L = {Ln}∞n=1 with

Ln := {xn ∈ X n : xn has no consecutive 1s}. (127)

Again, Theorem 1 does not apply since the subset is not likely.
In order to employ Theorems 2 and 3, we first note that all

Fig. 7. Comparison of the optimal lossless subset-compression rate of
Example 4, binary sequences with no consecutive 1s, with the source entropy
for a Bernoulli DMS with parameter p.

distributions B(q) with 0 ≤ q ≤ 1/2 intersect the subset L,
and each has a subset entropy given by (118). Therefore,
this subset is smooth, and its subset-typical distribution is
Q∗

X = B(q∗) where

q∗= arg min
0≤q≤1/2

[
Hb(q)−(1 − q)Hb

(
q

1 − q

)
+Db(q�p)

]
.

(128)

Hence, we obtain from Theorem 2 for the optimal lossless
compression rate of this subset that

R∗
L = (1 − q∗)Hb

(
q∗

1−q∗
)

. (129)

A plot of this subset-compression rate is illustrated
in Figure 7, which shows the optimal lossless compres-
sion rate (129) of this subset is always below the source
entropy.
For the lossy compression of this subset, we can use
Corollary 2 to find an achievable rate-distortion pair as
follows.

R(1)
L (D) =

{
Hb(q∗) − Hb(D), 0 ≤ D ≤ q∗

0, D > q∗.
(130)

We can also build on Theorem 3 to obtain another achievable
rate-distortion pair. Let 0 ≤ D ≤ q∗, and consider the
following conditional distribution:

PY |X (0|0) = 1, PY |X (0|1) = D/q∗, (131)

so that Q∗
Y = B(q∗ − D). Note that, PY |X (1|0) = 0 under this

conditional distribution, thus no 0 in xn will flip to a 1 in yn ,
hence the no-consecutive-1 structure will be preserved. Also,
note that E[d(X∗, Y ∗)] = Pr[X∗ 
= Y ∗] = D. Now, consider
the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 with

L̄n :={yn ∈ Yn : yn has no consecutive 1s}. (132)
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Fig. 8. Comparison of the achievable rate-distortion pair (136) and its
components for the subset in Example 4, binary sequences with no consecutive
1s, with the rate-distortion function of the source for a Bernoulli DMS with
parameter p = 0.11.

In this case, similar to (123) and (124), we get

HL̄(Q∗
Y ) = (1 − q∗ + D)Hb

(
q∗ − D

1 − q∗ + D

)
, (133)

HL̄|L(PY |X |Q∗
X ) = q∗Hb

(
D

q∗

)
, (134)

and obtain the following achievable rate-distortion pair:

R(2)
L (D)=

{
(1−q∗+D)Hb

(
q∗−D

1−q∗+D

)
−q∗Hb

(
D
q∗
)
, 0 ≤ D ≤ q∗

0, D > q∗.
(135)

Note that, unlike Example 3, we can use time-sharing for this
subset, since any portion of a sequence belonging to this subset
will also have no consecutive ones. Hence, we arrive at the
following result:

RL(D) ≤ l.c.e.
(

min{R(1)
L (D), R(2)

L (D)}
)

, (136)

where l.c.e. stands for the lower convex envelope operation.
This immediately implies that RL(D) = 0 for D > q∗, but
since no converse for our Theorem 3 is currently known,
we cannot guarantee that (136) is optimal for 0 ≤ D ≤ q∗.
However, Figure 8 shows that even the achievable subset
rate-distortion in (136) can sometimes outperform the rate-
distortion function of the original source and already provide
lossy compression gains.
The subset in this example, in the limit of large n, converges
to a set of Markov chains, therefore falls in the framework
of CoLT for Markov processes as discussed in [36] and [40].
In principle, a CoLT-based analysis with appropriate exten-
sions, as discussed in Section III-B, can be also invoked to
derive similar results for this example.

Finally, we present a fluctuating example for which
Theorems 2 and 3 are not directly applicable. However, the

characterizations of Theorem 5 and Corollary 3 facilitate the
analysis.

Example 5: Consider a subset L1 = {L1,n}∞n=1 with

L1,n := {xn ∈ X n : nq1 ≤ wH (xn) ≤ nq2,

xn has no consecutive 1s}, (137)

for some 0 ≤ q1 ≤ q2 ≤ 1/2, and another subset L2 =
{L2,n}∞n=1 with

L2,n := {xn ∈ X n : nw1 ≤ wH (xn) ≤ nw2,

xn has 1s only in even positions}, (138)

for some 0 ≤ w1 ≤ w2 ≤ 1/2. Now, consider the fluctuating
subset L = {Ln}∞n=1 with

Ln :=
{
L1,n if n odd

L2,n if n even
. (139)

Note that, Theorem 1 does not apply since the fluctuating
subset L is not likely, and Theorems 2 and 3 do not apply
since the subset is not smooth. However, both components are
smooth subsets. In particular, the first subset component L1 is
smooth and intersects all distributions B(q) with q1 ≤ q ≤ q2,
so that its subset-typical distribution is Q∗(1)

X = B(q∗) where

q∗= arg min
q1≤q≤q2

[
Hb(q)−(1 − q)Hb

(
q

1 − q

)
+Db(q�p)

]
.

(140)

An analysis similar to those in Examples 3 and 4 implies for
the lossless compression that

R∗
L1

= (1 − q∗)Hb

(
q∗

1 − q∗

)
, (141)

and for lossy compression that

RL1(D) ≤ min{R(1)
L1

(D), R(2)
L1

(D)}, (142)

where R(1)
L1

(D) and R(2)
L2

(D) are as in (130) and (135),
respectively, with q∗ as given in (140). Note that, (142) is
not a convex function in D, and it is unclear whether a time-
sharing argument can be applied to this subset to convexify the
result, since a portion of a sequence belonging to this subset
may not retain the same weight structure as that in the original
sequence.

The second subset component L2 is also smooth and inter-
sects all distributions B(w) with w1 ≤ w ≤ w2 with a subset
entropy given by

HL(B(w)) = lim
n→∞

1

n
log

(�n/2�
�nw�

)
= 1

2
Hb(2w), (143)

so that Q∗(2)
X = B(w∗) where

w∗ = arg min
w1≤w≤w2

[
Hb(w) − 1

2
Hb(2w) + Db(w�p)

]
. (144)

We can then use Theorem 2 to find for the optimal lossless
compression rate of this subset that

R∗
L2

= 1

2
Hb(2w∗), (145)
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Fig. 9. The optimal lossless compression rate of the fluctuating subset of
Example 5 for a binary DMS with fixed parameter p = 0.08 and varying
subset parameters q1 = 0, q2 = 0.4w, w1 = w2 = w where 0 ≤ w ≤ 1/2.

and apply Corollary 2 to get for the lossy compression that

RL2(D) ≤
{

Hb(w
∗) − Hb(D), 0 ≤ D ≤ w∗

0, D > w∗.
(146)

Substituting (141) and (145) in Theorem 5 yields for the
lossless compression of the fluctuating that

R∗
L = max

{
R∗
L1

, R∗
L2

}

= max

{
(1 − q∗)Hb

(
q∗

1 − q∗

)
,

1

2
Hb(2w∗)

}
. (147)

To show the different aspects of this scenario, we make two
comparisons for the lossless case. In one case, we fix the
source distribution to p = 0.08 and vary the subset parameters
as q1 = 0, q2 = 0.4w and w1 = w2 = w where 0 ≤ w ≤ 1/2.
The lossless compression rate for this fluctuating subset is
shown in Figure 9. The compression rate is observed to be
dominated by that of the second subset for smaller values of
w and by that of the first subset for larger values of w. One also
notes that the optimal subset-compression rate in this case can
be below or above the source entropy Hb(p). In the second
case, we fix the subset parameters to q1 = 0, q2 = 0.09
and w1 = 0, w2 = 0.18 and vary the source distribution as
0 ≤ p ≤ 1/2. The lossless compression rate for this fluctuating
subset is shown in Figure 10. In this case, the compression
rate of the fluctuating subset is observed to be dominated by
that of the first subset for smaller values of p and by that of
the second subset for larger values of p. In either situations,
however, the subset-compression rate always remains below
the source entropy.

Analogously, substituting (142) and (146) in Theorem 5
yields for lossy compression of the fluctuating subset that

RL(D) ≤ max
{

min{R(1)
L1

(D), R(2)
L1

(D)}, RL2(D)
}
. (148)

This readily implies RL(D) = 0 for D > max{q∗, w∗}, but
the optimality of (148) for 0 ≤ D ≤ max{q∗, w∗} is unknown
in the absence of a converse for our Theorem 3. For instance,

Fig. 10. The optimal lossless compression rate of the fluctuating subset of
Example 5 for fixed subset parameters q1 = 0, q2 = 0.09 and w1 = 0,
w2 = 0.18 and a binary DMS with varying parameter 0 ≤ p ≤ 1/2.

Fig. 11. The achievable rate-distortion pair via (142) and (146) for the
fluctuating subset of Example 5 with parameters q1 = 0, q2 = 0.4w, w1 =
w2 = w = 0.05 and a binary DMS with parameter p = 0.08.

the compression rate currently achieved by (148) for the zero-
distortion case, D = 0, is

max

{
(1 − q∗)Hb

(
q∗

1 − q∗

)
, Hb(w

∗)
}
, (149)

which is strictly worse than the anticipated result from the
lossless analysis (147). However, Figure 12 shows that even
the achievable subset rate-distortion in (148) can sometimes
outperform the rate-distortion function of the original source
and already provide lossy compression gains. Furthermore,
depending on the parameter selection and the distortion value,
the performance of the fluctuating subset may be dominated
by that of one subset component or the other.
The subset components in this example, in the limit of
large n, are intersections of a convex set of i.i.d. probability
distributions with a Markov chain. Therefore, in principle, one
might be able to invoke certain methods (e.g., Bayes’ rule)
to apply the framework of CoLT for i.i.d. distributions as
in [1] and [18] and that for Markov processes as
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Fig. 12. The achievable rate-distortion pair via (142) and (146) for the
fluctuating subset of Example 5 with parameters q1 = 0, q2 = 0.09 and
w1 = 0, w2 = 0.18 and a binary DMS with parameter p = 0.08.

in [36] and [40], after appropriate extensions as discussed in
Section III-B. However, the fluctuating source property is a
different aspect, which apparently needs new forms of CoLT
(with the quasi-independence feature).

VIII. GENERALIZATION TO SUBSETS

WITH WEIGHTED PRIORITIES

In this section, we describe a generalization of our frame-
work to subsets with weighted priorities. Our main framework,
as explained in Section II, can be thought of as a 0-1 priority
setting, in which the sequences xn belonging to the subset
Ln are the only focus and have a weight of 1, and all
other sequences xn outside Ln are not important at all and
have a weight of 0. A more general setting can be one in
which different weights between 0 and 1 can be assigned to
sequences, each capturing the relative importance or priorities
of the sequences. One can consider this as a source coding
dual of the unequal error protection problem in channel
coding [30], [31].

In particular, consider the subset L = {Ln ⊆ X n}n
n=1 and a

fixed partition of it such that

Ln =
K⋃

k=1

Sn,k , (150)

with Sn,k ∩ Sn,k� = ∅ for all n = 1, 2, · · · and any k 
= k � ∈
{1, · · · , K } for a fixed finite number K . Accordingly, for each
k = 1, · · · , K , consider the partition components as individual
subsets as defined below.

Sk = {Sn,k
}∞

n=1 , (151)

and denote the overall partition by S = (S1, · · · ,SK ). Now,
consider a priority or weight vector w = (w1, · · · , wK ) such
that 0 ≤ wk ≤ 1 and

∑K
k=1 wk = 1. Here, wk represents the

priority of the partition Sk .
We define an (n, 2nR) lossless code for the subset L with

partition S and weight vector w to consist of an encoder

m : Ln → {1, 2, · · · , 2nR} and a decoder x̂ n :
{1, 2, · · · , 2nR} → Ln ∪ {E} with error probability

Pr[ES,w] :=
K∑

k=1

wk Pr[X̂n 
= Xn |Xn ∈ Sn,k]. (152)

A rate R is called achievable if a sequence of (n, 2nR) lossless
codes for the subset L with partition S and weight vector w
exists such that Pr[ES,w] → 0 as n → ∞. The optimal lossless
subset compression rate R∗

S,w is the infimum of all achievable
rates.

Analogously, we define an (n, 2nR) lossy code with distor-
tion level D for the subset L with partition S and weight vector
w to consist of an encoder f : Ln → {1, 2, · · · , 2nR} and a
decoder φ : {1, 2, · · · , 2nR} → Yn with the excess-distortion
probability

Pr[ES,w(D)] :=
K∑

k=1

wk Pr[d(Xn, Y n)> D|Xn ∈ Sn,k ]. (153)

A rate-distortion pair (R, D) is called achievable if a sequence
of (n, 2nR) lossy codes for the subset L with partition S and
weight vector w exists such that Pr[ES,w(D)] → 0 as n → ∞.
The subset rate-distortion function RS,w(D) is the infimum
of all rates R for which the rate-distortion pair (R, D) is
achievable.

Our main result below states that, the performance is
dictated by that of the worst partition component. In particular,
the priority or weight vector does not affect the performance,
so long as the number or weight of the partition does not
vary with n. Hence, an immediate consequence of Theorem 6
below is that, even for this generalized model with weighted
priorities, we can stay within the original framework of
Section II and use the results we have already developed in
Sections IV, V, and VI.

Theorem 6: For a discrete memoryless source P(x) and a
subset L = {Ln ⊆ X n}∞n=1 with partition S = (S1, · · · ,SK )
and weight vector w = (w1, · · · , wK ), where K is a
finite integer, the optimal lossless subset-compression rate
is

R∗
S,w = max

1≤k≤K
R∗
Sk

, (154)

and the subset rate-distortion function is

RS,w(D) = max
1≤k≤K

RSk (D). (155)

Proof: We state only the proof for the lossless case; that
for the lossy case is very similar and we skip the details
for brevity. (Achievability) Fix an arbitrary � > 0. For each
1 ≤ k ≤ K , let {(mn,k, x̂ n

k )}∞n=1 be the optimal encoder and
decoder sequence for lossless compression of the partition
component Sk , achieving a rate R∗

Sk
+ � with vanishing error

probability Pr[X̂n
k 
= Xn |Xn ∈ Sn,k] → 0 as n → ∞.

We consider the following code for the weighted subset L:
let mn(xn) = (k, mn,k(xn)) if xn ∈ Sn,k , and set x̂ n(k, m) =
x̂ n

k (m); basically, we juxtapose the partition index with the
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codeword used within that partition. Then, we have

lim sup
n→∞

K∑
k=1

wk Pr[X̂n
k 
= Xn |Xn ∈ Sn,k ]

=
K∑

k=1

wk lim sup
n→∞

Pr[X̂n
k 
= Xn |Xn ∈ Sn,k ] = 0. (156)

The rate of this code is

lim
n→∞

1

n
log

K∑
k=1

2
n(R∗

Sk
+�) = max

1≤k≤K
R∗
Sk

+ �. (157)

Since � is arbitrary, this completes the achievability proof in
the lossless case.

(Converse) Consider any arbitrary code of rate R for sub-
set L with partition S and weight vector w such that

lim sup
n→∞

K∑
k=1

wk Pr[X̂n
k 
= Xn |Xn ∈ Sn,k ] = 0. (158)

Then, since none of the weights wk varies with n, we must
have for all 1 ≤ k ≤ K that

lim sup
n→∞

Pr[X̂n
k 
= Xn |Xn ∈ Sn,k ] = 0. (159)

The definition of R∗
Sk

then implies that R > R∗
Sk

for all
1 ≤ k ≤ K , which in turn implies R > max

1≤k≤K
R∗
Sk

and

proves the converse for the weighted subset L in the lossless
case. �

IX. CONCLUDING REMARKS

A. Recap of the Results

We have provided a framework for lossless and lossy com-
pression of subsets of discrete memoryless sources as well as
several optimality results for broad classes of subsets including
likely subsets, smooth subsets, fluctuating subsets, and subsets
with weighted priorities. In particular, for smooth subsets that
intersect only a continuous range of distributions, we have
demonstrated that the lossless compression performance is
mainly dictated by subset-typical distributions that optimize
the trade-off between the closeness to the source statistics
and the size of intersection with the subset. Moreover, lossy
compression of smooth subsets involves covering the subset-
typical sequences with those conditionally typical sequences of
the reconstruction alphabet that belong to an auxiliary subset,
which is smooth by selection. In our proposed achievability,
the number of cover sequences is related to the size of the
smallest intersection of the conditional typical sets with the
selected auxiliary subset. Therefore, achieving lower compres-
sion rates requires a smart selection of the auxiliary subset
that is a good image of the original subset and preserves its
structure.

B. Discussion on Computability of the Results

One very valid concern about the results presented in this
paper is regarding the extent to which computation of these
fundamental results is possible for various subset structures.

We believe, the end goal of such studies as ours, at least in
part, is to facilitate computable fundamental limits. In this
subsection, we would like to clarify this issue and (at least
partially) resolve this concern.

In this paper, we have identified several classes of subsets
(likely, smooth, fluctuating, weighted priorities) for which we
can compute the fundamental limits exactly or via bounds.
We have also presented, in Section VII, several exam-
ples from more basic structures to more complex ones to
showcase some computation scenarios. Of course, our main
intention from providing these examples has been to demon-
strate the implications of imposing structures on the data
compression problem and to show in what situations one
might get a gain (or, perhaps surprisingly, loss) by only
focusing on a subset of realizations, rather than the entire
ensemble.

Our results, similar to many well-known results in prob-
ability and information theory, facilitate rather nice, closed-
form, and computable solutions provided a “nice structure”
is considered in the problem setting. For example, in Sanvo’s
theorem and CoLT (with exact or quasi independence), one
obtains computable results by focusing on closed and (almost
completely) convex sets E of probability distributions, such
as those resulting from empirical block average or Markov-
ian/sliding empirical block average constraints. Similarly,
we focus on smooth subsets that satisfy certain regularity
conditions. Our results for fluctuating subsets and subset
with weighted priorities are attempts towards more general
subsets/structures.

In the problem of subset source coding, our objective
functions are the subset entropy HL(PX ) or the subset
mutual information terms IL,L̄(PX , PY |X ) that are, in gen-
eral, non-convex objective functions. Moreover, the opti-
mization is over subsets that are, in general, non-convex
domains. Therefore, the limits might not be necessarily com-
putable if we consider arbitrary structures. Following the
discussion in section III-A, imposing completely arbitrary
structures on the subset L quickly turns the problem into
compression of non-stationary and non-ergodic equivalent
sources, for which a closed-form, computable solution usually
appears far from rich and therefore outside the scope of our
work.

As a final remark, we would like to mention that, our
generic results on performance limits of rather arbitrary
subsets provide at least some insights into the key issues
arising in the problem of subset source coding. In that
sense, at least to some extent, we may compare our treat-
ment with that of the information spectrum approach of
Verdú-Han [28] for non-stationary and non-ergodic sources,
whose results are very interesting and insightful but, in gen-
eral, non-computable. Arguably, the only new scenario for
which the information spectrum approach can provide com-
putable results is for the fundamental performance limits
of mixed sources and channels with general mixtures [28].
In our work, the category of fluctuating subsets, whose struc-
ture switches among a few options as showcased in our
Example 5, has a similar spirit and facilitate computable
results.
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C. Future Directions

We envision at least two immediate directions for future
research on this topic. One is to expand the setting of
subsets with weighted priorities in Section VIII to partitions
whose number Kn or weight vector wn rapidly varies with
blocklength n. Additionally, compression limits of subsets not
covered by our current analysis is of future interest.

APPENDIX A
ANALYSIS OF THE EQUIVALENT CONDITIONAL SOURCE

For the equivalent conditional source X̃n defined as

PX̃n (xn) := PXn (xn)

PXn [Xn ∈ Ln]1{xn ∈ Ln}, (160)

the fundamental lossless compression rate is identical to
our R∗

L of interest since the error probability for both cases is
the same:

Pr[X̂n 
= Xn |Xn ∈ Ln]
= PXn [X̂n 
= Xn, Xn ∈ Ln]

PXn [Xn ∈ Ln] (161)

=
∑

xn PXn (xn)1{x̂(m(xn)) 
= xn, xn ∈ Ln}
PXn [Xn ∈ Ln] (162)

=
∑
xn

PXn (xn)

PXn [Xn ∈ Ln]1{xn ∈ Ln} · 1{x̂(m(xn)) 
= xn}
(163)

=
∑
xn

PX̃n (xn)1{x̂(m(xn)) 
= xn} (164)

= Pr[̂̃Xn 
= X̃n]. (165)

Analogously, the fundamental lossy compression rate of this
equivalent conditional source is identical to our RL(D) of
interest since the probability of excess-distortion for both cases
is the same:

Pr[d(Xn, Y n) > D|Xn ∈ Ln]
= PXn [d(Xn, Y n) > D, Xn ∈ Ln]

PXn [Xn ∈ Ln] (166)

=
∑

xn PXn (xn)1{d(xn, φ( f (xn))) > D, xn ∈ Ln}
PXn [Xn ∈ Ln] (167)

=
∑
xn

PXn (xn)

PXn [Xn ∈Ln]1{xn ∈ Ln}·1{d(xn, φ( f (xn)))> D}
(168)

=
∑
xn

PX̃n (xn)1{d(xn, φ( f (xn))) > D} (169)

= Pr[d(X̃n, Y n) > D]. (170)

APPENDIX B
PROOF OF LEMMA 1

Recall from the properties of type classes that, all
sequences xn ∈ T n(P̂) satisfy [29]

PXn (xn) = 2−n[H( P̂)+D( P̂�P)]. (171)

On the other hand, the existence of the subset entropy HL(Q)
as defined in (30) implies that, there exists some ξn → 0 as
n → ∞ such that

HL(Q) − ξn ≤ 1

n
log
∣∣T n

L[Q]δn

∣∣ ≤ HL(Q) + ξn . (172)

Now, note that

|T n
L[Q]δn | min

xn∈T n[Q]δn

PXn (xn) ≤ PXn [Xn ∈ T n
L[Q]δn ]

≤ |T n
L[Q]δn | max

xn∈T n [Q]δn

PXn (xn). (173)

But, (171) and the continuity of the Shannon entropy and
relative entropy implies the existence of some ξ �

n → 0 such
that

min
xn∈T n [Q]δn

PXn (xn) ≥ 2−n[H(Q)+D(Q�P)+ξ �
n],

max
xn∈T n [Q]δn

PXn (xn) ≤ 2−n[H(Q)+D(Q�P)−ξ �
n]. (174)

Combining (173) with (172), (174), and recalling the definition
of the function gP(Q) in (34) completes the proof of the first
part of the lemma in (49) with �n := ξn + ξ �

n .
To prove the second part, we note that

PXn [Xn ∈ Ln] = PXn [Xn ∈
⋃

P̂:n-type

T n
L(P̂)]

=
∑

P̂:n-type,T n
L( P̂) 
=∅

PXn [Xn ∈ T n
L(P̂)].

(175)

We can lower bound the summation in (175) by any group of
summands including the ones belonging to the Q-typical set
with maximum probability,

PXn [Xn ∈ Ln] ≥ max
Q:L∩T [Q]
=∅

PXn [Xn ∈ T n
L[Q]δn ], (176)

and we can upper bound (175) by recalling the Type Counting
Lemma and upper bounding each term with the one having
the maximum probability, and noting that expanding the
maximization domain from types to general distributions can
not decrease the probability.

PXn [Xn ∈ Ln]
≤ (n + 1)|X | max

P̂:n-type,T n
L( P̂) 
=∅

PXn [Xn ∈ T n
L(P̂)] (177)

≤ (n + 1)|X | max
Q:L∩T [Q]
=∅

PXn [Xn ∈ T n
L[Q]δn ]. (178)

Combining (176) and (178) with the result in (49) completes
the proof of (50) and that of Lemma 1.

APPENDIX C
PROOF OF LEMMA 2

Fix an arbitrarily small constant η > 0, and consider a
pair of random variables (X, Y ) such that E[d(X, Y )] ≤
|D − η|+ and X is distributed according to P̂(x). Let the Y ’s
distribution be PY (y). Fix an auxiliary subset L̄ = {L̄n ⊆
Yn}∞n=1 which is (P̂X , PY |X ,L)-smooth per Definition 7.
We use the following random coding argument to prove the
existence of the set B(P̂X ,L) as described in the lemma.
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Generate M independently and identically distributed (i.i.d.)
sequences {Y n(m)}M

m=1 at random according to the uniform
distribution over the set L̄n ∩ T n[PY ]δn ; the value of M will
be specified later in the proof. We define the set of uncovered
xn sequences in T n

L(P̂) by these Y n sequences as follows.

U
(
{Y n(m)}M

m=1

)

:=
{

xn ∈ T n
L(P̂) : d

(
xn, {Y n(m)}M

m=1

)
> D

}
. (179)

Our goal is to prove that, if M is chosen appropriately, then
for sufficiently large n we obtain E

[∣∣U ({Y n(m)}M
m=1

)∣∣] < 1,
which implies that a deterministic set B(P̂X ,L) :=
{yn(m)}M

m=1 with elements belonging to L̄n ∩ T n[PY ]δn exists
such that all sequences xn ∈ T n

L(P̂X ) are covered in the sense
d(xn, B(P̂X ,L)) ≤ D.

We first note that

E

[∣∣∣U ({Y n(m)}M
m=1

)∣∣∣]

= E

⎡
⎢⎣ ∑

xn∈T n
L( P̂)

1
{

d
(

xn, {Y n(m)}M
m=1

)
> D

}
⎤
⎥⎦ (180)

=
∑

xn∈T n
L( P̂)

Pr
[
d
(

xn, {Y n(m)}M
m=1

)
> D

]
. (181)

However, due to the i.i.d. generation of the sequences
{Y n(m)}M

m=1, we find for all sequences in T n
L(P̂X ) that,

Pr
[
d
(

xn, {Y n(m)}M
m=1

)
> D

]

= Pr

[
M⋂

m=1

d
(
xn, Y n(m)

)
> D

]
(182)

=
M∏

m=1

Pr
[
d
(
xn, Y n(m)

)
> D

]
(183)

= (
1 − Pr

[
d
(
xn, Y n(1)

) ≤ D
])M (184)

≤ 2−M ·Pr[d(xn,Y n(1))≤D], (185)

where the last line follows from the inequality (1−x)n ≤ 2−nx

for all 0 ≤ x ≤ 1 and n > 0.
We now analyze the probability in (185) using the spe-

cific generation of the {Y n(m)}M
m=1 sequences. In particular,

since these sequences are generated uniformly over the set
L̄n ∩ T n[PY ]δn , we obtain

Pr
[
d
(
xn, Y n(1)

) ≤ D
]

= |{yn ∈ L̄n ∩ T n[PY ]δn : d(xn, yn) ≤ D}|
|L̄n ∩ T n[PY ]δn |

(186)

≥ |L̄n ∩ T n[PY |X |xn]δn |
|L̄n ∩ T n[PY ]δn |

, (187)

where (187) follows from the properties of typical sequences
xn ∈ T n(P̂X ) and yn ∈ T n[PY |X |xn]δn that, for sufficiently
large n, we have

d(xn, yn) =
∑
x,y

1

n
N((x, y); (xn, yn))d(x, y) (188)

≤
∑
x,y

(P̂X (x)PY |X (y|x) + δn)d(x, y) (189)

≤ E[d(X, Y )] + |X ||Y|δn Dmax (190)

≤ (D − η) + |X ||Y|δn Dmax (191)

≤ D, (192)

for the case D > η. The last result (192) also holds for the case
of target distortion level satisfying D ≤ η, since the condition
E[d(X, Y )] ≤ |D − η|+ = 0 implies that for all (x, y) pairs,
either d(x, y) = 0 or P̂X (x)PY |X (y|x) = 0, which in turn
implies d(xn, yn) = 0 ≤ D for all n and all xn ∈ T n(P̂X ) and
yn ∈ T n[PY |X |xn]δn .

Now, recall from Definition 7 and 8 of (P̂X , PY |X ,L)-
smooth auxiliary subset that, there exists some ξn → 0 as
n → ∞ such that, for any xn ∈ T n

L[P̂X ]δn ,

|L̄n ∩ T n[PY |X |xn]δn | ≥ min
xn∈T n

L[ P̂X ]δn

|L̄n ∩ T n[PY |X |xn]δn |

≥ 2n[HL̄|L(PY |X | P̂X )−ξn], (193)

and that

|L̄n ∩ T n[PY ]δn | ≤ 2n[HL̄(PY )+ξn]. (194)

Substituting (193) and (194) into (187) yields for all sequences
in T n

L(P̂X ) that,

Pr
[
d
(
xn, Y n(1)

) ≤ D
] ≥ 2

−n
[

HL̄(PY )−HL̄|L(PY |X | P̂X )+2ξn

]

= 2
−n
[

IL,L̄( P̂X ,PY |X )+2ξn

]
, (195)

which along with (181) and (185) implies

E

[∣∣∣U ({Y n(m)}M
m=1

)∣∣∣]

≤
∣∣∣T n

L(P̂)
∣∣∣ · 2−M ·2−n

[
IL,L̄(P̂X ,PY |X )+2ξn

]
(196)

≤ 2n log |X |−M ·2−n
[

IL,L̄(P̂X ,PY |X )+2ξn
]
. (197)

If we choose

M = 2
n
[

IL,L̄( P̂X ,PY |X )+3ξn

]
, (198)

we get for sufficiently large n that,

E

[∣∣∣U ({Y n(m)}M
m=1

)∣∣∣] ≤ 2n log |X |−2nξn
< 1. (199)

Since the choice of η > 0 is arbitrary, and the pair of
random variables (X, Y ) can be arbitrarily selected subject
to distortion and X-marginal distribution constraints, and the
auxiliary subset L̄ can be any (P̂X , PY |X ,L)-smooth subset,
we have proved the existence of the set B(P̂X ,L) as claimed
in the lemma and with size

1

n
log B(P̂X ,L) = 1

n
log M

≤ inf
PY |X :E[d(X,Y )]≤D

inf
L̄:( P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X)+3ξn.

(200)
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APPENDIX D
PROOF OF LEMMA 3

If δn is chosen large enough yet still satisfying the Delta
Convention, we can write

gP(Q̄) > gP(Q∗
X ) + 3�n (201)

for all Q̄-typical sets which do not intersect at all with the
subset-typical sets ∪Q∗

X ∈Q∗ T n
L[Q∗

X ]δn . Therefore, we get from
Lemma 1 that

Pr

⎡
⎣Xn /∈

⋃
Q∗

X ∈Q∗
X

T n
L[Q∗

X ]δn

∣∣∣∣Xn ∈ Ln

⎤
⎦

=
PXn

[
Xn ∈⋃Q̄:gP (Q̄)>gP (Q∗

X )+3�n
T n
L[Q̄]δn

]
PXn [Xn ∈ Ln] (202)

≤ (n + 1)|X |2−n[gP (Q∗
X )+3�n−�n]

2−n[gP (Q∗
X )+�n] (203)

≤ (n + 1)|X |2−n�n , (204)

which goes to 0 as n → ∞.

APPENDIX E
PROOF OF LEMMA 4

We build upon Lemma 1, Lemma 3, and inequality (174)
to find

1

2
η ≤ Pr

[
Xn ∈ (A ∩ T n

L[Q∗
X ]δn

) ∣∣∣Xn ∈ Ln

]
(205)

≤ ∣∣A ∩ T n
L[Q∗

X ]δn

∣∣ max
xn∈T n[Q∗

X ]δn

Pr
[
Xn = xn | Xn ∈ Ln

]
(206)

≤ |A| 2−n[gPX (Q∗
X )+HL(Q∗

X )−�n]

2−n[gPX (Q∗
X )+�n] , (207)

which implies

|A| ≥ 1

2
η2n[HL(Q∗

X )−2�n] ≥ 2n[HL(Q∗
X )−3�n]. (208)
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