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Abstract—This paper studies the lossy version of a problem
recently proposed by the authors termed subset source coding,
where the focus is on the fundamental limits of compression
for subsets of the possible realizations of a discrete memoryless
source. An upper bound is derived on the subset rate-distortion
function in terms of the subset mutual information optimized over
the set of conditional distributions that satisfy the expected dis-
tortion constraint with respect to the subset-typical distribution
and over the set of certain auxiliary subsets. By proving a strong
converse result, this upper bound is shown to be tight for a class
of symmetric subsets. As illustrated in our numerical examples,
more often than not, one achieves a gain in the fundamental limit,
in that the optimal lossy compression rate for the subset can be
strictly smaller than the rate-distortion function of the source,
although exceptions can also be constructed.

I. INTRODUCTION

Source coding addresses compression, with or without
fidelity, of an information source. Critical to compression of
discrete memoryless sources (DMS) is the set of (source-)
typical sequences that capture essentially all the probability
mass of the source. In particular, in lossy compression of
a DMS, one essentially groups source-typical sequences and
covers each group with a sequence that is within a certain
distortion distance of them [1], [2]. The fundamental limit for
a DMS X ∼ P (x) with a distortion requirement D is given
by the rate-distortion function [1], [3]:

R(D) = R(P,D) := min
PY |X :E[d(X,Y )]≤D

I(X;Y ). (1)

This basic setting has been studied extensively and extended
to different scenarios and applications, see for example [4]–
[7]. An implicit but pivotal consideration in all of these works
is that important realizations of the source only consist of the
likely and source-typical sequences.

We have argued in [8] that, for some emerging applications,
the likelihood and typicality of a source realization may not be
the main concern. In semantic communications, bioinformat-
ics, and data mining, only data elements with certain patterns
or structures are considered meaningful, valid, or important,
although they may occur with potentially low probability.
In [8], we have introduced the problem of subset source
coding, where the encoder and decoder aim at providing a
description of only a subset of all possible source realizations
as determined by the application.

The subset source coding problem inherently involves
both probabilistic and combinatorial aspects. On one hand,
it has roots in large deviations theory [9] and relates to the
generalized asymptotic equipartition property (AEP) [10]. On
the other hand, it has a combinatorial element in terms of the

exponential number of sequences that satisfy certain structural
constraints, and therefore relates to the capacity of magnetic
recording channels with constrained coding [11]; the notion
of Markov types in compression of Markovian sources [12];
and entropy definitions in statistical mechanics [13]. In its
motivation, subset source coding is related to the problem of
task encoding in [14] that guarantees certain important but
less likely source events are not ignored in data compression,
and also the work on information theory of atypical sequences
in [15] with applications in signal processing and Big-Data
analytics.

In [8], we have analyzed three broad classes of subsets,
namely likely subsets with not(-so-fast)-vanishing probabilities,
smooth subsets with continuous structures, and fluctuating
subsets that alternate between several subset components. In
particular, for smooth subsets, we have shown that lossless
compression is closely tied to certain subset-typical sequences,
and that the fundamental limit of lossless compression is the
result of a trade-off between the source statistics and the subset
structure and is given by a certain subset entropy of the subset-
typical distributions.

Our key contributions in this paper are as follows. For
likely subsets, we prove an achievability and a matching
strong converse to show that the rate-distortion function of the
subset is equal to that of the original source. For the lossy
compression of smooth subsets, we prove an achievability
that relates the subset rate-distortion function to a certain
subset mutual information corresponding again to the subset-
typical distributions. For the interesting special case of smooth
symmetric subsets, we show that our achievability result for the
lossy case is tight by proving a strong converse. For fluctuating
subsets, we prove an achievability and converse to show that
the rate-distortion function of the subset is equal to that of the
worst subset component.

The remainder of the paper is organized as follows. In Sec-
tion II, we formally introduce the lossy subset source coding
problem and provide a motivating example. In Sections III, IV,
and V, we state and prove optimal lossy compression rates for
likely, smooth, and fluctuating subsets, respectively. The proofs
for smooth subsets are given in Section VI. In Section VII,
we revisit our numerical examples in [8] and investigate their
rate-distortion functions. It turns out that, when focusing only
on a subset instead of the entire source space, there is often
a gain in the compression rate, but interestingly this is not
always the case. We conclude the paper in Section VIII with
some discussions and remarks about possible extensions. One
technical proof is relegated to the Appendix.

Notation. In order to carefully keep track of the actual



distributions governing the random variables, we follow the
notation of Csiszár and Körner [16] for entropy and mutual
information quantities. Consider a random variable X with
distribution P (x). The standard Shannon entropy H(X) is
denoted by

H(P ) := −
∑
x∈X

P (x) logP (x),

where the log operation is understood as base 2 here and
throughout this paper. Next, let Y be a random variable con-
ditionally distributed according to PY |X(y|x). The conditional
entropy H(Y |X) =

∑
x PX(x)H(Y |X = x) is denoted by

H(PY |X |PX) :=
∑
x∈X

PX(x)H(PY |X=x).

Moreover, the standard average mutual information I(X;Y ) =
H(Y )−H(Y |X) is denoted by

I(PX , PY |X) := H(PY )−H(PY |X |PX),

where PY (y) =
∑
x PX(x)PY |X(y|x) is the marginal distri-

bution of Y . Since we can also write I(X;Y ) = H(X) −
H(X|Y ), we can also use the notation

I(PX , PY |X) := H(PX)−H(PX|Y |PY ),

where PX|Y (x|y) = PX(x)PY |X(y|x)/PY (y) is the induced
conditional distribution of X given Y . Finally, the relative
entropy is denoted as usual by

D(Q‖P ) :=
∑
x∈X

Q(x) log
Q(x)

P (x)
.

II. PROBLEM SETTING

Consider a discrete memoryless source with distribution
PX(x) over the finite alphabet X , such that the n-fold distri-
bution of the source, for all n = 1, 2, . . . , satisfies

PXn(xn) =

n∏
t=1

PX(xt).

For simplicity of notation, we will sometimes write PX as P .
Let L = {Ln}∞n=1 be a sequence of subsets of the source
realizations such that Ln ⊆ Xn and Pr[Xn ∈ Ln] 6= 0 for
all n. Furthermore, consider a reconstruction alphabet Y and
an additive distortion measure d : X ×Y → [0, Dmax] for some
maximal distortion value Dmax <∞ and define

d(xn, yn) :=
1

n

n∑
t=1

d(xt, yt).

An (n, 2nR) lossy source code for subset L consists of an
encoder f : Ln → {1, 2, · · · , 2nR} and a decoder φ :
{1, 2, · · · , 2nR} → Yn. For any distortion values D ≥ 0, the
probability of excess-distortion1 is defined as

Pr[EL(D)] := Pr[d(Xn, Y n) > D|Xn ∈ Ln].

A rate-distortion pair (R,D) is called achievable if a se-
quence of (n, 2nR) lossy source codes for subset L exists

1While the expected distortion E[d(Xn, Y n)] is more preferred as the
evaluation metric for a lossy source code [1], we adopt the more stringent
requirement of vanishing excess-distortion probability as in [16].

with Pr[EL(D)] → 0 as n → ∞. The subset rate-distortion
function RL(D) is the infimum of all rates R for which the
rate-distortion pair (R,D) is achievable.

Remark 1. The subset rate-distortion function RL(D), similar
to the standard rate-distortion function, is a non-increasing
function of D per definition. The convexity of RL(D), how-
ever, is not a priori obvious. The latter would normally build
on a time-sharing argument, which is not trivial for the subset
source coding problem. In fact, if a codeword xn belongs to
the subset Ln, it may or may not be true that a portion of it
xαn belongs to Lαn for some 0 ≤ α ≤ 1.

A comment similar to one in [8] for the lossless case is that,
the subset rate-distortion function RL(D) is in fact equal to the
standard rate-distortion function of an equivalent conditional
source defined as

PX̃n(xn) :=
PXn(xn)

PXn [Xn ∈ Ln]
1{xn ∈ Ln}.

The rate-distortion function of this equivalent conditional
source is given either by average mutual information rate
results [1], [17] if stationary and ergodic, or by spectral sup-
mutual information rate characterizations if non-stationary or
non-ergodic [18], [19]. Note that, even the simplest of subsets
such as our Example 1 in Section VII lead to equivalent
conditional sources that fall into the second category, cf. [18,
Example 1.5.1], so numerical computations may not be very
straightforward in general. Moreover, the effect of subset struc-
ture and the statistics of the original source on the fundamental
limits are not quite explicit in such generic approaches. Our
methods in the next sections of this paper are in the same
spirit as the two aforementioned approaches and essentially
lead to the same results, but they are presented in a simpler and
more convenient form and language, and they also explicitly
clarify the roles of subset structure and source statistics on the
fundamental compression performance.

A. Motivating Example

Consider a binary DMS, X = {0, 1}, with a Bernoulli dis-
tribution with parameter p = 0.11, so that the Shannon entropy
of the source is simply the binary entropy Hb(p) = 0.5, and its
rate-distortion function with respect to the Hamming distance
is R(D) = 0.5 − Hb(D) for 0 ≤ D ≤ 0.11 and R(D) = 0
otherwise. Now, consider the subset L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : xn has no consecutive 1s}.

The size of this subset satisfies log |Ln|/n→ 0.69 as n→ ∞.
We will show in Example 2 of Section VII that

RL(D) ≤ l.c.e.
(

min
{

0.44−Hb(D),

(0.91 +D)Hb

(
0.09−D
0.91 +D

)
−0.09Hb

(
D

0.09

)})
,

if 0 ≤ D ≤ 0.09, where l.c.e. stands for the lower convex enve-
lope operation, and RL(D) = 0 if D > 0.09. In particular, the
optimal lossless compression rate is RL(D = 0) = 0.43 [8].
As can be seen, there is no immediate connection between
these results, the size of the subset, and the entropy or rate-
distortion function of the source.



III. COMPRESSION OF LIKELY SUBSETS

In this section, we establish our first general result asserting
that for likely subsets, ones with not so small probability, the
optimal lossy compression rate for the subset is identical to
that of the original source.

Theorem 1. For a discrete memoryless source P (x) and any
subset L = {Ln ⊆ Xn}∞n=1 whose probability PXn [Xn ∈ Ln]
as n→∞ either is a constant or decays sub-exponentially to
zero, that is,

lim inf
n→∞

1

n
logPXn [Xn ∈ Ln] = 0,

the subset rate-distortion function is RL(D) = R(D).

Theorem 1 is specially interesting and subtle for subsets
with slowly vanishing probability. The main idea of the proof is
to construct subset codes from appropriately selected standard
source codes and vice versa.

Proof: (Achievability) Fix an arbitrary ε > 0. Choose an
error-exponent-optimal lossy source code in the conventional
setting for source P with rate R(D) + ε and Pr[d(Xn, Y n) >
D]→ 0 exponentially fast as n→∞, so that [16]:

lim
n→∞

1

n
log Pr[E ] ≤ − min

Q:R(Q,D)≥R
D(Q‖P ).

Noting that

Pr[d(Xn, Y n) > D] ≥
Pr[Xn ∈ Ln] · Pr[d(Xn, Y n) > D|Xn ∈ Ln],

and that by assumption Pr[Xn ∈ Ln] → c > 0 or Pr[Xn ∈
Ln] → 0 sub-exponentially, we conclude that the same lossy
source code, when constrained to only sequences within Ln,
achieves Pr[d(Xn, Y n) > D|Xn ∈ Ln]→ 0 as n→∞. This
implies RL(D) ≤ R(D), as the choice of ε is arbitrary.

(Converse) Fix an arbitrary lossy subset code
achieving some rate R with excess-distortion probability
Pr[d(Xn, Y n) > D|Xn ∈ Ln] = εn → 0 as n→∞. We can
consider this code as a conventional lossy source code for the
entire space Xn which maps all sequences in (Xn−Ln) to an
arbitrary sequence yn0 ∈ Yn with a distortion not exceeding
Dmax by assumption. We can analyze the excess-distortion
probability as follows.

Pr[d(Xn, Y n) > D]

= Pr[Xn ∈ Ln] · Pr[d(Xn, Y n) > D|Xn ∈ Ln]

+ Pr[Xn /∈ Ln] · Pr[d(Xn, Y n) > D|Xn /∈ Ln]

≤ εn · Pr[Xn ∈ Ln] + Pr[Xn /∈ Ln]

= 1− (1− εn) · Pr[Xn ∈ Ln]. (2)

Since Pr[Xn ∈ Ln] → c > 0 or Pr[Xn ∈ Ln] → 0
sub-exponentially with n, the excess-distortion probability of
this lossy source code is at least sub-exponentially away
from 1. We know, however, that strong converse holds for
the lossy compression of a DMS, so that the excess-distortion
probability of any lossy source code with rate below the rate-
distortion function, R < R(D), approaches one [16]:

lim sup
n→∞

1

n
log(1− Pr[E(D)])

≤ −min
Q

[
D(Q‖P ) + |R(Q,D)−R|+

]
.

Therefore, (2) implies that the rate R is above the rate-
distortion function R(D). Since the choice of the lossy subset
code is arbitrary, this proves that RL(D) ≥ R(D).

IV. COMPRESSION OF SMOOTH SUBSETS

In the following, we state optimal compression rate results
for smooth subsets as already defined in [8]. Note that, these
subsets include ones with exponentially small probability,
which are not likely per Section III. Before stating the results,
let us recall some definitions for smooth subsets from [8]
and introduce new ones needed here for lossy compression
analysis. In the following definitions, let Tn[Q]δn denote the
set of Q-typical sequences, for any given distribution Q(x)
and any positive δn satisfying the Delta Convention [16].

Definition 1. [8] We say the subset L = {Ln ⊆ Xn}∞n=1
intersects a distribution Q(x) and write L ∩ T [Q] 6= ∅ if

lim sup
n→∞

|Ln ∩ Tn[Q]δn | 6= 0.

In such a case, if it holds for some HL(Q) and ξn that∣∣∣∣ 1n log |Ln ∩ Tn[Q]δn | −HL(Q)

∣∣∣∣ ≤ ξn,
with ξn → 0 as n → ∞, then HL(Q) is called the subset-L
entropy of the distribution Q(x).

Definition 2. [8] We say the subset L = {Ln}∞n=1 is smooth
if the subset entropy HL(Q) exists and is continuous in all
distributions Q intersecting the subset, L ∩ T [Q] 6= ∅.

We have shown in [8] that, the optimal lossless compres-
sion of a smooth subset is closely tied to the notion of subset-
typical distributions Q∗X that minimize the function

gP (Q) := H(Q)−HL(Q) +D(Q‖P ), (3)

so that the set of all such subset-typical distributions Q∗X are

Q∗X = arg min
Q:L∩T [Q] 6=∅

[H(Q)−HL(Q) +D(Q‖P )]. (4)

Such distributions correspond to typical sets (i) whose distribu-
tion Q is potentially close to the source statistics in the sense
of relative entropy so that the term D(Q‖P ) is relatively small
and (ii) with potentially large intersection with the subset so
that the size of the residual part outside the subset, captured
by the term (H(Q)−HL(Q)), is also small.

In the following, we introduce the conditional version
of the aforementioned definitions using the notion of condi-
tional typical sequences. We heavily make use of the nota-
tion Tn[PY |X |xn]δn as the set of conditional PY |X -typical
sequences given xn ∈ Xn, for any conditional distribu-
tion PY |X(y|x) and any positive δn satisfying the Delta
Convention [16]. Recall that the size of the conditional typical
set for all xn ∈ Tn[QX ]δn satisfies [16]∣∣∣∣ 1n log |Tn[PY |X |xn]δn | −H(PY |X |QX)

∣∣∣∣ ≤ εn, (5)

where εn → 0 as n→∞.

We can now define the notion of conditional subset entropy.

Definition 3. Consider any arbitrary subset L = {Ln ⊆
Xn}∞n=1, any arbitrary distribution QX(x), and any arbitrary



conditional distribution PY |X(y|x). Let QY (y) be the induced
distribution QY (y) =

∑
xQX(x)PY |X(y|x). We say the aux-

iliary subset L̄ = {L̄n ⊆ Yn}∞n=1 is (QX(x), PY |X(y|x),L)-
smooth if it holds for some HL̄(QY ), some HL̄|L(PY |X |QX)
and some ξn that∣∣∣∣ 1n log

∣∣Tn[QY ]δn ∩ L̄n
∣∣−HL̄(QY )

∣∣∣∣ ≤ ξn,
and∣∣∣ min

xn∈Ln∩Tn[QX ]δn

1

n
log
∣∣L̄n ∩ Tn[PY |X |xn]δn

∣∣
−HL̄|L(PY |X |QX)

∣∣∣ ≤ ξn, (6)

such that ξn → 0 as n→∞. In such a case, HL̄|L(PY |X |QX)
is called the conditional subset entropy of PY |X given QX and
the subsets L and L̄.

The quantity HL̄(QY ) is a subset entropy with respect to
the auxiliary subset L̄ on the Y domain. Therefore, it satisfies
the property 0 ≤ HL̄(QY ) ≤ H(QY ) [8].

Comparing expressions (5) and (6) suggests that, the
conditional subset entropy HL̄|L(PY |X |QX) is a dual of
the conventional conditional entropy H(PY |X |QX). In fact,
we can readily observe the appealing property that 0 ≤
HL̄|L(PY |X |QX) ≤ H(PY |X |QX) for any pair of distribu-
tions PY |X and QX . In particular, for the extreme case of
Ln = Xn and L̄n = Yn, we have HL̄|L(PY |X |QX) =
H(PY |X |QX) for all pairs of distributions PY |X and QX .

We also need a further continuity condition on the condi-
tional subset entropy as introduced in the following definition.

Definition 4. Consider any arbitrary subset L = {Ln ⊆
Xn}∞n=1 and any arbitrary conditional distribution
PY |X(y|x). We say the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1

is (PY |X(y|x),L)-smooth if (i) the subset L̄ is
(QX(x), PY |X(y|x),L)-smooth in the sense of Definition 3
for all distributions QX(x) in a δn-neighborhood of all
subset-L-typical distributions Q∗X(x) as defined in (4)
for some δn satisfying the Delta-Convention, and (ii) the
corresponding subset entropy HL̄(QY ) and the conditional
subset entropy HL̄|L(PY |X |QX) are continuous in all those
QX(x) distributions.

We now state our lossy compression results for smooth
subsets.

Theorem 2. For a discrete memoryless source P (x), the rate-
distortion function of any smooth subset L = {Ln ⊆ Xn}∞n=1
satisfies

RL(D) ≤ max
Q∗X∈Q∗X

min
PY |X :E[d(X∗,Y ∗)]≤D

min
L̄:(PY |X ,L)-smooth

IL,L̄(Q∗X , PY |X), (7)

where: Q∗X is the set of all subset-typical distributions as de-
fined in (4); IL,L̄(Q∗X , PY |X) is the subset mutual information

IL,L̄(Q∗X , PY |X) := HL̄(Q∗Y )−HL̄|L(PY |X |Q∗X), (8)

with the notations as in Definitions 3 and 4; and the
pair of random variables (X∗, Y ∗) are distributed according
to Q∗X(x)PY |X(y|x) so that

E[d(X∗, Y ∗)] =
∑
x,y

Q∗X(x)PY |X(y|x)d(x, y).

Proof: Proof is provided in Section VI.

Theorem 2 presents a dual of the classical rate-distortion
result (1) for a DMS. The result mainly states that a certain
subset mutual information IL,L̄(Q∗X , PY |X) is critical to this
achievability result for lossy compression of smooth subsets.
As in the standard rate-distortion result (1), a key part is min-
imization of this mutual information over conditional distribu-
tions PY |X(y|x) satisfying the expected distortion constraint
E[d(X∗, Y ∗)] ≤ D. The fact that subset-typical distributions
Q∗X(x) play a role in this subset rate-distortion result has
an intuition similar to that for the lossless case, so that
the balance between the source statistics P and the subset
structure L determines the subset-typical sequences that must
be covered by the lossy subset code, and if multiple subset-
typical distributions Q∗X(x) exist, one must code for the worst
case, thereby the maxQ∗X∈Q∗X term in (7).

The last key element of our lossy compression result in
Theorem 2 is the choice of an auxiliary subset L̄ = {L̄n ⊆
Yn}∞n=1 which is (PY |X(y|x),L)-smooth and minimizes the
subset mutual information IL,L̄(Q∗X , PY |X). Since the original
subset L = {Ln ⊆ Xn}∞n=1 is considered to be smooth,
the (PY |X(y|x),L)-smoothness condition essentially requires
the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 to preserve the
structure of L under the stochastic transformation PY |X(y|x).
On the other hand, since we aim at minimizing the subset
mutual information IL,L̄(Q∗X , PY |X), we require the auxiliary
subset L̄ to be large enough to prevent an empty intersection
L̄n ∩ Tn[PY |X |xn]δn for all xn ∈ TnL [Q∗X ]δn and there-
fore an infinite conditional subset entropy HL̄|L(PY |X |Q∗X),
but also small enough to achieve a small intersection size∣∣Tn[Q∗Y ]δn ∩ L̄n

∣∣ and thus a small subset entropy HL̄(Q∗Y ).
Hence, the optimal auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1
should be a good image of the original subset L = {Ln ⊆
Xn}∞n=1 in terms of the scaling of the size of L under the
stochastic transformation PY |X(y|x).

An immediate but possibly suboptimal selection for the
auxiliary subset L̄ is L̄n = Yn for all n. In this case, the
subset entropy and conditional subset entropy reduce to stan-
dard (Shannon) entropy and conditional entropies, respectively,
which readily give the following achievable rate-distortion
result.

Corollary 1. For a discrete memoryless source P (x), the rate-
distortion function for any smooth subset L = {Ln ⊆ Xn}∞n=1
satisfies

RL(D) ≤ max
Q∗X∈Q∗X

R(Q∗X , D)

where Q∗X is the set of all subset-typical distributions as
defined in (4), and R(Q∗X , D) is the standard rate-distortion
function (1) for distribution Q∗X(x).

An interesting special case, for which the achievability in
Corollary 1 is tight, is one in which the subset fully intersects



a continuous spectrum of distributions. In this case, the subset
must contain all sequences of a certain range of typical sets.
Since all sequences within a typical set can be decomposed into
a few permutation groups, formally called type classes [16],
this motivates the following definition.

Definition 5. A subset L={Ln⊆Xn}∞n=1 is called symmetric
if it has the property that, for any sequence xn ∈ Ln, all
permutations of xn also belong to Ln, for all n = 1, 2, · · · .

For such symmetric subsets, the role of subset structure
vanishes, and a standard rate-distortion code is intuitively
sufficient for the lossy compression of the subset. By stating a
proof of converse, we show that the achievable rate-distortion
in Corollary 1 is optimal for the case of smooth symmetric
subsets for which Q∗X is unique. Hence, we find the following
simpler characterization for such subsets.

Theorem 3. Consider a discrete memoryless source P (x) and
any smooth symmetric subset L = {Ln ⊆ Xn}∞n=1 as in
Definition 5 for which the solution to

Q∗X = arg min
Q:L∩T [Q]6=∅

D(Q‖P )

is unique. Then, the rate-distortion function for the subset L
is

RL(D) = R(Q∗X , D), (9)

where R(Q∗X , D) is the standard rate-distortion function (1)
for distribution Q∗X(x).

Proof: Proof is provided in Section VI.

Remark 2. As a sanity check, we observe that for the case
Ln = Xn, which is smooth and symmetric, the subset-typical
distribution is uniquely given by Q∗X ≡ P . Therefore, the
characterization (9) and the more general bound (7) on the
subset rate-distortion function reduce to the standard rate-
distortion function (1). It is worth mentioning that, one could
also arrive at the same result via Theorem 1 for likely subsets,
since for this case PXn [Xn ∈ Ln] = 1 for all n.

V. FLUCTUATING SUBSETS

In this section, we consider fluctuating subsets which are
constructed by superimposing several subsets, so that the
resulting subset takes the structure of each component for
certain time indices. In such cases, one should code for the
worst subset component as described below. Before stating
our result, let us formally define these subsets.

Definition 6. Consider a finite collection of subsets Lj =
{Lj,n}∞n=1 with 1 ≤ j ≤ J as well as a finite collection of
index subsequences nj = {nj,k}∞k=1 with 1 ≤ j ≤ J such that
for each n = 1, 2, · · · we have n = nj,k for a unique pair
(j, k). We say L = {Ln}∞n=1 is an (Lj , nj)Jj=1-fluctuating
subset when Ln = Lj,n if n ∈ {nj,k}∞k=1.

We are now ready to state our result for fluctuating subsets.

Theorem 4. Consider a discrete memoryless source P (x) and
an (Lj , nj)Jj=1-fluctuating subset. Then, the rate-distortion
function for the subset L is

RL(D) = max
1≤j≤J

RLj (D).

Proof: (Achievability) Fix an arbitrary ε > 0. For each
1 ≤ j ≤ J , let {(fj,n, φj,n)}∞n=1 be the optimal encoder
and decoder sequence for lossy compression of the subset Lj
with distortion D, achieving a rate RLj (D) + ε with vanish-
ing excess-distortion probability Pr[d(Xn, Y nj ) > D|Xn ∈
Lj,n] → 0 as n → ∞, where Y nj = φj,n(fj,n(Xn)). We
consider the following code for the fluctuating subset: let
fn ≡ fj,n and φn ≡ φj,n if n ∈ {nj,k}∞k=1. Then, we have

lim sup
n→∞

Pr[d(Xn, Y n) > D|Xn ∈ Ln]

= max
1≤j≤J

lim sup
n→∞

Pr[d(Xn, Y nj ) > D|Xn ∈ Lj,n] = 0.

The rate of this code is max
1≤j≤J

RLj (D)+ε. Since ε is arbitrary,

this completes the achievability proof.

(Converse) Assume R < max
1≤j≤J

RLj (D), then there exists

at least one 1 ≤ j̄ ≤ J such that R < RLj̄ (D). By the defini-
tion of RLj̄ (D), any arbitrary compression code for subset Lj̄
will satisfy lim supn→∞ Pr[d(Xn, Y nj ) > D|Xn ∈ Lj̄,n] > 0.
Hence,

lim sup
n→∞

Pr[d(Xn, Y n) > D|Xn ∈ Ln]

≥ lim sup
n→∞

Pr[d(Xn, Y nj ) > D|Xn ∈ Lj̄,n] > 0,

which proves the converse for the fluctuating subset L and
completes the proof of Theorem 4.

In particular, if all components of a fluctuating subset are
likely, smooth, or symmetric, we can build on Theorems 1, 2,
and 3 to readily get explicit bounds.

VI. PROOFS FOR SMOOTH SUBSETS

In this section, we state the achievability proof of our lossy
compression result for smooth subsets, Theorem 2, and then
the (strong converse) proof of the lossy result for symmetric
smooth subsets, Theorem 3. Before starting with the proofs,
we make a quick hint at the notion of type classes which we
use a few times in our statements and proofs below.

Definition 7. [16] Let N(x;xn) be the number of occurrences
of the symbol x ∈ X in the sequence xn. The type of a
sequence xn is the empirical distribution P̂xn(x) defined as

P̂xn(x) :=
1

n
N(x;xn), ∀ x ∈ X .

Accordingly, the set of all sequences in Xn with type P̂ is
denoted by Tn(P̂ ) and called the type class of P̂ .

One recalls from the method of types [16] that, the number of
the distinct types in Xn is only polynomial in n and does not
exceed (n + 1)|X |, a result referred to as the Type Counting
Lemma. In the following, we frequently use the notations

TnL (P̂ ) := Ln ∩ Tn(P̂ ), TnL [Q]δn := Ln ∩ Tn[Q]δn ,

for the intersection of subset Ln ⊆ Xn with type class Tn(P̂ )
and typical set Tn[Q]δn , respectively.

The proof of Theorem 2 on lossy compression of smooth
subsets builds upon the following lemma, which is a dual of
the Type Covering Lemma [16, Lemma 9.1] and states the rate



sufficient for the lossy compression of the intersection of the
subset of interest with a single type class.

Lemma 1. (The Subset-Type Covering Lemma) For any
type P̂X(x) of sequences in Xn, any smooth subset L =
{Ln ⊆ Xn}∞n=1, any distortion measure d(x, y), any target
distortion level D ≥ 0, and any arbitrary constant δ, there
exists a set B(P̂X ,L) ⊆ Yn that satisfies

d(xn, B(P̂X ,L)) := min
yn∈B(P̂X ,L)

d(xn, yn)≤D, ∀xn∈TnL (P̂X),

for sufficiently large n, and whose size is bounded as

1

n
log |B(P̂X ,L)|

≤ min
PY |X :E[d(X,Y )]≤D

min
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X)+3ξn,

(10)

where ξn → 0, and L̄ := {L̄n ⊆ Yn}∞n=1 is an
(P̂X , PY |X ,L)-smooth auxiliary subset per Definition 3;
IL,L̄(P̂X , PY |X) is defined in (8); and the expected distortion
is calculated with respect to the type distribution,

E[d(X,Y )] =
∑
x,y

P̂X(x)PY |X(y|x)d(x, y).

Proof: See the Appendix.

We are now ready to prove Theorem 2 with elements
similar to the proof of error exponents for the standard rate-
distortion problem [16, Theorem 9.5] and our proof of the
lossless subset compression [8].

Proof: (of Theorem 2) Fix an arbitrary ε > 0 and consider
the following code for the subset L = {Ln ⊆ Xn}∞n=1. Using
the Subset-Type Covering lemma above, we aim the lossy
compression of the following set of xn sequences.

An :=
⋃

P̂ :n-type,P̂∈Ω(3ε)

TnL (P̂ ),

where

Ω(ε):=

{
Q :L ∩ T [Q] 6= ∅, gP (Q)< min

Q:L∩T [Q] 6=∅
gP (Q)+ε

}
.

Our lossy subset code consists of the following reconstructions
sequences:

B(L) :=
⋃

P̂X :n-type,P̂X∈Ω(3ε)

B(P̂X ,L),

where B(P̂X ,L) is the cover set for TnL (P̂X) as defined in the
Subset-Type Covering lemma above, whose size is bounded as
in (10), and satisfies d(xn, B(P̂X ,L)) ≤ D for all sequences
xn ∈ TnL (P̂X). Therefore, we get for all sequences xn ∈ An
that

d(xn, B(L)) ≤ d(xn, B(P̂xn ,L)) ≤ D,

where P̂xn denotes the type of the sequence xn. We can
therefore bound the excess-distortion probability as follows.

Pr[EL(D)] = Pr[d(Xn, Y n) > D|Xn ∈ Ln]

≤ Pr[Xn /∈ An|Xn ∈ Ln]

=
Pr[Xn ∈ (Acn ∩ Ln)]

Pr[Xn ∈ Ln]

≤ (n+ 1)|X |2
−n

[
min

Q/∈Ω(3ε),L∩T [Q]6=∅
gP (Q)−εn

]

2
−n

[
min

Q:L∩T [Q] 6=∅
gP (Q)+εn

] (11)

≤ (n+ 1)|X |2−nε,

where (11) is a result of the following calculation via the Type
Counting Lemma and [8, Lm. 1].

Pr[Xn ∈ (Acn ∩ Ln)] =
∑

P̂ :n-type,P̂ /∈Ω(3ε)

PXn [Xn ∈ TnL (P̂ )]

≤ (n+ 1)|X | max
Q/∈Ω(3ε),L∩T [Q] 6=∅

PXn [Xn ∈ TnL [Q]δn ]

≤ (n+ 1)|X |2
−n

[
min

Q/∈Ω(3ε),L∩T [Q] 6=∅
gP (Q)−εn

]
.

Hence, it only remains to determine the compression rate.
From (10) and the Type Counting Lemma, we have

1

n
log |B(L)| = 1

n
log

∑
P̂X :n-type,P̂X∈Ω(3ε)

|B(P̂X ,L)|

≤ 1

n
log

(
(n+ 1)|X | max

P̂X :n-type,P̂X∈Ω(3ε)
|B(P̂X ,L)|

)
≤ max
P̂X :n-type,P̂X∈Ω(3ε)

min
PY |X :E[d(X,Y )]≤D

min
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X)

+ 3ξn +
|X | log(n+ 1)

n
≤ max
Q∈Ω(3ε)

min
PY |X :E[d(X,Y )]≤D

min
L̄:(PY |X ,L)-smooth

IL,L̄(Q,PY |X)+5ξn,

where the last line follows from the continuity of the subset
mutual information IL,L̄(Q,PY |X) for all distributions in a
neighborhood of the subset-typical distributions. Since n→∞
and the choice of ε > 0 is arbitrary, this completes the proof
of Theorem 2.

In the following, we prove Theorem 3 on lossy compres-
sion of smooth symmetric subsets. The achievability immedi-
ately follows from Corollary 1, and the converse given below is
analogous to that for the standard rate-distortion theorem [16,
Theorem 7.3] and uses the following two technical lemmas,
whose proofs are omitted due to space limitations.

The first technical lemma is a generalized asymptotic
equipartition property (AEP) and a dual of [16, Lm. 2.12]
which asserts that essentially all of the probability mass of a
smooth subset is concentrated only in the subset-typical sets.

Lemma 2. Consider a discrete memoryless source P (x)
and a smooth subset L = {Ln ⊆ Xn}∞n=1 with subset-
typical distributions Q∗X as given in (4). Then, there exists



a sequence εn → 0 as n→∞ such that

Pr

Xn ∈
⋃

Q∗X∈Q∗X

TnL [Q∗X ]δn

∣∣∣∣∣Xn ∈ Ln

 ≥ 1− εn.

The second technical lemma is a dual of [16, Lm. 2.14] and
states that, when constrained to only a subset of the source
realizations, any set with high probability has a size essentially
no smaller than the subset-typical set.

Lemma 3. Consider a discrete memoryless source P (x)
and a smooth subset L = {Ln ⊆ Xn}∞n=1 for which the
subset-typical distribution Q∗X(x) per (4) is unique. Given any
0 < η < 1, there exists a sequence εn → 0 as n → ∞ such
that, if a set A ⊆ Xn satisfies

Pr [Xn ∈ A | Xn ∈ Ln] ≥ η,
then

|A| ≥ 2n[HL(Q∗X)−εn].

We are now ready to prove the result for smooth symmetric
subsets.

Proof: (of Theorem 3) We only state the proof of (strong)
converse, since the achievability readily follows from Corol-
lary 1 as well as the fact that for smooth symmetric subsets
the function gP (Q) defined in (3) reduces to D(Q‖P ).

Consider any arbitrary lossy source code for subset L that
uses M codewords and satisfies

Pr [d (Xn, φ(f(Xn))) ≤ D | Xn ∈ Ln] ≥ 1− ε,
for a potentially non-vanishing 0 < ε < 1. Define the set A as
follows:

A := {xn ∈ TnL [Q∗X ]δn : d(xn, φ(f(xn))) ≤ D} .
Then, Lemma 2 and the simple inequality Pr[A∩B] ≥ Pr[A]−
Pr[Bc] imply

Pr [Xn ∈ A | Xn ∈ Ln] ≥ 1− ε− τn,
for some τn → 0, which, on account of Lemma 3, yields

|A| ≥ exp (n [H(Q∗X)− εn]) , (12)

since HL(QX) = H(QX) for all distributions QX(x) inter-
secting the smooth symmetric subset L. On the other hand,
define the set of reconstruction codewords corresponding to
the set A as

C := {yn ∈ Yn : yn = φ(f(xn)) for some xn ∈ A} ,
and accordingly decompose the set A as follows.

A :=
⋃
yn∈C

A(yn),

where for any fixed yn ∈ C we have defined

A(yn) := {xn ∈ A : φ(f(xn)) = yn} .
We can further decompose the sequences xn in A(yn) accord-
ing to their joint type P̃XY (x, y) with yn, so that

A(yn) =
⋃

P̃XY (x,y): n-joint type
E[d(X̃,Ỹ )]≤D

|P̃X(x)−Q∗X(x)|≤δn

(
A(yn) ∩ TnL (P̃X|Y |yn)

)
,

where the constraints hold (i) since d(xn, φ(f(xn))) ≤ D for
all xn ∈ A implies E[d(X̃, Ỹ )] ≤ D, and (ii) since xn ∈ A ⊆
Tn[Q∗X ]δn implies |P̃X(x) − Q∗X(x)| ≤ δn for all x ∈ X .
Recalling that the size of the conditional type Tn(P̃X|Y |yn)

for all yn ∈ Tn(P̃Y ) satisfies∣∣∣Tn(P̃X|Y |yn)
∣∣∣ ≤ 2nH(P̃X|Y |P̃Y ),

we get

|A| =
∑
yn∈C

|A(yn)|

≤ |C| · (n+ 1)|X ||Y| max
P̃XY (x,y): n-joint type

E[d(X̃,Ỹ )]≤D
|P̃X(x)−Q∗X(x)|≤δn

2nH(P̃X|Y |P̃Y ). (13)

Combining (12) and (13), we have proved that the size of any
lossy source code for the symmetric smooth subset L satisfies

M ≥ |C| ≥ (n+ 1)−|X||Y|×

exp

n min
P̃XY (x,y): n-joint type

E[d(X̃,Ỹ )]≤D
|P̃X(x)−Q∗X(x)|≤δn

[
H(Q∗X)−H(P̃X|Y |P̃Y )− εn

]
.

Due to the continuity of the conditional Shannon entropy, we
have proved that

RL(D) ≥ min
PY |X :E[d(X∗,Y ∗)]≤D

I(Q∗X , PY |X)− 3εn.

This concludes the proof of the strong converse and that of
Theorem 3.

VII. NUMERICAL EXAMPLES

In this section, we revisit some of the numerical examples
in [8] and investigate their lossy compression performance.
In all of these examples, we consider a binary DMS, X =
{0, 1}, with a Bernoulli distribution B(p) with parameter
0 ≤ p ≤ 1/2. The lossy compression is considered with
respect to Y = {0, 1} and the Hamming distortion. The rate-
distortion function of the source is R(D) = Hb(p) −Hb(D)
if 0 ≤ D ≤ p and R(D) = 0 if D > p [1]. We use the
Hamming weight wH(xn) of a binary sequence xn, the binary
entropy function Hb(p) := −p log p− (1− p) log(1− p), and
the binary divergence function Db(q‖p) := q log(q/p) + (1−
q) log ((1− q)/(1− p)).

We first consider a symmetric example.

Example 1. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : wH(xn) = bnqc}, 0 ≤ q ≤ 1.

This subset is smooth and symmetric, and B(q) is the only
distribution that intersects the subset L, so Q∗X = B(q). We
obtain from Theorem 3 that

RL(D)=R(Q∗X , D)=

{
Hb(q)−Hb(D), 0≤D≤min{q, q̄},
0, D > min{q, q̄},

which follows from the calculation of the standard rate-
distortion function of the binary source [1]. It is evident that the
subset rate-distortion function in this example can be below or
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Fig. 1. Comparison of the subset rate-distortion function of Example 1 with
the rate-distortion function of the source for a Bernoulli DMS with parameter
p = 0.11.

above the rate-distortion function of the source. We illustrate
this comparison in Figure 1.

Next, we focus on a smooth but non-symmetric example.

Example 2. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : xn has no consecutive 1s}.

This subset is smooth, and all distributions B(q) with
0 ≤ q ≤ 1/2 intersect it. Hence, the subset-typical
distribution is Q∗X = B(q∗) where [8]

q∗=arg min
0≤q≤1/2

[
Hb(q)+Db(q‖p)−(1− q)Hb

(
q

1− q

)]
.

Therefore, we can use Corollary 1 to find an achievable rate-
distortion pair as follows.

R
(1)
L (D) =

{
Hb(q

∗)−Hb(D), 0 ≤ D ≤ q∗
0, D > q∗.

(14)

We can also build on Theorem 2 to obtain another achievable
rate-distortion pair. Let 0 ≤ D ≤ q∗, and consider the
following conditional distribution:

PY |X(0|0) = 1, PY |X(0|1) = D/q∗,

so that Q∗Y = B(q∗ − D). Note that, under this conditional
distribution, PY |X(1|0) = 0 thus no 0 in xn will flip to a 1
in yn, hence the no-consecutive-1 structure will be preserved.
Also, note that E[d(X∗, Y ∗)] = Pr[X∗ 6= Y ∗] = D. Now,
consider the auxiliary subset L̄ = {L̄n ⊆ Yn}∞n=1 with

L̄n :={yn ∈ Yn : yn has no consecutive 1s}.

In this case, we get

HL̄(Q∗Y ) = (1− q∗ +D)Hb

(
q∗ −D

1− q∗ +D

)
,

HL̄|L(PY |X |Q∗X) = lim
n→∞

1

n
log

(
nq∗

nD

)
= q∗Hb

(
D

q∗

)
,
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Fig. 2. Comparison of the achievable rate-distortion pair (16) and its
components for the subset in Example 2 with the rate-distortion function of
the source for a Bernoulli DMS with parameter p = 0.11.

and obtain the following achievable rate-distortion pair:

R
(2)
L (D)=

{
(1−q∗+D)Hb

(
q∗−D

1−q∗+D

)
−q∗Hb

(
D
q∗

)
, 0 ≤D≤ q∗

0, D > q∗.
(15)

Note that, we can use time-sharing for this subset, since any
portion of a sequence belonging to this subset will also have
no consecutive ones. Hence, we arrive at the following result:

RL(D) ≤ l.c.e.
(

min{R(1)
L (D), R

(2)
L (D)}

)
, (16)

where l.c.e. stands for the lower convex envelope operation.
This immediately implies that RL(D) = 0 for D > q∗,
but since no converse for our Theorem 2 is currently known,
we cannot guarantee that (16) is optimal for 0 ≤ D ≤ q∗.
However, Figure 2 shows that even the achievable subset rate-
distortion in (16) can sometimes outperform the rate-distortion
function of the original source and already provide lossy
compression gains.

Finally, we present a fluctuating example with smooth
components.

Example 3. Consider a subset L1 = {L1,n}∞n=1 with

L1,n := {xn ∈ Xn : nq1 ≤ wH(xn) ≤ nq2,

xn has no consecutive 1s},

for some 0 ≤ q1 ≤ q2 ≤ 1/2, and another subset L2 =
{L2,n}∞n=1 with

L2,n := {xn ∈ Xn : nw1 ≤ wH(xn) ≤ nw2,

xn has 1s only in even positions},

for some 0 ≤ w1 ≤ w2 ≤ 1/2. Now, consider the fluctuating
subset L = {Ln}∞n=1 with

Ln :=

{
L1,n if n odd
L2,n if n even

.
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Fig. 3. The achievable rate-distortion pair via (18) and (19) for the fluctuating
subset of Example 3 with parameters q1 = 0, q2 = 0.09 and w1 = 0,
w2 = 0.18 and a binary DMS with parameter p = 0.11.

The first component L1 is smooth and intersects all dis-
tributions B(q) with q1 ≤ q ≤ q2, so that its subset-typical
distribution is Q∗(1)

X = B(q∗) where [8]

q∗=arg min
q1≤q≤q2

[
Hb(q)−(1− q)Hb

(
q

1− q

)
+Db(q‖p)

]
. (17)

An analysis similar to that in Example 2 implies

RL1(D) ≤ min{R(1)
L1

(D), R
(2)
L2

(D)}, (18)

where R(1)
L1

(D) and R(2)
L2

(D) are as in (14) and (15), respec-
tively, with q∗ as given in (17). Note that, (18) is not a convex
function in D, but it is also unclear whether a time-sharing
argument can be applied to this subset to convexify the result,
since a portion of a sequence belonging to this subset may not
retain the same structure as that in the original sequence.

The second component L2 is also smooth and intersects all
distributions B(w) with w1 ≤ w ≤ w2, so that Q∗(2)

X = B(w∗)
where

w∗= arg min
w1≤w≤w2

[
Hb(w)− 1

2
Hb(2w) +Db(w‖p)

]
.

From Corollary 1, we get

RL2(D) ≤
{
Hb(w

∗)−Hb(D), 0 ≤ D ≤ w∗
0, D > w∗.

(19)

Substituting (18) and (19) in Theorem 4 yields

RL(D) ≤ max
{

min{R(1)
L1

(D), R
(2)
L1

(D)}, RL2(D)
}
. (20)

This readily implies RL(D) = 0 for D > max{q∗, w∗}, but
the optimality of (20) for 0 ≤ D ≤ max{q∗, w∗} is unknown
in the absence of a converse for our Theorem 2. However,
Figure 3 shows that even the achievable subset rate-distortion
in (20) can sometimes outperform the rate-distortion function
of the original source and already provide lossy compression
gains. Furthermore, depending on the parameter selection and

the distortion value, the performance of the fluctuating subset
may be dominated by that of one subset component or the
other.

VIII. CONCLUDING REMARKS

We have provided a framework as well as optimality results
for lossy compression of likely, smooth, and fluctuating subsets
of discrete memoryless sources. One of our key findings is
that, lossy compression of smooth subsets involves covering
the subset-typical sequences with those conditionally typical
sequences of the reconstruction alphabet that belong to an
auxiliary subset, which is smooth by selection. In our proposed
achievability, the number of cover sequences is then related to
the size of the smallest intersection of the conditional typical
sets with the selected auxiliary subset. Therefore, achieving
lower compression rates requires a smart selection of the
auxiliary subset that is a good image of the original subset
and preserves its structure.

We envision two immediate directions for future research
on this topic. One is to close the open parts of our current
results, namely: (i) to prove a lower bound or converse for the
lossy compression of smooth subsets to complement the result
in Theorem 2; (ii) to extend the complete characterization of
Theorem 3 for the lossy compression of smooth symmetric
subsets to the case in which the optimal subset-typical dis-
tribution Q∗X(x) is not unique. Another future direction is to
analyze the fundamental compression limits of other subsets
that are not covered by our current analysis.

APPENDIX
PROOF OF LEMMA 1

Fix an arbitrarily small constant η > 0, and consider a pair
of random variables (X,Y ) such that E[d(X,Y )] ≤ |D− η|+
and the X-marginal is distributed according to P̂ (x). Denote
the Y -marginal distribution by PY (y). Fix an auxiliary subset
L̄ = {L̄n ⊆ Yn}∞n=1 which is (P̂X , PY |X ,L)-smooth per
Definition 3. We use the following random coding argument
to prove the existence of the set B(P̂X ,L) as described in the
lemma. Generate M independently and identically distributed
(i.i.d.) sequences {Y n(m)}Mm=1 at random according to the
uniform distribution over the set L̄n ∩ Tn[PY ]δn ; the exact
value of M will be specified later in the proof. We define the
set of uncovered xn sequences in TnL (P̂ ) by the Y n sequences
as follows.

U
(
{Y n(m)}Mm=1

)
:=
{
xn ∈ TnL (P̂ ) : d

(
xn, {Y n(m)}Mm=1

)
> D

}
.

Our goal is to prove that, if M is chosen appropriately,
then we obtain E

[∣∣U ({Y n(m)}Mm=1

)∣∣] < 1 for sufficiently
large n, which implies that a deterministic set B(P̂ ,L) :=
{yn(m)}Mm=1 with elements belonging to L̄n∩Tn[PY ]δn exists
such that all sequences xn ∈ TnL (P̂X) are covered in the sense
that d(xn, B(P̂X ,L)) ≤ D.

We first note that

E
[∣∣U ({Y n(m)}Mm=1

)∣∣]
=

∑
xn∈TnL (P̂ )

Pr
[
d
(
xn, {Y n(m)}Mm=1

)
> D

]
. (21)



However, due to the i.i.d. generation of the sequences
{Y n(m)}Mm=1, we find for all sequences in TnL (P̂X) that,

Pr
[
d
(
xn, {Y n(m)}Mm=1

)
> D

]
= (1− Pr [d (xn, Y n(1)) ≤ D])

M ≤ 2−M ·Pr[d(xn,Y n(1))≤D],
(22)

from the inequality (1−x)n ≤ 2−nx for all 0 ≤ x ≤ 1, n > 0.

We now analyze the probability in (22) using the specific
generation of the {Y n(m)}Mm=1 sequences. In particular, since
these sequences are generated uniformly over the set L̄n ∩
Tn[PY ]δn , we obtain

Pr [d (xn, Y n(1)) ≤ D]

=
|{yn ∈ L̄n ∩ Tn[PY ]δn : d(xn, yn) ≤ D}|

|L̄n ∩ Tn[PY ]δn |

≥
|L̄n ∩ Tn[PY |X |xn]δn |
|L̄n ∩ Tn[PY ]δn |

, (23)

where (23) follows from the properties of typical sequences
xn ∈ Tn(P̂X) and yn ∈ Tn[PY |X |xn]δn that, for sufficiently
large n, we have

d(xn, yn) ≤ E[d(X,Y )] + |X ||Y|δnDmax

≤ (D − η) + |X ||Y|δnDmax ≤ D,

for the case D > η. This result also holds for the case D ≤ η,
since the condition E[d(X,Y )] ≤ |D−η|+ = 0 implies that for
all (x, y) pairs, either d(x, y) = 0 or P̂X(x)PY |X(y|x) = 0,
which in turn implies d(xn, yn) = 0 ≤ D for all n and all
xn ∈ Tn(P̂X) and yn ∈ Tn[PY |X |xn]δn .

Now, recall from Definition 3 of (P̂X , PY |X ,L)-smooth
auxiliary subset that, for any xn ∈ TnL [P̂X ]δn ,

|L̄n ∩ Tn[PY |X |xn]δn |
≥ min
xn∈TnL [P̂X ]δn

|L̄n ∩ Tn[PY |X |xn]δn |

≥ 2n[HL̄|L(PY |X |P̂X)−ξn] (24)

and that

|L̄n ∩ Tn[PY ]δn | ≤ 2n[HL̄(PY )+ξn]. (25)

Substituting (24) and (25) into (23) yields for all sequences in
TnL (P̂X) that,

Pr [d (xn, Y n(1)) ≤ D] ≥ 2−n[HL̄(PY )−HL̄|L(PY |X |P̂X)+2ξn]

= 2−n[IL,L̄(P̂X ,PY |X)+2ξn]. (26)

Making the selection

M = 2n[IL,L̄(P̂X ,PY |X)+3ξn],

along with (21), (22), and (26) implies

E
[∣∣U({Y n(m)}Mm=1

)∣∣]≤∣∣∣TnL (P̂X)
∣∣∣·2−M ·2−n[IL,L̄(P̂X,PY |X )+2ξn]

≤ 2n log |X |−M ·2−n[IL,L̄(P̂X,PY |X )+2ξn]

≤ 2n log |X |−2nξn < 1,

for sufficiently large n. Since the choice of η > 0 is arbitrary,
and the pair of random variables (X,Y ) can be arbitrarily

selected subject to distortion and X-marginal distribution con-
straints, and the auxiliary subset L̄ can be any (P̂X , PY |X ,L)-
smooth subset, we have proved the existence of the set
B(P̂X ,L) as claimed in the lemma and with size

1

n
logB(P̂X ,L) =

1

n
logM

≤ min
PY |X :E[d(X,Y )]≤D

min
L̄:(P̂X ,PY |X ,L)-smooth

IL,L̄(P̂X , PY |X)+3ξn.
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