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Abstract—We consider interactive source coding of two sources
through a relay which also has a source. Alice and Bob have no
direct links and wish to exchange their sources with fidelity via
an intermediary, Ryan. Ryan also has an individual source and
seeks to communicate it to Alice and Bob. We develop inner
and outer bounds for the optimal rate-distortion region of this
problem, which coincide in certain lossless cases, e.g., when the
sources of Alice and Bob are conditionally independent given
the source of Ryan or when two of the sources are functions of
the third one. The bounds heavily make use of Wyner-Ziv and
Berger-Tung coding and often rely on linear network coding. Our
results highlight the dual role of the relaying source, which, on
one hand, facilitates compression rate savings for the other two
sources by helping as side information, and on the other hand,
requires additional rate for its own description.

I. INTRODUCTION

Interactive lossy compression of two sources is first studied
in [1], and is generalized to the case with helper in [2].
Interactive compression of sources involves a relay node when
the sources are not linked directly, but through a relay. Inter-
active lossless compression of two or more sources through
a relay is considered and fully characterized in [3]. In this
setup, the relay, termed the processing broadcast satellite
therein, receives information from all terminals and broadcasts
a single information stream back to the terminals who seek
to reconstruct all the other sources. The relay has no side
information to use or any individual source to compress. The
lossy version of the same problem has been investigated in [4]
and several inner and outer bounds have been developed,
which coincide in certain cases. Other related work include [5]
that considers a similar setup but with a side-information-aided
relay that broadcasts different streams to different users, [6]
that considers a three-terminal interactive setting in which each
user either remains silent or broadcasts its source to both of the
other users, and [7] that considers a direct interaction between
the terminals and the relay merely serves as an intermediate
hop in one of the links between the terminals.

There are two critical elements to the analysis of relay-
assisted interactive source coding problems. One is the use of
simultaneous binning codes [3], [4], [8] and linear network
coding [9] to facilitate a single broadcast stream for con-
veying different information contents to different users. The
other element is source compression with decoder-only side
information, whose lossless and lossy versions are established
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Fig. 1. Two-way lossy compression via a relay with self source

in the seminal work by Slepian and Wolf [10] and Wyner and
Ziv [11], respectively. The latter is extended to distributed
lossy source coding by Berger [12] and Tung [13]. Other
closely related problems are distributed lossy source coding
with decoder side information [14], lossy compression of a
single source for many decoders each with an individual side
information [15], cascade source coding [16] with various side
information considerations [7], [17]–[20], and lossy broadcast
of a two-part source to two terminals each of which have
one of the components as side information, a problem termed
complementary delivery [21].

In this paper, we consider a generalization of the problems
in [3], [4] as illustrated in Figure 1. Alice and Bob wish to ex-
change lossy description of their sources. The communication
takes place through a relay, Ryan, that possibly processes their
information exchange and broadcasts a single stream back to
them. In addition, Ryan has an individual source and wishes to
broadcast it to Alice and Bob with a fidelity criterion. We seek
to find the set of all compression rates that achieve some given
target distortion requirements. We show that Ryan’s source
can help as side information for compressing the sources of
Alice and Bob, but also requires additional rate for its own
compression. Depending upon the correlation level, it would
be better for Ryan to decode Alice and Bob descriptions before
sending his own source, or it might be more reasonable for
Ryan to forward Alice and Bob descriptions without decoding.
In section II, we formally state the problem formulation. In
Sections III and IV, we state and prove several outer and
inner bounds for the rate-distortion region of the problem. We
conclude the paper in Section V with some remarks and future
directions, and leave a technical proof for the Appendix.
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II. SYSTEM MODEL

Three correlated memoryless sources (X,Y, Z) take values
on alphabets X × Y × Z . Alice and Bob have access to X
and Y , respectively, and wish to exchange their information
through a relay, Ryan, that broadcasts a single stream of
information back to Alice and Bob. Ryan has access to Z
and wishes to communicate it along with X and Y . Alice
is asked to reconstruct lossy descriptions Ŷ and Ẑ, and Bob
is required to reconstruct lossy descriptions X̂ and Ẑ, within
given distortion levels. No decoding is required at Ryan. This
configuration is depicted in Figure 1.

More formally, consider reconstruction alphabets X̂ , Ŷ , and
Ẑ , and three additive distortion measures d1(x, x̂), d2(y, ŷ),
and d3(z, ẑ) such that

d1(x
n, x̂n) :=

1

n

n∑
t=1

d1(xt, x̂t),

and likewise for the other two measures. Define Ji, jK to be
the set of integers between i and j. An (n, 2nR1 , 2nR2 , 2nR3)
code for the problem of interactive source coding via a relay
with self source consists of:
• Alice encoder m1(x

n) : Xn → J1, 2nR1K and Alice
decoders ŷn(m3, x

n) : J1, 2nR3K × Xn → Ŷn and
ẑnA(m3, x

n) : J1, 2nR3K×Xn → Ẑn;
• Bob encoder m2(y

n) : Yn → J1, 2nR2K and Bob
decoders x̂n(m3, y

n) : J1, 2nR3K × Yn → X̂n and
ẑnB(m3, y

n) : J1, 2nR3K× Yn → Ẑn;
• Relay encoder m3(m1,m2, z

n) : J1, 2nR1K× J1, 2nR2K×
Zn → J1, 2nR3K.

A rate triple (R1, R2, R3) is called achievable with distor-
tion quadruple (D1, D2, D3A, D3B) if there exists a sequence
of (n, 2nR1 , 2nR2 , 2nR3) codes such that

lim sup
n→∞

E[d1(Xn, X̂n)] ≤ D1,

lim sup
n→∞

E[d2(Y n, Ŷ n)] ≤ D2,

lim sup
n→∞

E[d3(Zn, Ẑn
A)] ≤ D3A,

lim sup
n→∞

E[d3(Zn, Ẑn
B)] ≤ D3B .

The rate-distortion region R(D1, D2, D3A, D3B) is the clo-
sure of all rate triples (R1, R2, R3) that achieve the distortion
quadruple (D1, D2, D3A, D3B).

Remark 1. Lossless reconstruction corresponds to when all
reconstruction alphabets are equal to the corresponding origi-
nal alphabets, all distortion measures are Hamming distortions,
and D1 = D2 = D3A = D3B = 0.

III. OUTER BOUNDS

Our first outer bound is a cutset bound expressed in
terms of the Wyner-Ziv result [11], and the conditional rate-
distortion [22] for cooperative lossy source coding [23, p. 306].
In particular, let RWZ

X|Y Z(D) denote the rate-distortion function

for the source X when the side information pair (Y,Z) is
available at the decoder, so that

RWZ
X|Y Z(D) = min

p(u|x),x̂(u,y,z):
E[d(X,X̂)]≤D

I(X;U |Y Z). (1)

In addition, let RSH
XZ|Y (D1, D2) denote the rate-distortion

function for the super-source (X,Z) when the side information
Y is available to both encoder and decoder, so that

RSH
XZ|Y (D1, D2) = min

p(x̂,ẑ|x,z,y):
E[d(X,X̂)]≤D1,E[d(Z,Ẑ)]≤D2

I(XZ; X̂Ẑ|Y ).

(2)
The latter result can be proved directly along the lines of
standard rate-distortion analysis [23] for shared side informa-
tion [22] or can be seen as a corollary of the cascade source
coding result [16].

We now state our cutset outer bound.

Theorem 1. If a rate triple (R1, R2, R3) belongs to the rate-
distortion region R(D1, D2, D3A, D3B), it must satisfy the
following conditions:

R1 ≥ RWZ
X|Y Z(D1), (3)

R2 ≥ RWZ
Y |XZ(D2), (4)

R3 ≥ max{RSH
XZ|Y (D1, D3B), R

SH
Y Z|X(D2, D3A)}. (5)

Proof. The bound (3) follows from the cut between the Alice
encoder transmitting X and the super-decoder consisting of
Bob and Ryan with access to the side information (Y, Z). The
bound (4) has a similar nature, with the role of Alice and Bob
reversed. The first term in bound (5) follows from a genie-
aided cutset bound, in which the super-encoder consisting of
Alice and Ryan sends (X,Z) to the Bob decoder whose side
information Y is shared with the super-encoder. The second
term in bound (5) follows by exchanging the role of Alice and
Bob in the previous argument.

The cutset bound in Theorem 1 is based on rate-distortion
functions, in which mutual information terms are individually
optimized. One can build upon the techniques in [1], [4] and
improve the cutset bound by jointly optimizing the mutual
information terms.

Theorem 2. If a rate triple (R1, R2, R3) belongs to the rate-
distortion region R(D1, D2, D3A, D3B), it must satisfy the
following conditions:

R1 ≥ I(X;U1|Y Z), (6)
R2 ≥ I(Y ;U2|XZ), (7)
R3 ≥ max{I(XZ;V |Y U2), I(Y Z;V |XU1)}, (8)

for some auxiliary random variables (U1, U2, V ) that sat-
isfy the Markov chains U1 − X − Y Z, U2 − Y − XZ,
V −U1U2Z−XY , V −XU2Z−Y , V −Y U1Z−X , and some
reconstruction functions x̂(v, u2, y), ŷ(v, u1, x), ẑA(v, u1, x),
ẑB(v, u2, y) that satisfy E[d1(X, X̂(V,U2, Y ))] ≤ D1,
E[d2(Y, Ŷ (V,U1, X))] ≤ D2, E[d3(Z, ẐA(V,U1, X))]≤D3A,
E[d3(Z, ẐB(V,U2, Y ))] ≤ D3B .
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Proof. See the Appendix.

Remark 2. For lossless compression, Theorems 1 and 2
reduce to

R1 ≥ H(X|Y Z), (9)
R2 ≥ H(Y |XZ), (10)
R3 ≥ max{H(XZ|Y ), H(Y Z|X)}. (11)

IV. INNER BOUNDS

In this section, we state four achievability schemes based
on the different roles the relay can take. In certain cases,
the resulting inner bounds match with the outer bounds of
Section III, thus giving a full characterization.

A. Relay decodes, computes, and jointly re-encodes

Theorem 3. Any rate triple (R1, R2, R3) that satisfies the
following conditions belongs to the rate-distortion region
R(D1, D2, D3A, D3B):

R1 ≥ I(X;U1|U2ZQ), (12)
R2 ≥ I(Y ;U2|U1ZQ), (13)

R1 +R2 ≥ I(XY ;U1U2|ZQ), (14)
R3 ≥ max{I(WZ;V |Y U2Q), I(WZ;V |XU1Q)},

(15)

where Q is the time sharing random variable inde-
pendent of all the other random variables, the auxil-
iary random variables (U1, U2,W, V ) satisfy the Markov
chains U1 − XQ − Y Z, U2 − Y Q − XZ,
V − WZQ − XY U1U2, the function w(x, y) satisfies
H(W (X,Y )|U1, U2) = 0, and the reconstruction func-
tions x̂(v, u2, y), ŷ(v, u1, x), ẑA(v, u1, x), ẑB(v, u2, y) satisfy
E[d1(X, X̂(V,U2, Y ))] ≤ D1, E[d2(Y, Ŷ (V,U1, X))] ≤ D2,
E[d3(Z, ẐA(V,U1, X))]≤D3A, E[d3(Z, ẐB(V,U2, Y ))]≤D3B .

Proof. Alice and Bob use Berger-Tung coding [12], [13]
for distributed lossy compression of (X,Y ) as descriptions
(U1, U2) to Ryan who has access to the side information Z
[14]. Ryan then losslessly computes the function W (X,Y ) as
a consequence of the condition H(W (X,Y )|U1, U2) = 0, and
uses Wyner-Ziv coding for the pair (W,Z) aimed for Alice
with side information (X,U1) and Bob with side information
(Y,U2). Note that the two streams aimed for Alice and
Bob need not be sent separately, but can be combined via
simultaneous binning codes [3], [4], [8], thus the use of max
in the bound (15) for R3.

Remark 3. The achievable region in Theorem 3 with the
choices U1 = X , U2 = Y , W = (X,Y ), and V = (X,Y, Z)
reduces for the lossless case to

R1 ≥ H(X|Y Z), (16)
R2 ≥ H(Y |XZ), (17)

R1 +R2 ≥ H(XY |Z), (18)
R3 ≥ max{H(XZ|Y ), H(Y Z|X)}, (19)

which is tight if X − Z − Y .

B. Relay forwards other sources, then sends his source

Theorem 4. Any rate triple (R1, R2, R3) that satisfies the
following conditions belongs to the rate-distortion region
R(D1, D2, D3A, D3B):

R1 ≥ I(X;U1|Y ), (20)
R2 ≥ I(Y ;U2|X), (21)
R3 ≥ max{I(X;U1|Y ), I(Y ;U2|X)}

+max{I(Z;V |Y U1U2), I(Z;V |XU1U2)}, (22)

where the auxiliary random variables (U1, U2, V ) satisfy
the Markov chains U1 − X − Y Z, U2 − Y − XZ,
V − Z − XY U1U2, and the reconstruction
functions x̂(v, u2, y), ŷ(v, u1, x), ẑA(v, u1, u2, x),
ẑB(v, u1, u2, y) satisfy E[d1(X, X̂(V,U2, Y ))] ≤ D1,
E[d2(Y, Ŷ (V,U1, X))] ≤ D2, E[d3(Z, ẐA(V,U1, U2, X))] ≤
D3A, E[d3(Z, ẐB(V,U1, U2, Y ))] ≤ D3B .

Proof. Alice and Bob use Wyner-Ziv coding [11] for exchange
of (X,Y ) with each other via lossy descriptions (U1, U2).
Ryan merely combines (U1, U2) via linear network coding [4],
[9] and forwards a linear combination of them without any
decoding attempt. The relay then sends his own source Z as
a lossy description V aimed for Alice with side information
(X,U1, U2) and Bob with side information (Y, U1, U2). Note
that the two streams aimed for Alice and Bob need not be
sent separately, but can be again combined via simultaneous
binning codes [3], [4], [8].

Remark 4. The region in Theorem 4 with the choices U1 =
X , U2 = Y , and V = Z reduces for the lossless case to

R1 ≥ H(X|Y ), (23)
R2 ≥ H(Y |X), (24)
R3 ≥ max{H(XZ|Y ), H(Y Z|X)}, (25)

which is tight if Z is independent of the pair (X,Y ), i.e., if
I(XY ;Z) = 0.

C. Relay sends his source, then forwards other sources

Theorem 5. Any rate triple (R1, R2, R3) that satisfies the
following conditions belongs to the rate-distortion region
R(D1, D2, D3A, D3B):

R1 ≥ I(X;U1|Y V ), (26)
R2 ≥ I(Y ;U2|XV ), (27)
R3 ≥ max{I(Z;V |Y ), I(Z;V |X)}

+max{I(X;U1|Y V ), I(Y ;U2|XV )}, (28)

where the auxiliary random variables (U1, U2, V ) satisfy
the Markov chains V − Z − XY , U1 − X − Y ZV ,
U2 − Y − XZV , and the reconstruction
functions x̂(u1, u2, v, y), ŷ(u1, u2, v, x), ẑA(v, x),
ẑB(v, y) satisfy E[d1(X, X̂(V,U1, U2, Y ))] ≤ D1,
E[d2(Y, Ŷ (V,U1, U2, X))] ≤ D2, E[d3(Z, ẐA(V,X))] ≤
D3A, E[d3(Z, ẐB(V, Y ))] ≤ D3B .
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Proof. Ryan first sends his own source Z as a lossy descrip-
tion V aimed for Alice with side information X and Bob with
side information Y . Note that the two streams aimed for Alice
and Bob are combined via simultaneous binning codes [3],
[4], [8]. Next, Alice and Bob use Wyner-Ziv coding [11]
to exchange (X,Y ) with each other via lossy descriptions
(U1, U2), where now Alice has side information (X,V ) and
Bob has side information (Y, V ). Ryan does not attempt to
decode (U1, U2), but merely forwards a linear combination of
them [4], [9].

Remark 5. The region in Theorem 5 with the choices U1 =
X , U2 = Y , and V = Z reduces for the lossless case to

R1 ≥ H(X|Y Z), (29)
R2 ≥ H(Y |XZ), (30)
R3 ≥max{H(Z|Y ),H(Z|X)}+max{H(X|Y Z),H(Y |XZ)},

(31)

which is tight if among the triple (X,Y, Z) two of them are
functions of the third one, e.g., Y = f(X) and Z = g(X).

D. Relay decodes part of other sources, jointly re-encodes
with his source, then forwards the rest of other sources

Theorem 6. Any rate triple (R1, R2, R3) that satisfies the
following conditions belongs to the rate-distortion region
R(D1, D2, D3A, D3B):

R1 ≥ I(X;U1|U2ZQ) + I(X;S1|V U2Y Q), (32)
R2 ≥ I(Y ;U2|U1ZQ) + I(Y ;S2|V U1XQ), (33)
R1 +R2 ≥ I(XY ;U1U2|ZQ)

+ I(X;S1|V U2Y Q) + I(Y ;S2|V U1XQ), (34)
R3 ≥ max{I(WZ;V |U2Y Q), I(WZ;V |U1XQ)}

+max{I(X;S1|V U2Y Q), I(Y ;S2|V U1XQ)}, (35)

where Q is the time sharing random variable in-
dependent of (X,Y ); the auxiliary random variables
(U1, U2,W, V, S1, S2) satisfy the Markov chains U1 −XQ−
Y Z, U2 − Y Q − XZ, V − WZQ − XY , S1 −
XQ − Y ZU1VW , S2 − Y Q − XZU2VW ; the function
w(x, y) satisfies H(W (X,Y )|U1, U2) = 0; and the recon-
struction functions x̂(s1, v, u1, y), ŷ(s2, v, u2, x), ẑA(v, u1, x),
ẑB(v, u2, y) satisfy E[d1(X, X̂(S1, V, U2, Y ))] ≤ D1,
E[d2(Y, Ŷ (S2, V, U1, X))] ≤ D2, E[d3(Z, ẐA(V,U1, X))] ≤
D3A, E[d3(Z, ẐB(V,U2, Y ))] ≤ D3B .

Proof. Alice and Bob use Berger-Tung coding [12], [13]
to send (U1, U2) as a first descriptions of (X,Y ) to Ryan
who has access to the side information Z [14]. Ryan then
losslessly computes the function W (X,Y ) as a consequence
of the condition H(W (X,Y )|U1, U2) = 0, and uses Wyner-
Ziv coding for the pair (W,Z) aimed for Alice with side
information (X,U1) and Bob with side information (Y, U2).
The two streams aimed for Alice and Bob are combined via
simultaneous binning codes [3], [4], [8]. Finally, Alice and
Bob use Wyner-Ziv coding to exchange a second description
of (X,Y ) as (S1, S2) with each other, where now Alice has

side information (X,U1, V ) and Bob has side information
(Y,U2, V ). Ryan does not attempt to decode these second
descriptions and simply forwards a linear combination of
(S1, S2) [4], [9].

Remark 6. The achievable region in Theorem 6 subsumes
Theorems 3 and 5 as special cases. In particular, we can
recover Theorem 3 by setting S1 = S2 = constant, and
Theorem 5 by making the assignments Q = U1 = U2 =
W = constant, S1 = U1, and S2 = U2.

Remark 7. The achievable region in Theorem 6 with the
choices W = (U1, U2), S1 = X , and S2 = Y reduces for
the lossless case to

R1 ≥ I(X;U1|U2Z) +H(X|V U2Y ) (36)
R2 ≥ I(Y ;U2|U1Z) +H(Y |V U1X) (37)

R1 +R2 ≥ I(XY ;U1U2|Z) +H(X|V U2Y ) +H(Y |V U1X)
(38)

R3 ≥ max{I(U1Z;V |U2Y ), I(U2Z;V |U1X)}
+max{H(X|V U2Y ), H(Y |V U1X)}, (39)

where the auxiliary random variables (U1, U2, V ) satisfy the
Markov chains U1−X−Y Z, U2−Y −XZ, V −U1U2Z−XY .

V. CONCLUSION

In this paper, we studied a relay-assisted interactive source
coding problem, where the relay also has an individual source
to communicate. We stated several inner and outer bounds
for the rate-distortion region of the problem. Depending upon
the relations of the three sources, different strategies can be
adopted at the relay. A highly correlated source at the relay is
best suited to a scenario in which the relay may partially or
fully decode the other two sources and re-compress them along
with its own source. However, a weakly correlated source at
the relay may merely forward the descriptions of the other
two sources and then send its own source, or vice versa. We
leave a concrete comparison of these different strategies for the
binary and Gaussian sources for future research. An additional
future direction is to study the case in which the source at the
relay is shared with one of the terminals and is sought to be
communicated only to the third terminal.

APPENDIX
PROOF OF THEOREM 2

We use the converse technique in [1], [4]. Consider any
sequence of (n, 2nR1 , 2nR2 , 2nR3) codes that achieves the dis-
tortion quadruple (D1, D2, D3A, D3B). We can lower bound
R1 as follows.

nR1 ≥ H(M1) ≥ H(M1|Y nZn) ≥ I(M1;X
n|Y nZn)

=
n∑

t=1

[H(Xt|YtZt)−H(Xt|M1X
t−1Y nZn)]

≥
n∑

t=1

I(Xt;U1t|YtZt), (40)
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where (40) follows from conditioning reduces entropy and the
definition of U1t := (M1X

t−1Y n
t+1Z

n
t+1). We can similarly

bound R2 as follows.

nR2 ≥
n∑

t=1

[H(Yt|XtZt)−H(Yt|M2Y
t−1XnZn)]

≥
n∑

t=1

I(Yt;U2t|XtZt),

where U2t := (M2Y
t−1Xn

t+1Z
n
t+1). To bound R3 we write

nR3 ≥ H(M3) ≥ H(M3|M2Y
n) ≥ I(M3;X

nZn|M2Y
n)

=
n∑

t=1

[H(XtZt|M2Y
nXn

t+1Z
n
t+1)−H(XtZt|M3M2Y

nXn
t+1Z

n
t+1)]

≥
n∑

t=1

[H(XtZt|U2tYt)−H(XtZt|VtU2tYt)] (41)

=
n∑

t=1

I(XtZt;Vt|U2tYt),

where (41) follows from conditioning reduces entropy, defini-
tion of Vt := M3, and the Markov chain XtZt−U2tYt−Y n

t+1.
Analogously, we can write

nR3≥
n∑

t=1

[H(YtZt|M1X
nY n

t+1Z
n
t+1)−H(YtZt|M3M1X

nY n
t+1Z

n
t+1)]

≥
n∑

t=1

[H(YtZt|U1tXt)−H(XtZt|VtU1tXt)]

=
n∑

t=1

I(YtZt;Vt|U1tXt),

due to the Markov chain YtZt − U1tXt −Xn
t+1.

The Markov chains U1t − Xt − YtZt, U2t − Yt − XtZt,
Vt−U1tU2tZt−XtYt, Vt−XtU2tZt−Yt, Vt−YtU1tZt−Yt

all follow from the definitions of U1t, U2t, and Vt above.
The final step is to prove the expected single-letter distortion

measures. The key is to use [23, Lemma 20.2] which states
that, if Y −Z−W forms a Markov chain, then for every recon-
struction function ŷ(z, w), there exists another reconstruction
function ŷ∗(z) such that

E[d(Y, ŷ∗(Z))] ≤ E[d(Y, ŷ(Z,W ))]. (42)

Note for our problem that, for each t =
1, · · · , n, we can define a generalized function
x̂′t(m3, y

t−1, yt, y
n
t+1,m2, x

n
t+1, z

n
t+1) = x̂′t(vt, u2t, yt, y

n
t+1)

equal to the reconstruction function x̂t(m3, y
n) for

all m2, x
n
t+1, z

n
t+1. Then, due to the Markov chain

Xt − VtU2tYt − Y n
t+1, the above lemma would imply

that another reconstruction function x̂∗t (vt, u2t, yt) exists such
that

E[d1(Xt, x̂
∗
t (Vt, U2t, Yt))] ≤ E[d1(Xt, x̂t(M3, Y

n))]. (43)

Similar arguments can be made about the other three distortion
measures. The rest of the proof is standard convexity argu-
ments [23]. This completes the proof of Theorem 2.
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