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Abstract—Emerging applications including semantic infor-
mation processing impose priorities on the possible realizations
of information sources, so that not all source sequences are
important. This paper proposes an initial framework for opti-
mal lossless compression of subsets of the output of a discrete
memoryless source (DMS). It turns out that, the optimal source
code may not index the conventional source-typical sequences,
but rather index certain subset-typical sequences determined by
the source statistics as well as the subset structure. Building
upon an achievability and a strong converse, an analytic
expression is given, based on the Shannon entropy, relative
entropy, and subset entropy, which identifies such subset-typical
sequences for a broad class of subsets of a DMS. Interestingly,
one often achieves a gain in the fundamental limit, in that the
optimal compression rate for the subset can be strictly smaller
than the source entropy, although this is not always the case.

I. INTRODUCTION

Source coding addresses the compression, with or with-
out fidelity, of an information source. In particular, in loss-
less compression of a discrete memoryless source (DMS),
one identifies and indexes the set of typical sequences
that capture essentially all of the probability mass of the
entire source. For a DMS with probability distribution P (x)
over alphabet X , the number of such typical sequences
is approximately 2nH(P ), so that a lossless compression
of the DMS can be achieved with a rate H(P ) bits per
source symbol [1], where H(P ) = −

∑
x∈X P (x) logP (x)

denotes the (Shannon) entropy of the source.1 That is,
lossless source codes exist with rates above the source
entropy, R > H(P ), for which the error probability vanishes
exponentially fast [2]:

lim
n→∞

1

n
log Pr[E(n)] ≤ − min

Q:H(Q)≥R
D(Q‖P ), (1)

where Pr[E(n)] = Pr[X̂n 6= Xn] is the error probability
that the decoder’s estimate is different from the source
realization, and D(Q‖P ) :=

∑
x∈X Q(x) log(Q(x)/P (x))

denotes the relative entropy. Further, strong converse holds
for the lossless compression of a DMS, so that the error
probability of any lossless source code with rate below the
entropy, R < H(P ), has an error floor [2]

lim sup
n→∞

1

n
log(1− Pr[E(n)]) ≤ − min

Q:H(Q)≤R
D(Q‖P ). (2)

These basic settings have been extensively extended to
scenarios with unknown statistics [3] and find applications

1Throughout this paper, all log operations are understood as base 2.

in database management [4]. A key underlying consideration
in all of these works is that important realizations of the
source only consist of likely sequences of the source, i.e.,
source-typical sequences.

In some emerging applications in data analytics and
information processing including semantic communications,
database management and bioinformatics, however, the like-
lihood and typicality of a source realization may not be the
main factor to determine the importance of that sequence.
In particular, in semantic communications [5], only certain
pieces of information might be meaningful according to
semantic and logic rules. In such scenarios, therefore, one is
interested in processing and conveying only certain source
outputs with potentially low probability, rather than captur-
ing the collective probability mass of the source embodied
in the source-typical sequences. Posed as a compression
problem, the encoder and decoder aim at providing a lossless
or lossy description of only a subset of all possible source
realizations as determined by the application.

Our goal in this paper is to provide an initial treatment of
such a subset source coding problem. In terms of motivation,
our work is related to the problem of task encoding in [6]
that guarantees certain important but less likely source events
are not neglected in data compression, as well as information
theory of atypical sequences in [7] with applications in
signal processing and big-data analytics. Our investigation
also has roots in large deviations theory and relates to
generalized asymptotic equipartition property (AEP) [8] for
lossless and lossy compression of subsets.

In Section II, we formally introduce the subset source
coding problem. A key point in the problem formulation is
selecting an appropriate definition of the error probability.
Here, we adopt a conditional error probability, with respect
to the total subset probability, as the metric. This definition,
particularity the normalization involved in this conditional
probability, plays a key role in the analysis and introduces
technical subtleties. This renders a rigorous analysis neces-
sary and the problem itself non-trivial, although the results
are intuitively pleasing. Having this definition at hand, one
might first imagine that subset source coding is simply a
compression problem for an equivalent conditional source,
whose distribution is given by the conditional distribution of
the original source conditioned on the subset of interest. In
Section III, we show that such an analysis, although valid,
is not generally tractable using available tools, such as the
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information-spectrum approach [9]. Therefore, we resort
to the original DMS and build upon the large deviations
theory [1] and elements of combinatorics for the analysis.

In Section IV, we present three optimality results that
apply to broad classes of potential subsets of a DMS: one
for likely subsets based on the error exponent results for
conventional source coding; one for smooth subsets using the
method of types [2]; and finally one for fluctuating subsets
via superimposing several smooth subsets. The proof of the
second result is given in Section V. We next present in
Section VI several numerical examples of the subset source
coding problem and provide observations on the compres-
sion rate gain/loss that is achieved/incurred by focusing only
on subsets, instead of the entire source space. An interesting
observation is that, the subset-compression rate is the result
of a tension between the source statistics and the subset
structure; in some extreme cases, the compression rate can
be even totally independent of the source statistics. Sec-
tion VII concludes the paper with some remarks about the
extension of our treatment to the case of lossy compression.

II. PROBLEM SETTING

Consider a discrete memoryless source with distribution
PX(x) over the discrete finite alphabet X , such that the n-
fold distribution of the source, for all n = 1, 2, . . . , satisfies

PXn(xn) =

n∏
t=1

PX(xt). (3)

For simplicity of notation, we will sometimes write PX as P .
Let L = {Ln}∞n=1 be a sequence of subsets of the source
realizations such that Ln ⊆ Xn and Pr[Xn ∈ Ln] 6= 0
for all n. The problem is to find the minimum lossless
compression rate for the subset L.

More formally, an (n, 2nR) source code for subset L
consists of an encoder m : Ln → {1, 2, · · · , 2nR} and a
decoder x̂n : {1, 2, · · · , 2nR} → Ln ∪ {E} that assigns to
an index 1 ≤ m ≤ 2nR either an estimate x̂n(m) ∈ Ln or
an error E . The error probability of the code is defined as

Pr[E(n)
L ] := Pr[X̂n 6= Xn|Xn ∈ Ln]. (4)

A rate R is called achievable if an (n, 2nR) source code for
subset L exists with Pr[E(n)

L ]→ 0 as n→∞. The optimal
compression rate R∗L is the infimum of all achievable rates.

III. AN INITIAL ATTEMPT VIA THE EQUIVALENT
CONDITIONAL SOURCE

The way our problem of subset compression is posed,
specifically the error probability definition (4), may spur the
idea that a conditional setting readily captures this problem.
In particular, one may define an equivalent conditional
source X̃n as

PX̃n(xn) :=
PXn(xn)

PXn [Xn ∈ Ln]
1{xn ∈ Ln}, (5)

and claim the fundamental lossless compression rate of this
conditional source to be equivalent to our R∗L of interest.
This claim is indeed valid, since the error probability for
both cases is readily shown to be the same.

The fundamental compression limits of this conditional
source, however, are not in general very straightforward to
analyze. One possibility is to use the information-spectrum
approach [9] to characterize the fundamental compression
limits of this potentially non-stationary and non-ergodic
source. In particular, we have from the result of Han and
Verdú [10] that the fundamental limit is given by the spectral
sup-entropy rate of the equivalent conditional source:

R∗L = H̄(X̃) := p- lim sup
n→∞

1

n
log

1

PX̃n(X̃n)
, (6)

where X̃ = {X̃n}∞n=1 is the equivalent conditional source
process, and the p- lim sup operation, limit superior in
probability, is basically defined as the supremum of the
support set of the limiting distribution [9]. For those subsets
for which the equivalent conditional source is stationary and
ergodic, the results (slightly) simplify to average entropy rate
results [1], [9]:

R∗L = lim
n→∞

1

n
H(X̃n). (7)

Although the above information-spectrum approach and
limiting analysis yield a complete characterization of the
fundamental compression limits, its numerical evaluation for
arbitrary subsets is cumbersome, if at all possible, and may
require tedious manipulations. Moreover, the effect of subset
structure and the statistics of the original source on the
fundamental limits are not quite explicit. In the remainder
of this paper, we give three more tractable optimality results
that apply to broad classes of general subsets.

IV. COMPRESSION RATE FOR GENERAL SUBSETS

In this section, we present three results that apply to
general subsets.

A. Likely Subsets

The first general result asserts that, for subsets with
not so small probability, the optimal compression rate is
identical to that of the original source.

Theorem 1. For a discrete memoryless source P and any
subset L = {Ln}∞n=1 whose probability PXn [Xn ∈ Ln] as
n→∞ either is a constant or decays sub-exponentially to
zero, the optimal subset compression rate is R∗L = H(P ).

Theorem 1 is more intuitive for subsets L with an
asymptotically constant probability, PXn [Xn ∈ Ln] → c
where 0 < c ≤ 1, since excluding any constant fraction of
sequences in Xn does not reduce the required compression
rate. The case of subsets with slowly vanishing probability is
somewhat more subtle, as explained in the following proof
of Theorem 1.

Proof: (Achievability) Fix an arbitrary ε > 0 and
choose an error-exponent optimal source code in the con-
ventional setting with rate H(P )+ε and Pr[X̂n 6= Xn]→ 0
exponentially fast as n→∞; cf. (1). Noting that

Pr[X̂n 6= Xn] ≥ Pr[Xn ∈ Ln] · Pr[X̂n 6= Xn|Xn ∈ Ln],

and that by assumption Pr[Xn ∈ Ln] → c > 0 or
Pr[Xn ∈ Ln] → 0 sub-exponentially, we conclude that the
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same code, when constrained to only sequences within Ln,
achieves Pr[X̂n 6= Xn|Xn ∈ Ln] → 0 as n → ∞. This
implies R∗L ≤ H(P ), as the choice of ε is arbitrary.

(Converse) Fix an arbitrary source code for the subset
L = {Ln}∞n=1 achieving the rate R with error probability
Pr[X̂n 6= Xn|Xn ∈ Ln] = εn → 0 as n → ∞. We can
consider this code as a conventional source code for the
entire space Xn which maps all sequences in (Xn−Ln) to
an error E . We can analyze the error probability as follows.

Pr[X̂n 6= Xn] = Pr[Xn ∈ Ln] · Pr[X̂n 6= Xn|Xn ∈ Ln]

+ Pr[Xn /∈ Ln] · Pr[X̂n 6= Xn|Xn /∈ Ln]

≤ εn · Pr[Xn ∈ Ln] + Pr[Xn /∈ Ln]

= 1− (1− εn) · Pr[Xn ∈ Ln]. (8)

Since Pr[Xn ∈ Ln] → c > 0 or Pr[Xn ∈ Ln] → 0 sub-
exponentially with n, the error probability of this code is at
least sub-exponentially away from 1. By the error exponent
result (2) for conventional source coding, this implies that
the rate R is above the source entropy H(P ). Since the
choice of the code is arbitrary, we have R∗L ≥ H(P ). 2

Theorem 1 immediately captures a large class of subsets
by asserting that only subsets with exponentially small
probability need further study. In fact, one might imagine
that all important subsets with non-negligible probability are
already addressed by this theorem and therefore the remain-
ing possible subsets with exponentially small probability are
so rare that their analysis may seem irrelevant. In particular,
one may assume that such subsets with negligible probability
only contain the atypical sequences of the source [1], which
are anyways ignored in conventional compression. However,
as will be further clarified in the remainder of the paper
including the numerical examples of Section VI, one can find
subsets containing many source-typical sequences, which
yet have an exponentially small probability. Moreover, as
discussed in the Introduction, even the atypical sequences
of the source may be important for certain applications.

B. Smooth Subsets

Our second result provides an analytic formula for the
optimal compression rate of a broad class of smooth subsets,
including even those with exponentially small probability.
To state this result, we first recall the definition of type
classes and typical sequences of a DMS and introduce a
new quantity called the subset entropy.

Definition 1. [2] Let N(x;xn) be the number of occur-
rences of the symbol x ∈ X in the sequence xn. The type of
a sequence xn is the empirical distribution P̂xn(x) defined
as

P̂xn(x) :=
1

n
N(x;xn), ∀x ∈ X . (9)

Accordingly, the set of all sequences in Xn with type P̂ is de-
noted by Tn(P̂ ) and called the type class of P̂ . Furthermore,
given any general distribution Q and any positive sequence
δn, the set Tn[Q]δn of Q-typical sequences is defined as the
union of type classes Tn(P̂ ) for those types P̂ in Xn which

2An alternative proof of converse follows from [2, Lemma 2.14 and
Problem 2.11].

satisfy |P̂ (x)−Q(x)| ≤ δn for all x ∈ X with Q(x) > 0 and
P̂ (x) = 0 otherwise. Here and throughout, the sequence δn
is assumed to satisfy the Delta-Convention i.e., as n→∞,
we have δn → 0 and

√
nδn →∞.

One recalls from the method of types [2] that, the number of
the distinct types in Xn does not exceed (n+1)|X |, a result
referred to as the Type Counting Lemma. Furthermore, for
every distribution Q, the size of the Q-typical set satisfies

lim
n→∞

1

n
log |Tn[Q]δn | = H(Q). (10)

We can now define the notion of subset entropy.

Definition 2. We say the subset L = {Ln}∞n=1 intersects a
distribution Q(x) and write L ∩ T [Q] 6= ∅ if

lim sup
n→∞

|Ln ∩ Tn[Q]δn | 6= 0. (11)

In such a case, we define the subset-L entropy of distribution
Q(x) as

HL(Q) := lim
n→∞

1

n
log |Ln ∩ Tn[Q]δn | , (12)

if the above limit exists.

Comparing expressions (10) and (12) suggests that, the
subset entropy HL(Q) is a dual of the conventional en-
tropy H(Q). In fact, for any distribution Q with L∩T [Q] 6= ∅
for which the subset entropy is well-defined, we can readily
observe the appealing property that 0 ≤ HL(Q) ≤ H(Q).
In particular, for the extreme case of Ln = Xn, we have
HL(Q) = H(Q) for all distributions Q.

We are now ready to express our second result whose
proof is relegated to Section V.

Theorem 2. For a discrete memoryless source P and any
subset L = {Ln}∞n=1, if the subset entropy HL(Q) exists
and is continuous in all distributions Q intersecting the
subset, L ∩ T [Q] 6= ∅, the optimal compression rate for
the subset L is

R∗L =max

{
HL(Q∗) : L ∩ T [Q∗] 6= ∅,

Q∗∈ arg min
Q:L∩T [Q]6=∅

[H(Q)−HL(Q)+D(Q‖P )]

}
.

Theorem 2 has an interesting interpretation in terms of a
tension between the source statistics and the subset structure.
It suggest that, for a given subset, the most likely sequences
of the source which should be indexed by a lossless source
code belong, not necessarily to the source-typical set with
distribution P , but to a typical set (i) whose distribution Q
is potentially close to the source statistics in the sense
of relative entropy so that the term D(Q‖P ) is relatively
small and (ii) with potentially large intersection with the
subset so that the size of its residual part outside the subset,
captured by the term (H(Q)−HL(Q)), is also rather small.
The subset-typical distributions Q∗ optimize the trade-off
between these two elements by minimizing the function

gP (Q) = H(Q)−HL(Q) +D(Q‖P ), (13)

859



 

 

 

 

 
 

 

𝑄∗
 

 

Fig. 1. Schematic description of Theorem 2 for smooth subsets. The subset
is depicted with a bizarre curly shape. The dashed rings denote the typical
sets, which are shown in the order of closeness to the source statistic P in
the sense of relative entropy. The subset-typical distribution Q∗ corresponds
to the typical set that highly intersects the subset but is also close to the
source statistic P .

and the size of the corresponding subset-typical sets deter-
mines maxHL(Q∗) to be the rate of the lossless source code
for this subset. This interpretation is schematically depicted
in Figure 1.

The conditions mentioned in Theorem 2 are to guarantee
that the subset sequence L is smooth. We will further clarify
this through several examples in Section VI. For now, as
a sanity check, note for the extreme case of Ln = Xn
that, since the subset L intersects all distributions Q and
HL(Q) = H(Q), our objective function of interest reduces
to gP (Q) = D(Q‖P ) which is minimized by Q∗ = P for
which HL(Q∗) = H(Q∗) = H(P ), which is consistent with
our first impression. Of course, one could arrive at the same
result via Theorem 1, since for this case PXn [Xn ∈ Ln] = 1
for all n.

An interesting special case is one in which the subset
fully intersect a continuous spectrum of distributions. In this
case, the subset must contain all sequences of a certain range
of typical sets. Since all sequences within a typical set can be
decomposed into a few type classes, and each type class is
a permutation group, this motivates the following definition.

Definition 3. A subset L = {Ln}∞n=1 is called symmetric
if it has the property that, for any sequence xn ∈ Ln, all
permutations of xn also belong to Ln, for all n = 1, 2, · · · .

One readily observes that, for symmetric subsets over a
continuous range of distributions Q intersecting the subset,
we have the property HL(Q) = H(Q) and the objective
function thus reduces to gP (Q) = D(Q‖P ). Hence, we
arrive at the following simpler expression.

Corollary 1. For a discrete memoryless source P and
any symmetric subset L = {Ln}∞n=1 for which H(Q) is
continuous in all distributions Q intersecting the subset, i.e.
L∩T [Q] 6= ∅, the optimal lossless compression rate for the

subset L is

R∗L = max

{
H(Q∗) : Q∗ ∈ arg min

Q:L∩T [Q]6=∅
D(Q‖P )

}
.

C. Fluctuating Subsets with Smooth Components

In this subsection, we consider subsets that are not
smooth so that the limit in (12) does not exist and the subset-
entropy is not well-defined, but are fluctuating among a finite
number of smooth components. In such cases, one can code
for the worst subset component as described in the following
theorem.

Theorem 3. Consider a discrete memoryless source P ;
a finite collection of subsets Lj = {Lj,n}∞n=1 with 1 ≤
j ≤ J for which the subset entropy HLj (Q) exists and is
continuous in all distributions Q intersecting each subset,
Lj∩T [Q] 6= ∅; and a finite collection of index subsequences
{nj,k}∞k=1 with 1 ≤ j ≤ J such that for each n = 1, 2, · · ·
we have n = nj,k for a unique pair (j, k). Define the fluctu-
ating subset L = {Ln}∞n=1 as Ln = Lj,n if n ∈ {nj,k}∞k=1.
Then, the optimal compression rate for the subset L is

R∗L = max
1≤j≤J

max

{
HLj (Q

∗
j ) :

Q∗j ∈ arg min
Q:Lj∩T [Q]6=∅

[H(Q)−HLj (Q)+D(Q‖P )]

}
.

Proof: (Achievability) We build upon the achievability
statement of Theorem 2. Fix an arbitrary ε > 0. For each
1 ≤ j ≤ J , let {(mj,n, x̂

n
j )}∞n=1 be the optimal encoder

and decoder sequence for compression of the subset Lj ,
achieving Pr[X̂n

j 6= Xn|Xn ∈ Lj,n] → 0 as n → ∞ with
a rate R∗Lj + ε = maxQ∗j HLj (Q

∗
j ) + ε. We consider the

following code for the fluctuating subset: let mn ≡ mj,n

and x̂n ≡ x̂nj if n ∈ {nj,k}∞k=1. Then, we have

lim sup
n→∞

Pr[X̂n 6= Xn|Xn ∈ Ln]

= max
1≤j≤J

lim sup
n→∞

Pr[X̂n
j 6= Xn|Xn ∈ Lj,n] = 0.

(14)

The rate of this code is max1≤j≤J R
∗
Lj + ε. Since ε is

arbitrary, this completes the achievability proof.

(Converse) We build upon the strong converse statement
of Theorem 2. Assume R < max1≤j≤J maxQ∗j HLj (Q

∗
j ),

then there exists at least one 1 ≤ j̄ ≤ J such that
R < R∗Lj̄ = maxQ∗

j̄
HLj̄ (Q

∗
j̄
). By the strong converse result

of Theorem 2, we have lim supn→∞ Pr[X̂n
j̄
6= Xn|Xn ∈

Lj̄,n] = 1 for any arbitrary compression code for subset Lj̄ .
Hence,

lim sup
n→∞

Pr[X̂n 6= Xn|Xn ∈ Ln]

≥ lim sup
n→∞

Pr[X̂n
j̄ 6= Xn|Xn ∈ Lj̄,n] = 1, (15)

which proves the strong converse property for the fluctuating
subset L and completes the proof of Theorem 3.
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V. PROOF OF THEOREM 2

In this section, we provide the proof of Theorem 2. The
proof builds upon the following lemma, which is a dual of
Sanov’s theorem [2, Pr. 2.12] and summarizes the properties
of typical sequences intersecting a subset of the source. In
particular, we frequently use the notations

TnL (P̂ ) := Ln ∩ Tn(P̂ ), TnL [Q]δn := Ln ∩ Tn[Q]δn .
(16)

Lemma 1. Consider a discrete memoryless source P , a
subset L = {Ln}∞n=1, and a distribution Q intersecting the
subset, L ∩ T [Q] 6= ∅. If the subset entropy HL(Q) exists,
then there exists some εn → 0 as n→∞ such that

2−n[gP (Q)+εn] ≤ PXn [Xn ∈ TnL [Q]δn ] ≤ 2−n[gP (Q)−εn],
(17)

where function gP (Q) is defined in (13). Moreover, if HL(Q)
exists and is continuous for all Q satisfying L ∩ T [Q] 6= ∅,
then

PXn [Xn ∈ Ln] ≥ 2−n[minQ:L∩T [Q]6=∅ gP (Q)+εn]. (18)

Proof: Recall from the properties of type classes [2]
that, all sequences xn ∈ Tn(P̂ ) satisfy

PXn(xn) = 2−n[H(P̂ )+D(P̂‖P )]. (19)

On the other hand, the existence of the subset entropy
HL(Q) as defined by the limit (12) implies that, there exists
some ε′n → 0 as n→∞ such that

HL(Q)− ε′n ≤
1

n
log |TnL [Q]δn | ≤ HL(Q) + ε′n. (20)

Now, note that

|TnL [Q]δn | min
xn∈Tn[Q]δn

PXn(xn) ≤ PXn [Xn ∈ TnL [Q]δn ] ≤

≤ |TnL [Q]δn | max
xn∈Tn[Q]δn

PXn(xn). (21)

But, (19) and the continuity of the Shannon entropy and
relative entropy implies the existence of ε′′n → 0 such that

min
xn∈Tn[Q]δn

PXn(xn) ≥ 2−n[H(Q)+D(Q‖P )+ε′′n],

max
xn∈Tn[Q]δn

PXn(xn) ≤ 2−n[H(Q)+D(Q‖P )−ε′′n]. (22)

Combining (21) with (20), (22), and recalling the definition
(13) of the function gP (Q) completes the proof of the first
part of the lemma in (17) with εn := ε′n + ε′′n. The proof of
the second part then immediately follows, since the subset
entropy HL(Q) and therefore the function gP (Q) is assumed
to be continuous:

PXn [Xn ∈ Ln] = PXn [Xn ∈
⋃

P̂ :n-type

TnL (P̂ )] (23)

≥ max
Q:L∩T [Q]6=∅

PXn [Xn ∈ TnL [Q]δn ] (24)

which implies (18) and completes the proof of Lemma 1.

We are now ready to prove Theorem 2, which is inspired
by [2, Th. 2.15 and Pr. 2.6].

Proof: (of Theorem 2) To prove the achievability side,
we consider the following source code for the subset L =

{Ln}∞n=1. Fix an arbitrary ε > 0. The encoder indexes all
sequences xn belonging to the set An defined as

An :=
⋃

P̂ :n-type,P̂∈Ω(3ε)

TnL (P̂ ), (25)

where

Ω(ε):=

{
Q :L ∩ T [Q] 6= ∅, gP (Q)< min

Q:L∩T [Q] 6=∅
gP (Q)+ε

}
.

(26)

All other sequences in (Ln−An) lead to an error EL. Note
that, the use of min for gP (Q) in the definition (26) is
justified by the continuity of the subset entropy HL(Q) and
thus the function gP (Q). We can write

Pr[Xn ∈ (Acn ∩ Ln)] =
∑

P̂ :n-type,P̂ /∈Ω(3ε)

PXn [Xn ∈ TnL (P̂ )]

≤ (n+ 1)|X | max
Q/∈Ω(3ε),L∩T [Q] 6=∅

PXn [Xn ∈ TnL [Q]δn ].

(27)

Combining (27) and Lemma 1, the error probability is
bounded as

Pr[EL] = Pr[Xn /∈ An|Xn ∈ Ln] (28)

≤
(n+ 1)|X |maxQ/∈Ω(3ε),L∩T [Q]6=∅ PXn [Xn ∈ TnL [Q]δn ]

PXn [Xn ∈ Ln]

≤(n+ 1)|X |2−n[minQ/∈Ω(3ε),L∩T [Q]6=∅ gP (Q)−εn]

2−n[minQ:L∩T [Q] 6=∅ gP (Q)+εn]
. (29)

Therefore, from definition (26) of the set Ω(ε), we have
proved the existence of a source code for subset L with
vanishing error probability, Pr[EL] ≤ (n + 1)|X |2−nε, and
achieving the compression rate

1

n
log |An| =

1

n
log

∑
P̂ :n-type,P̂∈Ω(3ε)

|TnL (P̂ )| (30)

≤ 1

n
log

(
(n+ 1)|X | max

Q∈Ω(3ε)
|TnL [Q]δn |

)
(31)

≤ max
Q∈Ω(3ε)

HL(Q) + ε′n +
|X | log(n+ 1)

n
, (32)

where (31) follows from the Type Counting Lemma,
and (32) from (20) and the continuity of the subset entropy
HL(Q). Since n→∞ and the choice of ε > 0 is arbitrary,
this completes the achievability proof for Theorem 2.

In the following, we prove a strong converse for The-
orem 2, that is, we prove any arbitrary source code for
subset L with rate R < R∗L has an error probability
approaching one.

To this end, first let An := {xn(j)}2nRj=1 be the set of
encoded sequences which will be correctly decoded, and
note that the Type Counting Lemma implies

Pr[Xn ∈ (An ∩ Ln)]=
∑

P̂ :n-type

PXn [Xn ∈ (An ∩ TnL (P̂ ))]

≤ (n+ 1)|X | max
Q:L∩T [Q]6=∅

PXn [Xn ∈ (An ∩ TnL [Q]δn)].

(33)

861



However, we have for any distribution Q(x) that

PXn [Xn ∈ (An ∩ TnL [Q]δn)]

≤ |An ∩ TnL [Q]δn | max
xn∈Tn[Q]δn

PXn(xn) (34)

≤ min{2nR, 2n[HL(Q)+ε′n]} × 2−n[H(Q)+D(Q‖P )−ε′′n]

(35)

= 2−n[gP (Q)+|HL(Q)−R+ε′n|+−εn], (36)

where (35) follows form (20) and (22), and (36) from the
definition of gP (Q) and εn = ε′n+ε′′n. Combining (33), (36)
and Lemma 1, the correct decoding probability is bounded
as

1− Pr[EL] = Pr[Xn ∈ An|Xn ∈ Ln]

≤
(n+ 1)|X |maxQ:L∩T [Q] 6=∅ PXn [Xn ∈ (An ∩ TnL [Q]δn)]

PXn [Xn ∈ Ln]
(37)

≤ (n+ 1)|X |2n[minQ:L∩T [Q]6=∅ gP (Q)+εn]

×2
−n

[
minQ:L∩T [Q] 6=∅ gP (Q)+|HL(Q)−R+ε′n|+−εn

]
. (38)

Inspecting the lower bound (38) on error probability sug-
gests that, if R < HL(Q∗) − 4εn for any distribution Q∗

satisfying g(Q∗) ≤ minQ:L∩T [Q]6=∅ gP (Q) + 4εn, then the
error probability is bounded at least as Pr[EL] ≥ 1−2−nεn .
Since εn is vanishing and nεn →∞, this proves the strong
converse and completes the proof of Theorem 2.

VI. NUMERICAL EXAMPLES

In this section, we present several numerical examples to
illustrate our models and results. In all of these examples, we
consider a binary DMS with a Bernoulli distribution B(p)
with parameter p, so that X = {0, 1} and Pr[Xt = 1] = p
for some 0 ≤ p ≤ 1/2 and all t = 1, ..., n. We use the Ham-
ming weight wH(xn) of a binary sequence xn, the binary
entropy function Hb(p) := −p log p−(1−p) log(1−p), and
the binary divergence function Db(q‖p) := q log(q/p)+(1−
q) log ((1− q)/(1− p)).

The first two examples are symmetric, thus can be readily
handled by Corollary 1.

Example 1. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : wH(xn) = bnqc}, 0 ≤ q ≤ 1.

This subset is symmetric and B(q) is the only distribution
that intersects the subset L, so we obtain from Corollary 1
that

R∗L = H(B(q)) = Hb(q). (39)

It is evident that the subset compression rate can be below
or beyond the source entropy Hb(p).

Example 2. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : 0 ≤ wH(xn) ≤ nq}, 0 ≤ q ≤ 1.

This is again a symmetric subset, so we simply use Corol-
lary 1 to obtain

R∗L = max{Hb(q
∗) : q∗ = arg min

q̄:0≤q̄≤q
Db(q̄‖p)}

= Hb(min{p, q}), (40)
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Fig. 2. Comparison of the optimal subset compression rate of Example 3
with the source entropy for a Bernoulli DMS source with parameter p =
0.11.

since B(q̄) with 0 ≤ q̄ ≤ q are the only distributions
that intersect the subset L. The optimal rate R∗L = Hb(p)
for the case q ≥ p also follows from Theorem 1 since
Pr[Xn ∈ Ln] ≈ 1. It is evident that the compression rate
for this subset never exceeds the source entropy Hb(p), so
we achieve a rate gain by focusing only on the subset.

In the following, we consider two non-symmetric ex-
amples for which Corollary 1 does not apply and classical
entropy quantities are not sufficient for the analysis. There-
fore, we need to resort to the original form in Theorem 2
and perform further computations to find the subset-entropy.

Example 3. Consider L = {Ln}∞n=1 with

Ln:={xn∈Xn:wH(xn)=bnqc, xn has no consecutive 1s},

where 0 ≤ q ≤ 1/2. In this case, Theorem 1 does not apply
since the subset has exponentially small probability. In order
to employ Theorem 2, we first note that B(q) is the only
distribution that intersects the subset L, and it has a subset
entropy given by

HL(B(q))= lim
n→∞

1

n
log

(
n−bnqc+1

bnqc

)
=(1−q)Hb

(
q

1− q

)
.

(41)

Therefore, we obtain

R∗L = HL(B(q)) = (1− q)Hb

(
q

1− q

)
. (42)

A plot of this compression rate is illustrated in Figure 2,
which shows the subset compression rate (42) can be below
or beyond the source entropy Hb(p).

Example 4. Consider L = {Ln}∞n=1 with

Ln := {xn ∈ Xn : xn has no consecutive 1s}.

Again, Theorem 1 does not apply since the subset is not
likely. In order to employ Theorems 2, we first note that all
distributions B(q) with 0 ≤ q ≤ 1/2 intersect the subset L,
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Fig. 3. Comparison of the optimal lossless subset-compression rate of
Example 4 with the source entropy for a Bernoulli DMS with parameter p.

and each has a subset entropy given by (41). Therefore, we
obtain R∗L = (1− q∗)Hb

(
q∗

1−q∗

)
where

q∗=arg min
0≤q≤1/2

[
Hb(q)−(1− q)Hb

(
q

1− q

)
+Db(q‖p)

]
.

(43)

A plot of this subset-compression rate is illustrated in
Figure 3, which shows the optimal lossless compression rate
of this subset is always below the source entropy Hb(p).

Finally, we present a non-smooth example for which
Theorem 2 is not directly applicable. However, the char-
acterization of Theorem 3 facilitates the analysis.

Example 5. Consider a subset L1 = {L1,n}∞n=1 with

L1,n := {xn ∈ Xn : nq1 ≤ wH(xn) ≤ nq2,

xn has no consecutive 1s},

for some 0 ≤ q1 ≤ q2 ≤ 1/2, and another subset L2 =
{L2,n}∞n=1 with

L2,n := {xn ∈ Xn : nw1 ≤ wH(xn) ≤ nw2,

xn has 1s only in even positions},

for some 0 ≤ w1 ≤ w2 ≤ 1/2. Now, consider the
superimposed subset L = {Ln}∞n=1 with

Ln :=

{
L1,n if n odd
L2,n if n even

. (44)

Note that, Theorem 1 does not apply since the fluctuating
subset L is not likely, and Theorem 2 does not since the
subset is not smooth. However, both components are smooth
subsets. In particular, the second subset L2 intersects all
distributions B(w) with w1 ≤ w ≤ w2 with a subset entropy
given by

HL(B(w)) = lim
n→∞

1

n
log

(
bn/2c
bnwc

)
=

1

2
Hb(2w).
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Fig. 4. The optimal lossless compression rate of the superimposed subset
of Example 5 for a binary DMS with fixed parameter p = 0.08 and varying
subset parameters q1 = 0, q2 = 0.4w, w1 = w2 = w where 0 ≤ w ≤
1/2.
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Fig. 5. The optimal lossless compression rate of the superimposed subset
of Example 5 for fixed subset parameters q1 = 0, q2 = 0.09 and w1 = 0,
w2 = 0.18 and a binary DMS with varying parameter 0 ≤ p ≤ 1/2.

Hence, we can use Theorem 3 to obtain

R∗L = max
{
R∗L1

, R∗L2

}
, (45)

where R∗L1
= (1− q∗)Hb

(
q∗

1−q∗

)
with

q∗=arg min
q1≤q≤q2

[
Hb(q)−(1− q)Hb

(
q

1− q

)
+Db(q‖p)

]
,

(46)

and R∗L2
= 1

2Hb(2w
∗) with

w∗= arg min
w1≤w≤w2

[
Hb(w)− 1

2
Hb(2w) +Db(w‖p)

]
. (47)
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To show the different aspects of this scenario, we make
two comparisons. In one case, we fix the source distribution
to p = 0.08 and vary the subset parameters as q1 = 0,
q2 = 0.4w and w1 = w2 = w where 0 ≤ w ≤ 1/2. The
compression rate for this superimposed subset is shown in
Figure 4. The compression rate is observed to be dominated
by that of the second subset for smaller values of w and by
that of the first subset for larger values of w. One also notes
that the optimal subset-compression rate in this case can be
below or beyond the source entropy Hb(p).
In the second case, we fix the subset parameters to q1 = 0,
q2 = 0.09 and w1 = 0, w2 = 0.18 and vary the source
distribution as 0 ≤ p ≤ 1/2. The compression rate for this
superimposed subset is shown in Figure 5. In this case, the
compression rate of the superimposed subset is observed to
be dominated by that of the first subset for smaller values
of p and by that of the second subset for larger values of p.
In either situations, however, the subset-compression rate
always remains below the source entropy Hb(p).

VII. CONCLUDING REMARKS

We have provided a framework, as well as several
optimality results, for lossless compression of subsets of
discrete memoryless sources. We envision two immediate
directions for future research on this topic. One is to analyze
the fundamental compression limit of those subsets that are
not covered by our current results. Another more important
extension is to investigate the lossy compression for subsets
of discrete memoryless sources. We have explored this
direction in [11] and provided results analogous to our
lossless theorems given in this paper.
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