
Power Minimization with Quality-of-Information
Outages

Ertugrul Necdet Ciftcioglu∗, Antonios Michaloliakos†, Konstantinos Psounis†, Thomas F. La Porta∗, Aylin Yener∗
∗Pennsylvania State University, University Park, PA 16802, USA

†University of Southern California, Los Angeles, CA 90049
Email: enc118@psu.edu, michalol@usc.edu, yener@ee.psu.edu, kpsounis@usc.edu tlp@cse.psu.edu

Abstract—In this paper, we consider Quality-of-Information
(QoI) aware transmission policies for a dynamic environment. In
particular, we focus on the time-varying nature of the observation
quality of the environment in practical networks which leads to
uncertainty in satisfying QoI requirements specified by end users.
The goal of this paper is to meet QoI requests from end users with
minimum resources. Specifically, power is allocated dynamically
depending on observation accuracies and QoI requirements. We
formulate a dynamic scheme for scheduling with the objective
of minimizing the energy consumption at the network while
satisfying constraints on outage probability for QoI. Lyapunov
stability arguments are used to define a policy based on the
instantaneous observation qualities and QoI requirement sat-
isfaction levels. Numerical results demonstrate that significant
improvements in delivered QoI are realized with identical power
expenditure using our QoI-aware resource allocation algorithm
compared with traditional maximum-rate schedulers.

Index Terms—Quality of Information, Outage, Scheduling,
Resource Allocation, Energy.

I. I NTRODUCTION

For many applications, as tactical networks, surveillance,
and crowd sourcing, where the main goal is sound decision
making, Quality of Service (QoS)-based approaches that are
agnostic to the application or content of data may not be suffi-
cient. Consequently, there is growing interest in moving from
traditional QoS metrics as throughput, packet delivery ratio,
fairness, and delay, towards new notions of quality associated
with information. This lead to a set of attributes, including
provenance [1], accuracy and precision [2] [1] [3], reliability
[2], corroboration [1] [4], age/freshness and timeliness [2]
[1] [5] started to emerge as factors impacting theQuality-
of-Information(QoI) [2] [1].

Recently, we have proposed QoI-aware scheduling policies
with random observation arrivals for a single link, trading
the attributes of accuracy and freshness [6]. This has been
extended to the multiple source scenario in [7]. We have
also characterized the set of utility-maximizing QoI vectors
and associated rate allocation for multiuser networks [8].As
pointed out in [6], [7] [9], in reality it is not possible to ensure
that the same level of quality is ensured for all time/tasks.

The aforementioned work aims to maximize the expected
performance measures in a best-effort fashion given fixed
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system resources. On the other hand, in many real-world
scenarios, performance is specified in terms of quality re-
quirements at an end user. For such scenarios, rather than
solely focusing on expected performance measures in a best-
effort fashion, a more prominent objective is to ensure thatthe
quality requirements at the end user is satisfied by the network
as much as possible. In other words, by defining the instances
when the end-delivered QoI is below the desired level asQoI-
outage, the main focus is to ensure that the worst case tolerable
QoI-outage requirements are satisfied with minimum system
resources.

We consider a network where an end user assigns tasks to
be performed sequentially, and users with sensing capabilities
respond to each task. We are interested in resource allocation
to ensure that the requested QoI is satisfied with minimum net-
work resources. In this paper, we consider a dynamic network
where observation qualities are time-varying. As a particular
example, we consider a scenario where multiple sources trans-
mit to an end user. If the observations are sufficiently accurate,
than the QoI requirement may be satisfied. However, even in
such a case, the required resources significantly depend on the
observation quality, as well as on channel gains. The dynamic
nature of observation qualities leads to a sequential decision-
making problem to minimize power expenditure while still
ensuring QoI-outage requirements.

Among attributes that can effect QoI, we focus particularly
on accuracyand timeliness. These two attributes are funda-
mental representatives in the sense that accuracy is an indicator
of the quality of the initial information content and generating
information at the sources, while timeliness is concerned with
the capability and the quality of the network to deliver the
information. In this paper, we consider the scenario where
factors as illumination and weather conditions lead to time-
varying accuracy attributes of observed information at sources.

The sources generating the information are coupled through
the achievable rate regions supported by the network. Thus,
power allocation and rate scheduling decisions should be made
jointly to balance energy and QoI satisfaction performance. We
use Lyapunov stability arguments to develop algorithms that
attempt to strike such a balance. Numerical results demonstrate
that QoI-aware rate allocation significantly outperforms QoI-
agnostic traditional schedulers in terms of both QoI-outage and
average QoI delivered to the end user. While the notion of out-
age capacity has been addressed in traditional communications
[10], [11], to our knowledge this work is the first attempt to



develop outage-aware resource allocation algorithms for new
information quality attributes.

II. SYSTEM MODEL

We consider a scenario where tasks are issued from an end
user in a tactical network. Tasks arrive sequentially at time
instants{b1, b2, ...} with stochastic interarrival times, which
are greater than or equal toT , i.e. bt+1 − bt ≥ T,∀t > 0.
Information sourcesSi respond to the task and generate
information related with the task. This can correspond to
phenomena related with the environment. The information
content available at the source is associated with several
attributes, as accuracy, credibility, precision, freshness which
can be prioritized depending on the specific task.

The overall importance of the information to the task is
characterized by the QoI of the piece of information. Two
types of QoI can be defined:delivered-QoI, i.e. the QoI asso-
ciated with a piece of information generated and delivered by
the network, anddesired-QoI, which is the QoI requested from
the network. In this paper, contrary to previous approaches[1],
[6], [9], we focus on the desired QoI. QoI can be represented
by a QoI-vector, which is a vector of attribute-value pairs:
e.g., [type = image, timeliness = 15s, accuracy =
600×800, FOV = 150mmpermeter . . .], where FOV is the
field of viewwhich represents the (angular or linear or areal)
extent of the observable world seen at any given moment.

QoI functions allow a requestor of information to define
the relationships and trade-offs between information metrics.
For example, QoI may degrade as precision of information
decreases, or improve with timeliness, i.e., as the delay in
retrieving the information decreases. In general, the QoI
derived at the end user depends on environment conditions
(illumination, humidity/rain, moving obstacles), and on at-
tributes inherent to the information generated at the source,
e.g., resolution, completeness, field of view, provenance,and
effects of network delivery (e.g. timeliness). For instance, let
us consider the application of optical character recognition
(OCR), where images are sent to an end user. The accuracy
requirement may be that 90 percent of characters must be
decoded properly. This maps to a resolution of the page image.

Obviously, the required accuracy and precision will impact
how small we can make a file. Additionally, we have timeli-
ness. The latency that is achieved is a function of the size of
the file and the rate at which is used for transmission. This
creates a tradeoff with accuracy and precision. Let us consider
a file of s bits transmitted over a link with rater bps. This
results in an accuracy attribute ofa, which is a function ofs,
as well as timelinesstd as the timeliness attribute equalss

r
.

We define the following QoI function as a composite
function of both attributes as:

QoI(a, td) = QoI(a(s), td(s, r)). (1)

For a given application, and the file type, there exists a
specific relation between the file size of the information and
its accuracy, i.e.s(a) can take an arbitrary form depending
on the application and the file type. We follow the natural
assumption thats(a) is a non-decreasing function ofa for a

specific type of information and application. Note that the file
sizes affects botha andtd in (1), which results in a non-trivial
effect on QoI.

The effect of timelinesstd on QoI is described as a time-
liness functiong(td). For this paper, we specifically consider
the QoI function in the form ofaccuracy × timeliness, i.e.,

QoI = a × g(td). (2)

In the rest of the paper, via (1) and (2), we define an alter-
native function for QoIQ(a, r) which captures the timeliness
property and reflects the effect of rate more explicitly. We will
discuss specific quality functions in Section IV.

Once the decision to transmit is made by the sources, the
information available is fed into a wireless channel with a
certain rate. While we will present precise expressions for a
specific network scenario in Section IV, in the general case
rates are a function of physical layer properties as channel
gains, and scheduling among sources defined by the link layer.
We assume that channels are static, but the model could also
be readily extended to thequasi-staticchannel model where
the channels potentially change after each task.

III. POWER-AWARE QOI-OUTAGE SATISFACTION

We assume that the structure of the quality functions and
behavior according to timeliness parameters are known at
the sources. We consider slotted operation where network
decisions may be dynamically adapted at the beginning of
each task. We also assume that the tasks are all independent
of each other, and at most one task is processed by the network
at any time.

Define QoI-outage for taskt with desired QoIQdesired as

o(t) =

{

0, if
∑M

i=1 Qi(ai(t), ri(t))} ≥ Qdesired

1, if
∑M

i=1 Qi(ai(t), ri(t))} < Qdesired,

that is an indicator of whether the total QoI delivered to the
end user fromM sources meetsQdesired or not. The outage
probability Poutage for QoI requirementQdesired is defined
as the long term average of the outage realizations over tasks,
i.e., the average QoI-outage per task:

Poutage(Qdesired) := lim
t→∞

1

t

t−1
∑

τ=0

E[o(τ)]. (3)

Ultimately, the aim is, if possible under the observation
statistics, to satisfy thatPoutage(Qdesired) is less than or
equal to the QoI-outage requirementǫ with minimum network
resources, i.e., transmission power expenditure.

In other words, we consider an outage constraintǫ such that

lim
t→∞

1

t

t−1
∑

τ=0

E[o(τ)] ≤ ǫ. (4)

We start with the case where a centralized controller makes
transmission decisions for allM sources based on complete
knowledge of the system parameters and the history of QoI-
outages. The objective is to minimize the total energy con-
sumption at the network while ensuring that the outage prob-
ability constraint (4) is satisfied. This leads to the following



optimization problem:

min
~p(t),~β(t)

lim
t→∞

1

t

t−1
∑

τ=0

M
∑

i=1

E[pi(τ)] (PO)

s.t. lim
t→∞

1

t

t−1
∑

τ=0

E[o(τ)] ≤ ǫ,

(r1(t), ..., rM (t)) ∈ R(~p(t), ~β(t),~h) (5)

where pi(t) are the powers allocated to sourcei, hi(t) are
channel gains of links from sourcei to the destination,
and βi(t) are the time division parameters which reflect the
proportion of time sourcei is scheduled.~p, ~β and~h denote
vectors of power, time-sharing variables and channel states.R
denotes the achievable rate region.

Note that the objective in(PO) is equivalent to minimizing
the average power per task by normalizing by the total
long-term task arrival rate. LetP∗(ǫ) denote the solution to
(PO) as a function of the outage constraintǫ. This solution
represents the energy-outage trade-off. In general, this will be
a decreasing function ofǫ.

In principle, for a given QoI-outage constraint,(PO) can be
solved via dynamic programming. However, such a solution
quickly becomes intractable except for very simple obser-
vation quality processes and requiresa priori knowledge of
observation statistics. Instead, we will follow the approach in
[12], [13] [11], and use Lyapunov stability arguments to yield
an approximate solution to(PO). This approach is based on
generalizing the classical back-pressure algorithm, which is
guaranteed to stabilize packet queues, if this is possible under
capacity constraints [14].

A. General Methodology

We propose a QoI-aware Outage-based joint rate scheduling
and power allocation Algorithm(QOA) which chooses the
power values of each source and time sharing variables to ap-
proximate the solution to(PO). To track the outage constraint
over time, we use the idea of avirtual outage queue. Define
x(t) as the virtual outage queue with constant service rateǫ

and arrival rateo(t). If this outage queue is stable, then (4) is
satisfied. Then, the virtual outage queue dynamics are as:

x(t + 1) = max (x(t) − ǫ, 0) + o(t). (6)

In this problem, sincex(t) corresponds to the state of the
system, we define the corresponding Lyapunov function as

L(t) = L(x(t)) =
1

2
x(t)2. (7)

Since for for anyV,W, Y, Z satisfying V ≤ max(Y −
Z, 0) + W we have

V 2 ≤ Y 2 + Z2 + W 2 − 2Y (Z − W ), (8)

the Lyapunov drift is equal to

∆(x(t)) = E{L(x(t + 1)) − L(x(t))|x(t)}

= B − x(t)E{ǫ − o(t)|x(t)}, (9)

whereB is a term that can be bounded by the sum of second
moments of the outage values, sinceo(t) is bounded by

assumption. Here, the expectations are taken over the arrival
and control decision statistics. If we add the weighted expected
power as a penalty term to (9), we have

∆(S(t)) + V E{Ptot(t)|x(t)} =B − x(t)E{ǫ|x(t)}

+x(t)E{o(t)|x(t)} + V E{Ptot(t)|x(t)}, (10)

wherePtot(t) is the total power expended for taskt and the
weightV is a control parameter to tune the trade-off between
average outage performance and the minimum achievable cost.
The QoI-aware Outage-based Algorithm (QOA) we develop
aims at minimizing the sum of Lyapunov drift and penalty by
solving the following optimization problem for givenx(t):

min
(~p(t),~β(t))

x(t)o(t) + V [Ptot(~p(t), ~β(t))]. (11)

While we omit a detailed proof due to space constraints, it
can be shown that the algorithm solving (11) can stabilize
the outage queue whenever feasible in terms of observation
arrival statistics, with a trade-off in average power and outage
performance tuned throughV . We refer readers to [12] for
stability of virtual queues.

Note from (11) that (QOA) operates only with state value
x(t) and parameters for taskt, and does not require any a
priori observation statistics.

IV. CASE STUDY: TWO-SOURCETDMA SYSTEM

For clarity of exposition, we concentrate on a fundamental
communication model: a two-user multiple access network
(Fig. 1) operating under the TDMA protocol. This constitutes
a basic and inspiring model for QoI-based resource allocation,
which involves scheduling among links and QoI optimization.
In this model, the single user capacity for sourcei is ci. This
capacity depends on the channel conditionshi(t) and power
pi(t) allocated to sourcei asWlog2(1+ hi(t)pi(t)

NoW
), whereNo

is the noise power andW is bandwidth. The TDMA protocol
assigns each sourcei βi(t) ∈ [0, 1] fraction of time, resulting
in the following rates for each source (Fig. 2):

ri(t) ≤ βi(t)Wlog2(1 +
hi(t)pi(t)

NoW
), i = 1, 2. (12)

We note that the rates allocated to the sources are functionsof
both the powers allocated and time sharing factors. We assume
that channel gainsh1 andh2 are available at both sources.

We consider a model where the QoI received from each
source is assumed to be0 if information is delivered to the
end user with latency greater than theDi, which corresponds
to the timeliness requirement for the application from source i

[3]. If latency is less thanDi, the QoI is equal to the accuracy
of the information at the source,ai. Thus, the QoI function
can be written as:

Qi(ai, ri) =

{

ai, if
si(ai)

ri
≤ Di

0, if
si(ai)

ri
> Di.

Here, as mentioned earlier,si(ai) is the file size in bits
required to represent information of accuracyai. si(ai) is
typically a concave inai, implying diminishing returns.

The source qualities vary throughout time because of envi-
ronmental conditions (e.g. illumination, weather), resulting in



Fig. 1. Two-user MAC channel for QoI-based network.

Fig. 2. The achievable rate region for two-source TDMA.

observation accuracies(a1(t), a2(t)) for task t. The accuracy
is constant within a task but potentially varies for the nexttask
with some joint distribution of the sources.

Next, we discuss the joint rate scheduling-power allocation
algorithmQOA for a specific QoI function and energy cost.

The power-aware QoI-outage satisfaction algorithm consists
of mainly two steps:

• Determine which sources should be activated, and deter-
mine the proper rate allocation among the sources with
candidate power allocation solutions (Scheduling among
sources).

• Determine whether to allocate the candidate power allo-
cation solutions, or declare outage.

Next, we discuss these two steps in more detail.

A. Scheduling Among Sources

If the observation accuracies (a1(t), a2(t)) are such that:

• Qdesired ≤ min(a1(t), a2(t)), then only one source
requiring the lower power is a candidate for being sched-
uled and allocated power. The rate for the scheduled
sourcei is equal tori = s(ai(t))

Di
, where

i = arg min
i

1

hi(t)
(2

(
s(ai(t))

Di
)
− 1). (13)

• min(a1(t), a2(t)) < Qdesired ≤ max(a1(t), a2(t)), then
only one source with the higher observation accuracy is
a candidate for being scheduled and allocated power. The
rate for the scheduled sourcei is equal tori = s(ai(t)

Di
,

wherei = arg maxi ai(t).
• max(a1(t), a2(t)) < Qdesired ≤ a1(t) + a2(t), then

the scheduler proposes to schedule both sources, with
proper power allocation and time sharing optimization.
An example solution given below.

• a1(t)+ a2(t) < Qdesired, then regardless of the schedul-
ing method, the system declares a QoI-outage for the
current task and hence does not expend power.

Next, we discuss the third case, which requires the most
involved scheduling decisions. If precisely both sources are
required to satisfyQdesired for the current task, we need to
set the minimum rates for the sources to meet the timeliness
constraints, i.e.,ri = s(ai(t))

Di
, i = 1, 2. Note that while

the required source rates are specified, the specific power
allocation and time division parameters leading to these rates
are not unique. Nevertheless, we have the following relation:

βi(t)Wlog2(1 +
hi(t)pi(t)

NoW
) =

s(ai(t))

Di

, i = 1, 2 (14)

which defines the first step of the power allocation as

p
′

i(t) =
NoW

hi(t)
(2

(
s(ai(t))

βi(t)W Di
)
− 1). (15)

This results in the following optimization problem for the
source scheduling step for the time sharing variables:

min
β1(t),β2(t)

2
∑

i=1

NoW

hi(t)
(2

(
s(ai(t))

βi(t)W Di
)
− 1), (16)

s.t. β1(t) + β2(t) ≤ 1 (17)

It can be readily shown that this is a convex optimization
problem in (β1(t), β2(t)). Let us introduce the Lagrangian
multiplier λ for the constraint (17). Than, the Lagrangian
function can be expressed as:

L(β1, β2, λ) =

2
∑

i=1

NoW

hi(t)
(2

(
s(ai)

βiW Di
)
− 1) + λ(β1 + β2 − 1).

(18)
The Karush-Kuhn-Tucker (KKT) conditions imply:

∂L(β1, β2, λ)

∂β1
=

NoW ln 2

h1(t)
(2

(
s(a1(t))

β1(t)D1W
)
(
−s(a1(t))

β2
1WD1

))+λ=0,

(19)

∂L(β1, β2, λ)

∂β2
=

NoW ln 2

h2(t)
(2

(
s(a2(t))

β2(t)W D2
)
(
−s(a2(t))

β2(t)2WD2
))+λ=0,

(20)

with complementary slackness condition (CSC)

λ(β1(t) + β2(t) − 1) = 0. (21)

For λ > 0, we have the following expression for the time
sharing parameters (β1(t), β2(t)) from (19)-(20):

ln 2s(a1(t))No

h1(t)β1(t)2D1
2
(

s(a1(t))

β1(t)W D1
)
=

ln 2s(a2(t))No

h2(t)β2(t)2D2
2
(

s(a2(t))

β2(t)W D2
)
, (22)

equivalently withβ2(t) = 1 − β1(t)

2
(

s(a1(t))

β1(t)W D1
)

2
(

s(a2(t))

(1−β1(t))W D2
)

=
s(a2(t))h1(t)β1(t)

2D1

s(a1(t))h2(t)(1 − β1(t))2D2
. (23)

After obtaining the optimal time schedule from (23), the
first step of the optimal power allocation is completed by
inserting it into (15). This input of(p

′

1(t), p
′

2(t)) is passed into
the Lyapunov optimization step which compares the power
allocation solution with the outage satisfaction queuex(t).

Note that for the special case when Signal-to-Noise Ratio,
SNR, (which is equal to hp

NoW
) is very low, the relationship

between rate and power can be assumed as linear(log2(1 +



SNR)) ≈ SNR. This assumption notably simplifies the
analysis to obtain the solution forβ(t) as follows. Now,

βi(t)Whi(t)pi(t)

NoW
=

s(ai(t))

Di

, (24)

which defines the first step of the power allocation as

p
′

i(t) =
Nos(ai)

βi(t)hi(t)Di

, (25)

resulting in the following optimization problem for the rate
scheduling step for the time sharing variables:

min
β1(t),β2(t)

2
∑

i=1

Nos(ai)

βi(t)hi(t)Di

, (26)

s.t. β1(t) + β2(t) ≤ 1 (27)

which is again a convex optimization problem in(β1, β2). With
Lagrangian analysis, KKT conditions imply the solution:

s(a1(t))

h1(t)β1(t)2D1
=

s(a2(t))

h2(t)β2(t)2D2
, (28)

where withβ2(t) = 1−β1(t) we get the closed form solution:

β∗

1(t) =
1

1 +
√

h1D1s(a2(t))
h2D2s(a1(t))

. (29)

B. Outage-Aware Power Allocation

Once the candidate power allocation solutions are obtained
from the source scheduling step, which also definesβ1, β2,
from (11), the final power allocation step aims to optimize:

min
p1(t),p2(t)

x(t)o(t) + V (p1(t) + p2(t)). (30)

Note thato(t) is equal to0 if p1(t)+p2(t) > 0 and1 if p1(t) =
p2(t) = 0. Hence, the objective is equal toV (p1(t) + p2(t))
for no outage andx(t) for outage. LetPreq(t) := p

′

1(t)+p
′

2(t)
from the scheduling step. As a result, we have the following
power allocation algorithm:

• p1(t) = 0, p2(t) = 0, if x(t) < V Preq(t).
• p1(t) = p

′

1(t), p2(t) = p
′

2(t), if x(t) > V Preq(t).
Note that for the fourth case of the scheduling step, outage
is declared regardless of this comparison. We note that the
algorithm results in power allocation in line with intuition:
A large value ofx(t) implies that there has been excessive
QoI-outages, i.e., QoI-outage performance has not been very
satisfactory, which calls for more power allocation to improve
QoI-outage performance. On the contrary, a lowx(t) implies
that QoI-outage violations have been less and the network
can afford to turn off power to save from energy while
still satisfying QoI-outage requirements. Note also that the
algorithm tends to turn off power with a largePreq, which
might be required due to lower observation accuracies (low
accuracies might necessitate more sources to be scheduled). If
bothx(t) is low andPreq is high, the network opportunistically
avoids to spend excessive energy since it can sustain the QoI-
outage violation introduced. On the other hand, ifPreq is
small, which might imply less sources activated, the power
allocator tends to activate the sources. This enables to improve
QoI-outage performance without spending too much power.

V. NUMERICAL RESULTS

We demonstrate the performance of the resource allocation
algorithms via simulation results. The timeliness parameters
are D1 = 300ms, D2 = 200ms for expiration times. The
observation accuracya1 varies uniformly in [0.6, 1] and the
observation accuracya2 varies uniformly in[0.3, 1] and inde-
pendently froma1. We assume the relationshipsi(ai) = 105a3

i

for file sizes in terms of bits, meaning that there is diminishing
returns in terms of improved accuracy as file sizes increase.
The requested quality of informationQdesired is specified as
0.95. We setV = 1 for the trade-off parameter, and channel
gainsh1 = 2h2.

We compare the QoI-outage and average QoI performance
of the “QoI-aware Outage-based Algorithm”(QOA) with
three different algorithms “Throughput-based”(TA) , “Fair”
(FA) and “Accuracy-based”(AA) algorithms for scenarios with
different outage requirements. As described in more detail
next, the first two algorithms are QoI-agnostic:(TA) is a
greedy scheduler which focuses on bit-rate and(FA) is a fair
scheduler. On the other hand,(AA) is QoI-aware but does not
consider all QoI attributes. For a fair comparison among these
four algorithms, given the observation arrival process andQoI
requirements (Qdesired, ǫ), we first evaluate the average power
requirementPr for (QOA). Next, for each of the algorithms
we set the power to be equal to the minimum powerPr

for eachǫ from (QOA), with the same observation accuracy
realizations. That is, givenPr, (TA) performs power allocation
and time division optimization among sources to maximize
total throughput, i.e., sum rate.(FA) is a fair scheduler which
allocates equal power and time share to each source. On the
other hand,(AA) is an algorithm which prioritizes the source
with higher accuracy. Specifically, given the power budget and
regardless of the timeliness constraints and channel conditions,
it first schedules the source with more accurate observations.

From Figure 3, we observe thatQOA is the only scheduler
which is able to meet the desired outage requirements. We
observe that QoI-agnostic algorithms perform remarkably bad,
and in particular the “state-agnostic”fair allocator cannot
meet the desired QoI for any task (full outage). Moreover,
from Figure 4, we observe thatQOA also delivers much
higher average QoI per task by efficiently allocating power
depending on observation accuracy states and proper time
sharing among sources. We also observe that focusing on only
one QoI attribute (accuracy) is not sufficient for satisfactory
QoI delivery. The benefits of the virtual outage queues and
timeliness-aware source scheduling are substantial.

Next, in Figure 5 we demonstrate the required total power
in order to support different outage requirements. As expected,
we observe that average required power increases with more
stringent outage requirements.

Last, the average sum rates of the different algorithms
are shown in Figure 6. We observe thatQOA is able to
outperform other algorithms in terms of QoI with notably less
bits transmitted. This illustrates the significance of QoI-aware
resource allocation, as well as the utility of our QOA algorithm
when desired-QoI is specified in terms of outage requirements.
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Fig. 3. QoI-outage performance of various schedulers.
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Fig. 4. Average QoI performance of various schedulers.

VI. CONCLUSION

In this paper, we have focused on the problem of deliv-
ering information of requested quality when the underlying
observation qualities of are time varying. We have particularly
addressed the problem of minimizing an energy cost subject to
QoI-outage probability constraints in a network. The sources
deliver timeliness sensitive information observed from the
environment with stochastically varying observation quality.
First, we have presented a general control scheme to jointly
optimize the power cost and satisfy QoI-outage constraints.
Next, we have provided joint link scheduling-power allocation
algorithms for a two-source network operating under the
TDMA protocol. We have demonstrated that by efficiently al-
locating power, with the aid of a QoI-outage queue, significant
improvement is obtained in terms of QoI-outage as well as
average QoI compared with QoI-agnostic schedulers.

Future work includes treatment of the problem with alter-
native QoI functions and attributes, as well as extending the
detailed resource allocation solutions for more general network
scenarios.
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