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Abstract 

Maximum likelihood (ML)  detection problems for several 
multiuser systems result in nonlinear optimization problems 
with unacceptably high complexity. One way of achieving 
near-optimum pelformanee without the complexiry associ- 
ated with the M L  detector is using nonlinear programming 
relaxations to approximate the solution of the ML detection 
problem at hand. Using this approach, new detectors are 
formulated and it is observed that some popular subopti- 
mum receivers correspond to relaxations of the M L  detec- 
tors. We concentrate on two types of systems to demonstrate 
this concept and evaluate the pelformanee of the resulting 
detectors. 

1. Introduction 
It is well known that detection of multiple mutually in- 

terfering users in a communication system is not, an easy 
task. Having matched filter receivers for each user results 
in poor error performance in near-far scenarios [ 131. In par- 
ticular, for a CDMA system employing linear modulation, 
the maximum likelihood (ML) detector to detect the bits 
of all users has been shown to have exponential complex- 
ity in the number of users [12]. Similar conclusions can be 
made about multiuser systems employing nonlinear modu- 
lation [8]. Many suboptimum receivers with near-optimum 
performance have been developed to decrease the complex- 
ity of multiuser detection [4,5, 101. These suboptimum re- 
ceivers have been motivated by several criteria. Among the 
most popular linear detectors are the decorrelator [4], which 
suppresses the multiple access interference totally while en- 
hancing the Gaussian noise and the MMSE receiver [ 5 ] ,  
which minimizes the mean squared error between the filter 
output and the transmitted bit. 

The high complexity of a particular ML detector is a di- 
rect consequence of the fact that the associated ML detec- 
tion problem is a complex discrete optimization problem. 
For example, a quadratic cost function with a multidimen- 
sional binary valued feasible set is encountered for CDMA 
multiuser detection with BPSK modulation. This is a 0 - 1 

quadratic program for which there exists no efficient algo- 
rithm. The general approach in the presence of such hard- 
ship, is to approximate the solution by working on an easier 
problem that can be solved efficiently. The easier problem 
to be solved is a relaxation of the original problem. The re- 
laxed solution is then mapped to the solution set of the orig- 
inal problem, ideally arriving at a near-optimum solution. 

In this paper, we review the nonlinear programming 
methods to arrive at near-optimum multiuser detectors. We 
concentrate on the two aforementioned systems, i.e., mul- 
tiuser systems employing linear and nonlinear modulation. 
We observe that some popular suboptimum detectors are re- 
laxed solutions to the optimum detection problem. This ap- 
proach also enables us to develop new detectors with near- 
optimum performance. 

2. System Model 

Consider a K-user synchronous CDMA system with pro- 
cessing gain N where each user transmits one of M signals. 
The received signal is given by 

K 

.(t) = Y k m k  s k m k  ( t )  + n(t)  (1) 
k = l  

where Ykmk and Skmk ( t )  are the received amplitude (with 
the appropriate phase information embedded if necessary), 
and the transmitted signature of the kth user for the math 
message, and n(t)  is the additive white Gaussian noise 
(AWGN) process with power spectral density g’. 

We will use the above model for both systems we will 
consider, namely the CDMA system with linear modulation 
and nonlinear modulation. In particular, linear modulation 
corresponds to the special case where 

Let us now consider the discrete time model. It can be 
obtained by projecting the received signal onto an N -  
dimensional orthonormal basis, e.g., chip matched filtering. 
Let m k  be the desired message of the kth user. We define 
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the vector b k  = [bkl  . . . b k h . 1 1 ~  E F ,  where 

1 m=mk { 0 otherwise bkm = 

and F = { [ l o  . . .  O I T ,  . . .  , [ O  . . .  O 1 l T } .  The Nxl 
vector S k m  represents the chip matched filtered version 
of the lcth user’s signature corresponding to message m. 
The N x M  signature matrix of the lcth user is denoted 
as S k  = [ski . . .  S k M ] ;  A k m  and qjkm represent the am- 
plitude and phase of user k associated with message m, 
Ykm = Akmej+km; Ak = diag[Akl,. . . , & M I  and 
+ k  = diag[eidkl, . . . , e j4kM]  are M x M  diagonal matrices 
representing the amplitudes and phases of all the M mes- 
sages of user I C .  The received vector can be written as 

A 

A 

A .  

K 

(3) 
k= 1 

where n is the AWGN vector. Further, r can be expressed 
in terms of the M K x l  vector b = [b: . . . b;lT, the 
N x M K  matrix S = [SI . . . SKI, the M K x M K  matrices 

A = diag[A1,. . . , A K ]  and + a diag[+1,. . . , + K ]  as 

A 

A 

r = SA+b + n (4) 

In what follows, we concentrate on the two aforementioned 
systems, observe that using (4), we arrive at joint ML detec- 
tion problems that are nonlinear programs without efficient 
solution methods, and investigate approximation methods. 

3. MUD with Linear Modulation 
Consider, for simplicity, a CDMA system employing 

BPSK, i.e., M = 2 and s k j ( t )  = a k s k ( t ) ,  j = 1 , 2 .  Fur- 
ther, let us consider coherent detection. In this case, (4) can 
be written in a more compact fashion as 

r = S A a + n  ( 5 )  

- A  where S = [SI . . . S K I  contains the signatures of the users, 
A is the diagonal matrix containing the users’ received am- 
plitudes, a k  is the bit ( f l  equiprobably) of the kth user. 

The chip matched filtered signal given by (5) or equiv- 
alently, the vector of matched filter outputs is a sufficient 
statistic for the multiuser detection problem and is given by 

(6) 

where J? is the cross correlation matrix with l?ij = 

s,’ si(t)sj(t)dt, a is the bit vector of the users and and fi  is 
a zero mean Gaussian random vector with auto covariance 
matrix E[f i f iT]  = a2r. The ML multiuser detection prob- 
lem [ 131 is: 

y = STSAa + n = r A a  + f i  

a* = arg  min aTRa - 2aTAy (7) aE{-i,i)N 

where R = AI’A with R,, = At,A,,I’,J. 
Although it has been shown recently that certain special 

R structures allow construction of polynomial time algo- 
rithms to find the optimum solution [9], the problem for gen- 
eral correlation matrices remains NP hard and one can find 
the optimum a only by exhaustive search of 2 K  candidate 
vectors. 

Let us concentrate on cases where the signatures of the 
users are independent and I’ and hence R are positive def- 
inite. In this case, the objective (7) is strictly convex in a 
and has a well defined unique minimizer over a convex set. 
Thus, we can find solutions by relaxing the constraint set - 
which in the original problem contains only the corners of 
the unit hypercube- such that the resulting “relaxed” con- 
straint set is convex. Note that the requirement is that for 
each relaxation, the relaxed constraint set contains the fea- 
sible set of the original problem. The solution can then be 
mapped to the feasible set of the original problem by taking 
the sign of each component of the relaxed solution vector 
(bits are equiprobably fl). 
0 Decorrelator 

set is relaxed to contain the K dimensional space RK. 
First consider the simplest relaxation, where the feasible 

min aTRa - 2aTAy (8) aERK 

This problem has a unique minimum at 

= R-lAy = a + A-’r-’fi (9) 

Taking the sign of the solution vector yields the well known 
decorrelating detector [4]. 
0 Soft Interference Cancellation 

The constraint set of the optimum multiuser detection 
problem (7) consists of the corner points of the unit hyper- 
cube. An effective approximation method is to relax the 
constraint set to cover to whole hypercube and use nonlin- 
ear programming algorithms to find the solution of the new 
convex programming problem [ 2 ] .  The relaxed problem is: 

a = a rg  min aTRa - 2aTAy 
a€ [-  1 , 1 1 ~  

Now consider the implementation of the receiver given 
by (10). Since the optimization is a convex minimization 
over a convex set, the unique fixed point is the minimum. 
However, the optimum point does not have a closed form 
and one should use iterative methods to get to the solution. 
Fortunately, the simplicity of the constraint set, i.e., the fact 
that it has a Cartesian product form, enables us to define spe- 
cial iterative projection algorithms [ l l .  In particular, the 
nonlinear Gauss-Seidel and the nonlinear Jacobi algorithms 
respectively, converge to the minimum of (1 0) under cer- 
tain conditions. Both algorithms optimize one variable (a,) 
at a time to get to the optimum point of (10); however the 
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Gauss-Seidel method uses the most recent estimates of all 
variables, while the Jacobi algorithm allows a parallel im- 
plementation. It can be shown that the Gauss-Seidel and Ja- 
cobi iterations yield the following two-step algorithms. For 
each user i, the first step for the Gauss-Seidel iteration is, 
i(n + 1) = 

K 

and the first step for the Jacobi iteration is, 

h' 

The second step for both algorithms is 

Z(n + 1) < -1 

2 ( n  + 1) > 1 
+ l) ,  -1 I Z(n + 1) 5 1 (13) 

At each stage, to get the estimate of each user's bit, both re- 
ceivers use soft estimates of the bits to reconstruct the inter- 
ference and subtract this estimate from the user's matched 
filter output, scale the result by the amplitude of the user and 
project onto [-1,1]. The difference between the two is that 
while the Gauss-Seidel algorithm uses the available current 
stage estimates of the users, i.e., feedback from a group of 
users whose bit estimates are already computed, the Jacobi 
algorithm uses only bit estimates from the previous stage. 
Convergence of both the Gauss-Seidel and the Jacobi algo- 
rithms can be established using basic nonlinear program- 
ming theorems [ I ] .  The convergence conditions depend on 
the cross correlation matrix r and is given in [14]. 

In general, it takes more than one iteration for eitheralgo- 
rithm to converge and thus the resulting receivers are multi- 
stage receivers. Multi-stage receivers are familiar in mul- 
tiuser detection. [ I O ]  proposes using hard decision bit esti- 
mates to reconstruct and subtract the interference for each 
user. [7] proposes a class of receivers based on the SAGE al- 
gorithm, one of which is the successive multistage receiver 
( 1  1) and argues that the SAGE based hard decision multi- 
stage receiver is convergent even when its parallel counter- 
part (12) is not. The soft decision versions of these multi- 
stage receivers, i.e., (1 I )  and (12), are proposed in [7] and 
[ 151. Representing these receivers in the form of iterative 
nonlinear programming algorithms enables us to observe 
that both receivers, i.e., the parallel and the successive soft 
multi-stage interference cancellers, if they converge, con- 
verge to the same point which is the minimizer of ( lo).  

It is worthwhile to note that, one can implement the 
decorrelator given by (9) iteratively. Gauss-Seidel and Ja- 
cobi algorithms that converge to (9) can be found to be the 

algorithms derived in this section without the second stage 
[-I, 11 clippers. The convergence conditions are identical 
to those discussed in this section. It is also possible to de- 
rive Gauss-Seidel and Jacobi iterations that converge to the 
MMSE detector [ 5 ]  which estimates the bits by taking the 
sign of U = (I' + C ~ A - ~ ) - ' ~ .  The resulting algorithms 
differ from ( 1  1)  and (12) only in the scaling factor [ 141. 

Generalized MMSE Detector 
The constraint on each a,  E { -1; l} is equivalent to 

uf = 1 which implies aTa = K at any feasible point for 
ML-MUD. Relaxing this set to aTa 5 K results in: 

aTasK min aTRa - 2 a T A y  (14) 

Since (14) minimizes of a convex function over a convex set, 
i t  has a unique minimum and a variety of iterative algorithms 
can be employed the simplest of which is found by solving 
the dual problem [ I ] .  The solution becomes 

U = ( R +  X*I ) - 'Ay  = A - l ( r  + X*A-2) - ' y  (15) 

with 

x(n + 1) = X(n) - p ( y T A ( R  + X(n)I) - 'Ay  - K )  

which converges to x for a suitable p, and A* = max(0, x). 
The form of this solution whose sign is the estimate of the 

bit vector is familiar because of its similarity to the MMSE 
detector [SI. We term the relaxation (14) the generalized 
MMSE (GMMSE) solution. When A* = cz, (15) reduces 
to the MMSE detector. Note that the GMMSE is a nonlin- 
ear multiuser detector in contrast to the MMSE detector. 

4. MUD with Nonlinear Modulation 
Let us revisit the discrete representation given by (4) and 

consider nonlinear modulation. In this case, each user trans- 
mits one of A4 signals to transmit one of A4 symbols [ I I] .  
Let us concentrate on cases where the possible waveforms 
for all messages of all the users are linearly independent. 

First consider coherent detection. The ML estimate of b 
given r ,  A and + is given by 

b ~ 3  
b* = argminbT@HAYAcf ,b  - 2Re[zHA@b] (16) 

with Y = S H S  and z = S r .  It is easy to see that the prob- 
lem above is equivalent to multiuser detection with M-ary 
linear modulation and that one needs to evaluate all possi- 
ble sequences (AdK)  to find the ML estimate of the messages 
sent by all users [ 121. All nonlinear programming approxi- 
mations explored for Ad = 2 in the previous section can be 
easily extended for the case where M > 2 .  

Consider next the case where the amplitudes, A, are 
known at the receiver as in (16), but both cf, and b are un- 
known. In this case, we can estimate x = +b. If we define 
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t h e s e t G =  {[ej41 0 . . .  0IT, . . .  , [ O  . . .  Oej4MlT},then 
x E G, where G = GxGx . . . xG. The jointly optimum 
estimate x* is the solution to 

min x ~ A Y A x  - 2Re[zHAx]  (17) 
X € G  

The implementation of this detector also requires an exhaus- 
tive search and hence has unacceptably high complexity. 
Specifically, for each possible value of b, one has to solve for 
x which minimizes the objective function in (1 7) and whose 
non-zero elements contain the phase information that corre- 
spond to the nonzero elements in b. Since each nonzero ele- 
ment lies on the unit circle, this minimization is over a non- 
convex set. Thus, we relax the constraints and allow each el- 
ement to lie within the unit circle to guarantee the existence 
of the unique minimum. Henceforth, we will refer to this 
detector as the Joint Detector. 

Similar to their counterparts for linear and coherent de- 
tection, near-optimum receivers for nonlinear and noncoher- 
ent multiuser detection are also investigated in the literature 
[3,6,11]. Decorrelative and MMSE detectors that consist of 
two stages are considered: the pre-filter stage aims at sup- 
pressing the interference completely (decorrelator) or min- 
imizing the MSE between the information symbol and the 
output of the filter (MMSE); the second stage uses one of 
several decision mechanisms such as maximum magnitude 
(MM) to estimate the symbol sent by each user in [3]. 

Let us again consider the nonlinear programming ap- 
proach. The decorrelator and the MMSE detector are un- 
constrained relaxations of the ML detection problem ( 1  7) 
like their coherent linear modulation counterparts (see Sec- 
tion 3). Furthermore, it is possible to use the special struc- 
ture of transmitted signals to investigate other relaxations. 
To that end, we consider the constrained detectors as out- 
lined below. We also consider multistage soft interference 
cancellers that are tailored for this system. The motivation 
of considering the latter is their superior performance well 
known in the case of coherent linear multiuser detection [7]. 
In each case, a second decision stage will follow in which we 
use the MM rule to estimate each symbol. 
0 Constrained Noncoherent Multiuser Detection 

For every xk E G, x f x k  = 1 for all I C .  If we relax 
each of these constraints to be x f x k  5 1, then (17) be- 
comes a convex program whose minimum is unique and can 
be found using nonlinear programming methods. We will 
call the resulting detector the locally constrained detector. 
Also, for every x E 6, x H x  = K and once again by re- 
laxing the constraint to x H x  < K ,  we arrive at a convex 
program. The resulting detector in this case is termed the 
globally constraineddetector [8]. In both cases, not surpris- 
ingly, the solution closely resembles the Generalized MMSE 
detector of Section 3. Specifically, it can be shown that both 

detectors are in the form of 

where A* is the diagonal matrix whose diagonal elements 
the appropriate optimal Lagrange multipliers found for the 
specific detector. 
0 Noncoherent Soft Interference Cancellation 

We now explore noncoherent realizations of the succes- 
sive and the parallel multistage receivers proposed in [7, 10). 
The successive soft interference canceller is analogous to 
( 1  1). In the first step, at the ( n  + 1)st stage, the kth user's 
ith element is determined as z,(n + 1) = 

All the Ad entries of user k are thus iteratively determined, 
and then, in the second step, the entry with the maximum 
magnitude is selected as 

This vector estimate is then used by the (k + 1)st user for 
estimating its vector, and so on. 

Alternatively, the parallel soft interference canceller es- 
timates all the elements of xk in parallel as xk(n + 1) = 

k-1  K 

(YklcAlc)-' ( ~ k  - c T k I A , z , ( n  + 
J = l  

where Yk, and A k  are A!! x Ad block matrices. In the sec- 
ond step, the users' messages are obtained by using the same 
mapping as in successive soft interference canceller. 

5. Results and Discussion 
We have simulated the bit error performance of the de- 

tectors investigated in this work. Figure l shows the proba- 
bility of bit error for the desired user when the system ein- 
ploys BPSK and coherent detection. All iterative detectors 
(multistage soft cancellers and the GMMSE) are evaluated 
at their convergence points. The soft interference cancellers 
(( 1 l) ,  (12), (1 3)) have almost invariable performance versus 
interference strength. We note that the performance of the 
GMMSE detector is similar to that of the linear MMSE de- 
tector. In particular, we observe that the GMMSE detector 
has the same trend of approaching the decorrelator perfor- 
mance as the MMSE detector as the interference dominates 
the noise. Figure 2 shows the probability of symbol error for 
one user when an interferer exists and when the system em- 
ploys noncoherent detection and nonlinear modulation with 
Iv1 = 4. The constrained detectors perform similarly with 
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Figure 1. Coherent detection for BPSK. Desired user at 
6 dB SNR. N = 7, K = 4, Gold sequences. 

the MMSE detector. The 3-stage successive soft interfer- 
ence canceller with decorrelative first stage is observed to 
perform well especially in the near-far situation. Note that 
the MMSE detector does not converge to the decorrelator in 
the high interferer power region in contrast with multiuser 
systems employing BPSK. This is a direct consequence of 
the fact that, in the near-far situation, the MMSE detector 
zero-forces the high power interferers only, not the relatively 
low power M - 1 undesired messages of the desired user. 

In this paper, we have shown that many popular subopti- 
mum detectors are devices that attempt to approximate the 
solution of the joint maximum likelihood multiuser detec- 
tor for several types of systems. Although it is analytically 
hard to characterize exactly how closely they approximate 
the ML cost function, we have observed that they achieve 
near-optimum cost values. Consequently, the near-optimum 
bit error rate performances of these detectors are not surpris- 
ing. The approach helps us identify convergence conditions 
of multistage detectors and motivates new detectors such as 
the constrained detectors. 
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