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Abstract 

The optimum bit detector for  multiuser CDMA systems 
has exponential complexity in the number of users. Many 
suboptimum receivers have been developed to achieve good 
performance with less complexity. In this work, we ap- 
proximate the solution of the optimum multiuser detection 
probkrn-using nonlinear programming relaxations. We ob- 
serve that some popular suboptimum receivers correspond 
to relaxations of the optimal detection problem. In particu- 
lar; one approximation method yields to iterative solutions 
which correspond to previously proposed heuristic nonlin- 
ear detectors. We identib the convergence properties of 
these iterative detectors. We also propose a relaxation that 
yields a receiver which we call the generalized MMSE detec- 
tor: We give a simple iterative implementation of the detec- 
tol: Its performance is evaluated and comparisons to other 
suboptimum detection schemes are given. 

1. Introduction 
It has been long known that the matched filter receiver de- 

signed for a single user Gaussian channel is not optimum for 
the muttiple-user CDMA channel [ 131. Further, optimum 
detection of multiple users’ bits has been shown to be an NP 
hard problem [12]. This observation resulted in the devel- 
opment of many suboptimum receivers that have reasonable 
complexity with near-optimum performance [2, 5,  6 ,  lo]. 
These suboptimum receivers have been motivated by sev- 
eral criteria. Among the most popular linear detectors are 
the decorrelator [SI and the MMSE receiver [6] .  The decor- 
relator suppresses the multiple access interference totally 
while enhancing the Gaussian noise and is the optimum de- 
tector if the received powers of the users are unknown at the 
receiver. The MMSE receiver [6] gives the minimum mean 
squared error between the filter output and the transmitted 
bit, and also maximizes the output signal to interference ra- 
tio. Both detectors are optimum when no noise is present. 

Our aim in this study is to approach the optimum mul- 
tiuser detection problem from a nonlinear programming 

point of view. The original optimum multiuser detection 
problem (OMUD) is a 0 - 1 quadratic program for which 
there exists no efficient algorithm. The general approach in 
the presence of such hardship is to approximate the solution 
by working on an easier problem that can be solved effi- 
ciently. The easier problem to be solved is a relaxation of 
the original problem. The relaxed solution is then mapped 
to the solution set of the original problem, ideally arriving 
at a near optimum solution. 

Using nonlinear programming approach, we see that 
some popular suboptimum detectors are relaxed solutions to 
the optimum detection problem. This approach helps us un- 
derstand the previously unidentified convergence properties 
of some known iterative nonlinear detectors. Furthermore, 
a new relaxation method is proposed that results in a simple 
iterative detector whose performance is then evaluated. 

2. OMUD and its Relaxations 
We consider a synchronous CDMA system employing 

BPSK modulation. The received signal is given by 

N 

r(t) = J s E a i S , ( t )  + n(t) (1) 
2= 1 

where N is the number of users, q, and ai are received power 
and the transmitted bit (-fl equiprobably) of the ith user and 
n(t) is the additive white Gaussian noise (AWGN) process 
with power spectral density 02. The received signal vector 
at the output of the matched filters is a sufficient statistic for 
the multiuser detection problem and is given by 

In (2), I’ is the nonnegative definite cross correlation matrix 
with I?;, = Jz si(t)sj(t)dt, A is a diagonal matrix contain- 
ing the users’ received amplitudes Aii = &, a is the vector 
containing the information bits of the users and n is a zero 
mean Gaussian random vector with auto covariance matrix 
8[nnT] = a2r. 
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The aim of multiuser detection is to recover the infonna- 
tion bits, a. The solution of the optimum multiuser detec- 
tion problem (OMUD) [l 11 employs the maximum likeli- 
hood estimate a given y .  Specifically, 

a* = arg min aTRa - 2aTAy (3) aE{-i,i}N 

where R = A r A  with Rij = J C I f i r ’ i j .  

Although it has been shown recently that certain special 
R structures allow construction of polynomial time algo- 
rithms to find the optimum solution [9], the problem for gen- 
eral correlation matrices remains NP hard and one can find 
the optimum a only by exhaustive search of Z N  candidate 
vectors. 

In this work, we will concentrate on cases where the sig- 
natures of the users are independent and r and hence R are 
positive definite. In this case, the objective (3) is strictly 
convex in a and has a well defined unique minimizer over a 
convex set. Thus, we can find solutions by relaxing the con- 
straint set -which in the original problem contains only the 
corners of the uni t  hypercube- such that the resulting “re- 
laxed” constraint set is convex. Figure 1 shows the differ- 
ent relaxed constraint sets for the two-user case. Note that 
the requirement is that for each relaxation the relaxed con- 
straint set contains the feasible set of the original problem. 
The solution can then be mapped to the feasible set of the 
original problem by taking the sign of each component of 
the relaxed solution vector (bits are equiprobably hl). 

3. Decorrelator 
We first consider the simplest relaxation, where the fea- 

sible set is relaxed to contain the N dimensional space RN. 

min a T R a -  amN 2aTAy (4) 

This problem has a unique minimum at 

= R - ~ A ~  = a + A - l r - l n  (5 )  

Taking the sign of the solution vector yields the well known 
decorrelating defector [ 5 ] .  

4. Soft Interference Cancellation 

The constraint set of the optimum multiuser detection 
problem (3) consists of the corner points of the unit hyper- 
cube. An effective approximation method is to relax the 
constraint set to cover to whole hypercube and use nonlin- 
ear programming algorithms to find the solution of the new 
convex programming problem [3]. The relaxed problem is: 

a* = arg min aTRa - 2aTAy 
a€ I- 1,11 

The above optimization yields the optimum detector under 
certain conditions. Consider the case where the transmit 

Figure 1. Relaxed constraint sets for the two user system 
which yield the following detectors: I - Soft Interference 
Canceller (Section 4), It11 - Generalized MMSE (Section 
5) ,  I+Il+III - Decorrelator (Section3) 

powers { p i }  of the users are known but the uplink gains, 
hi E [0, 1IN, are random, i.e. the receiver only knows that 
the received power of user a is in [0, p i ] .  Defining T and H 
as the diagonal matrices with Tii = & and Hii = fi 
(JCI = &a), the joint maximum likelihood estimation 
problem for the uplink gains and the bits becomes 

min aTHTI’THa - 2aTHTy 
a,€{ - 1,1} ,h,E [O,l]Vi 

Defining 6i = a i f i  and R = T r Y  yields the optimiza- 
tion problem 

ii* = arg min iiTRii - 2 i iTry  (7) a€[ - 1 , l ) N  

which is identical to (6). The joint maximum likelihood es- 
timates of the uplink gains and the information bits are: 

fi = l6tl ut  = sgn(Sit) i = 1, ..., N (8) 

Now we consider the implementation of the receiver 
given by (6). Since the optimization is a convex minimiza- 
tion over a convex set, the unique fixed point is the mini- 
mum. However, the optimum point does not have a closed 
form and one should use iterative methods to get to the so- 
lution. One class of iterative methods that can be used are 
the constrained gradient methods. Further, the simplicity of 
the constraint set, i.e. the fact that it has a Cartesian product 
form, enables us to define special iterative projection algo- 
rithms [l]. In particular, the following two algorithms, the 
nonlinear Gauss-Seidel and the nonlinear Jacobi algorithms 
respectively, converge to the minimum of (6) under certain 
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conditions. Let g(a1, ..., U N )  = a Ra - 2aT Ay denote 
the function to be minimized. In the Gauss-Seidel iteration, 
a,(t + 1) is found by 

Corollary 1 For a CDMA system with linearly independent 
signature sequences, the Gauss-Seidel algorithm (the suc- 
cessive soft intetference canceller) always converges to the 
minimizer of (6). 

Establishing the convergence for the Jacobi algorithm re- 
arg min g ( a l ( t  + I ) , . . .  ,x,a,+l(t);*.  , a ~ ( t ) )  (9) 

x€[- 1 4  

while in the Jacobi iterations, ai(t + 1) is quires a little more effort. Convergence canbe  guaran- 
teed under certain contraction assumptions as indicated by 

arg min g(al(t), . . . x, U i + l ( t ) l . .  . alv(t)) (10) Proposition 3.10of Section 3.3 of [ I ]  which is given below. 
Z€[- 1,11 

respectively, where t is the stage (iteration) index. Both al- 
gorithms optimize one variable at a time to get to the opti- 
mum point of (6); however (9) uses the current stage esti- 
mates of some of the users while (10) allows a parallel im- 
plementation. Through a straightforward derivation, it can 
be shown that the above iterations yield the following two- 
step algorithms. For each user i, the first step for the Gauss- 
Seidel iteration is. 

k( t  + 1) = 

- / 1-1 N \ 

and the first step for the Jacobi iteration is, 

N 

The second step for both algorithms is 

i ( t  + 1) < -1 

j.(t + 1) > 1 
a z ( t  + 1) = 2( t  + l),  -1 5 i ( t  + 1) I 1 (13) { :' 

At each stage, to get the estimate of each user's bit, both re- 
ceivers use soft estimates of the bits to reconstruct the inter- 
ference and subtract this estimate from the user's matched 
filter output, scale the result by the amplitude of the user and 
project onto [-1,1]. The difference between the two is that 
while the Gauss-Seidel algorithm uses the available current 
stage estimates of the users, i.e. feedback from a group of 
users whose bit estimates are already computed, the Jacobi 
algorithm uses only bit estimates from the previous stage. 

Convergence of the Gauss-Seidel algorithm is easily es- 
tablished using Proposition 3.9 of Section 3.3 of [ 11 which 
says that if the convex function to be optimized is strictly 
convex in each of its variables and the constraint set has a 
Cartesian product form, the algorithm will converge to the 
unique minimum. Since we have a positive definite r, the 
function g(a) is convex in a and is strictly convex in each 
variable when the values of the other components of a are 
held constant. The convex set X = [-1, 1IN is in Cartesian 
product form. The convexity of g ( a )  ensures the uniqueness 
of the convergence point which is the global minimum. 

Theorem 1 Let g : RN -+ R be continuously differen- 
tiable, fer y be a positive scalaK and suppose that the map- 
ping T : X --+ RN, defined by T ( x )  = x - yVg(x), is a 
contraction with respect to the block maximum norm llxll = 
maxi Ilzilli/wi, where each 11 . Ili is the Euclidean norm on 
Rni and each w, is a positive scalar: Then, there exists a 
unique vector x* which minimizes g over X .  Furthermore, 
the sequence z( t )  generated by either of the Gauss-Seidel 
and the Jacobi algorithms converges to x' geometrically. 

The necessary and sufficient condition for T ( z )  to be a con- 
traction mapping for our problem such that Theorem 1 is 
valid can be shown to be 

where, for any matrix A, IlAIlE = maxi & Cj IAijlwj. 
For a small enough 7, (14) is equivalent to 

Define the matrix J? with I?zl = Ir,, 1, if i # j ,  and I?%% = 0. 
Then, it  can be shown that for some a, (15) is equivalent to 

1 1 ~ ' 1 1 %  < 1 (16) 

For a given I?, it may be difficult to check this condition for 
all possible ti3 values. The following equivalent condition 
that is independent of the particular norm can be found by 
using Corollary 6.2 in Section 2.6 of [I]. 

P(Q < 1 (17) 

where p(A) denotes the maximum eigenvalue of A. 
It is interesting to note that conditions (16) and (17) are 

satisfied for a system where users' signatures are shifted ver- 
sions of a basic m-sequence. In this case, rV = - l /G,  
i # j ,  and p ( r )  = ( N  - l) /G. p(?') < 1 as long as 
N 5 G which by definition is the case. Note that choosing 
w, = 1 for all i, (16) reduces to a diagonal dominance con- 
dition which is a sufficient condition for convergence and is 
also equivalent to ( N  - 1)/G < 1 for m-sequences. Thus, if 
m-sequences are used, both Jacobi and Gauss-Seidel algo- 
rithms, i.e., parallel and successive interference cancellers, 
converge to the minimizer of (6) .  
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In general, it takes more than one iteration for either 
algorithm to converge and thus the resulting receivers are 
multi-stage receivers. Multi-stage receivers are familiar in 
multiuser detection. [IO] proposes using hard decision bit 
estimates to reconstruct and subtract the interference for 
each user. The receiver is implemented in a parallel fash- 
ion as in (12) and is not convergent. [8] proposes a class 
of receivers based on the SAGE algorithm, one of which is 
the successive multistage receiver ( 1  1) and argues that the 
SAGE based hard decision multistage receiver is conver- 
gent even when its parallel counterpart is not. The soft de- 
cision versions of these multistage receivers, i.e. ( I  l )  and 
(12), are proposed in [8] and [14]. They are termed as re- 
ceivers with linear clippers. By representing these receivers 
in the form of iterative nonlinear programming algorithms, 
we have shown that both these soft decision receivers, i.e. 
the parallel and the successive soft multi-stage interference 
cancellers, if they converge, converge to the same point 
which is the minimizer of (6). Typically, Gauss-Seidel type 
iterations have faster convergence since they use the newest 
estimates. On the other hand, Jacobi type iterations can be 
executedin a completely parallel fashion since they do not 
require feedback from the current stage estimate of any user. 
Note that, if Theorem 1 is valid, any combination of the two 
algorithms also converges to the minimum of (6) ,  i.e. some 
users can use the successive soft multi-stage receivers and 
others can use the parallel soft multi-stage receivers. 

It is worthwhile to note that, one can implement the 
decorrelator given by (5) iteratively. Gauss-Seidel and Ja- 
cobi algorithms that converge to (5) can be found to be the 
algorithms derived in this section without the second stage 
{-l,l] clippers. The convergence conditions are identical 
to those discussed in this section. It is also possible to de- 
rive Gauss-Seidel and Jacobi iterations that converge to the 
MMSE detector [6] which estimates the bits by taking the 
sign of 6 = (I' + u2A-')-l y .  It can be shown that the 
resulting algorithms differ from (1 1) and (12) only in the 
scalingfactor. Specifically, one has to replace l/& with 

Finally, we should emphasize that the implementations 
discussed here are not the unique way of solving for the min- 
imizer of (6). There are other nonlinear programming meth- 
ods that yield iterative algorithms whose bit error rate per- 
formance matches that of the soft interference cancellers. 

5. Generalized MMSE Detector 

& k l Z  + g2). 

The constraint on each ai E { -1,l) is equivalent to 
U;" = 1 which implies uTu = N at any feasible point for 
OMUD. Relaxing this set to aTa 5 N results in: 

min aTRa - 2aTAy (18) 
aTa<N 

Since (1  8) minimizes of a convex function over a convex 
set, it has a unique minimum and iterative algorithms such as 

gradient descent can be employed to find this minimum [7]. 
Further, the convex duality theorem [7,  Theorem 14.61 en- 
sures that no duality gap exists and one can solve for the dual 
problem instead. Since (1  8) has a single constraint, there is 
only one dual variable. Thus, a simpler iterative algorithm 
can be found by solving the dual problem as outlined below. 

The Lagrangian dual function can be expressed as 

L(a, A) = aTRa - 2aTAy + A(aTa - N )  (19) 

which is to be maximized over a and X 2 0. Solving for a 
in  terms of X and substituting back we arrive at: 

max -yTA(R + X I ) - ' A y  - AN (20) 
A20 

which is a one-dimensional optimization problem and can 
be solved with a variety of iterative algorithms 171. A sim- 
ple unconstrained gradient descent algorithm is guaranteed 
to converge for a small enough step size p which can then 
be projected onto the positive axis. The algorithm is 

X(t + I )  = X(t) + p ( a T A ( R  + X(t)I)-2Ay - N )  (21) 

which converges to i. The maximizer of (20) is given by 

A* = max(0, X) (22) 

Then, the unique minimizer of (1  8) can be found to be 

a* = ( R  + A* I ) - 'Ay  = A-'(I' 4- X*A-2)- 'y  (23) 

The form of this solution whose sign is the estimate of the bit 
vector is also familiar because of its similarity to the MMSE 
detector [6]. We term the relaxation (18) the generalized 
MMSE (GMMSE) solution. When A' = u2,  (23) reduces 
to the MMSE detector. Note that finding the GMMSE so- 
lution results in a nonlinear multiuser detector in contrast to 
the MMSE detector. On the other hand, the knowledge of 
the noise power value (U')  is not necessary for the GMMSE 
detector whereas the MMSE detector requires this knowl- 
edge if training or blind adaptation is not desired [4,6]. 

The GMMSE detector is also an iterative detector since 
A* has to be found iteratively. However, since the iterations 
are in one dimension, they are expected to converge quickly 
compared to multidimensional algorithms. 

6. Results and Discussion 
Since the probability of bit error expressions are not an- 

alytically tractable for arbitrary number of users and itera- 
tions, we have simulated the bit error performance of the de- 
tectors investigated in this work. The first system simulated 
is an N = 7 user system with processing gain G = 7 that 
uses m-sequences. Figure 2 shows the probability of bit er- 
ror for one user when that user has 0 dB SNR and all the in- 
terferers have a common S N R  that is varied. All iterative 
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Figure 2. Comparison of error probabilities of near- 
optimum multiuser detectors: Near-far scenario (Desired 
user at 0 dB SNR). G = 7, N = 7, M-sequences. 

detectors (multistage soft cancellers and the GMMSE) are 
evaluated at their convergence points. The soft interference 
cancellers ((1 11, (12), (13)) have almost invariable perfor- 
mance versus interference strength. We note that the perfor- 
mance of the GMMSE detector is similar to that of the linear 
MMSE detector. In particular, we observe that the GMMSE 
detector has the same trend of approaching the decorrelator 
performance as the MMSE detector as the interference dom- 
inates the noise. We have also simulated an N = 4 user sys- 
tem with processing gain G = 7 that uses Gold sequences 
and observed similar results (Figure 3). 

In this paper, we have shown that many popular sub- 
optimum'detectors are devices that attempt to approximate 
the solution of the joint minimum bit error rate detector 
(OMUD). Although it is analytically hard to characterize ex- 
actly how closely they approximate the OMUD cost func- 
tion, we have observed that they achieve near-optimum cost 
values. Consequently, the near-optimum bit error rate per- 
formances of these detectors are not surprising. We have 
identified the convergence conditions of multistage soft in- 
terference cancellers. We have also proposed and devised a 
simple iterative nonlinear detector with similar performance 
to the MMSE detector. It can be used in scenarios where 
adaptive or blind adaptive detection is not suitable -say due 
to delay constraints- and the ambient noise power is un- 
known. 
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