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Abstract—This paper presents a practical system design ap-
proach for cooperative spectrum sensing in cognitive sensor
networks. An optimization problem is formulated, where the
objective is to choose appropriate number of samples used in local
energy calculation and linear combination weights for a global
fusion center that together maximize global spectrum detection
probability. Depending on the local information available to the
fusion center and secondary users, practical system design is
proposed in high fusion signal to noise ratio (SNR) regime, which
has minimal implementation complexity and negligible perfor-
mance loss, thus provides an efficient system design alternative in
practice. Simulation results are presented to verify the analytical
results.

I. INTRODUCTION

Cognitive radio [1] is a key technology to exploit under-
utilized spectrum and enhance spectrum efficiency. In cog-
nitive sensor networks, secondary (unlicensed) users monitor
local communication conditions and opportunistically access
unoccupied spectrum when/where the primary (licensed) user
is inactive. To enable this dynamic spectrum access, the
secondary user needs to continuously monitor local spectrum
and detect spectrum holes [1]. This technique, called spectrum
sensing, requires that the secondary user reliably detect weak
signals from primary users in order to avoid harmful inter-
ference. However, due to the nature of the wireless channel
(e.g., fading), a secondary user may not be able to reliably
differentiate between a spectrum hole and a weak primary
signal if it conducts spectrum sensing on its own. To improve
detection reliability, multiple users can engage in cooperative
spectrum sensing and thus take advantage of spatial diversity
[2].

In [2], cooperative spectrum sensing was studied based on
linear combination rule where the received signals at the fusion
center are assigned different weights for global fusion and
convex optimization is formulated to solve the linear weights.
The optimization problem presented in [2] needs several
iterations to converge to the solution. Moreover, the number of
samples used for local energy calculation was considered the
same for all secondary users, which does not fully exploit the
diversity. In this paper, we take a more practical system design
approach towards cooperative spectrum sensing in high fusion
signal to noise ratio (SNR) regime. In particular, we aim to
achieve a desirable global detection performance by choosing
the appropriate number of samples used for local energy
calculation and linear weights for global fusion. We show that

our design solutions have minimal implementation complexity
and negligible performance loss compared to the optimal
design, thus provide an efficient system design alternative.

This paper is outlined as follows: Section II describes the
system model. Section III presents the performance evaluation
and problem formulation. Section IV discusses the high fusion
SNR analysis. Simulation results are presented in Section V
and we conclude our discussion in Section VI.

II. SYSTEM MODEL

A. Local Energy Statistic

For secondary user i, (1 ≤ i ≤ N), the hypothesis test for
the energy of a received signal in a given band is

{

H0 : xi = (1/κi)
∑κi

k=1 |ni(k)|2
H1 : xi = (1/κi)

∑κi

k=1 |his(k) + ni(k)|2, (1)

where κi is the number of samples, s(k) is the transmitted
signal from the primary user and ni(k) is the noise received by
secondary user i. We assume s(k) is complex PSK modulated
and independent and identically distributed (i.i.d.) with mean
zero and variance σ2

s ; hi is the channel gain, which is assumed
to be constant during the cooperative spectrum sensing period;
and ni(k) is i.i.d. as a circular, symmetric, complex Gaussian
random variable with mean zero and variance σ2

n, i.e., ni(k) ∼
CN (0, σ2

n) and is independent of s(k). We define the local
received SNR at the secondary user as γi = σ2

s |hi|2/σ2
n.

When κi is large, the local energy statistic xi can be
approximated as Gaussian random variable [2][3], i.e.,

{

H0 : xi ∼ N (σ2
n, σ4

n/κi)
H1 : xi ∼ N ((1 + γi)σ2

n, (1 + 2γi)σ4
n/κi).

(2)

In this paper, we assume the local received SNR γi is known
at the secondary user i. This value could be estimated from
experimental measurements when the primary system is turned
on and off [2]. Additionally, we assume that the total number
of samples in local energy calculation is equal to a predefined
value. This indicates that 1Tκ = κtot, where 1 = [1, 1, · · · , 1]T

and κ = [κ1, κ2, · · · , κN]T.

B. AF Transmission and Linear Global Fusion

During the cooperation period, the secondary user transmits
its local energy statistic to the fusion center using amplify-
and-forward (AF) on parallel access channels (PAC) [4]. The
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received signal at the fusion center is shown in Fig. 1, i.e.,

yi = gixi + vi, (3)

where gi is the amplifier gain for the secondary user i and vi
is i.i.d. Gaussian noise, i.e., vi ∼ N (0, σ2

v) and is independent
of xi.
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Fig. 1. Cooperative spectrum sensing in cognitive sensor networks.

Once the fusion center receives the signals from the sec-
ondary users, it combines the received signals and makes a
global decision as follows [2][5]:

Λ =
N
∑

i=1

ωiyi
H1

≷
H0

τg, (4)

where τg is the global decision threshold. We assume the
weights ‖ω‖ = 1, where ω = [ω1, ω2, · · · , ωN]T and ‖ · ‖
denotes the `2 norm of a vector.

III. PERFORMANCE EVALUATION AND OPTIMIZATION

PROBLEM FORMULATION

A. Performance Evaluation: NP Detection

At the fusion center, the combined signal Λ has Gaussian
distribution under hypothesis H0 and H1, i.e.,

{

E{Λ|H0} =
∑N

i=1 ωigiσ2
n

E{Λ|H1} =
∑N

i=1 ωigi(1 + γi)σ2
n,

and
{

Var{Λ|H0} =
∑N

i=1 ω2
i g2

i σ
4
n/κi + σ2

v

Var{Λ|H1} =
∑N

i=1 ω2
i g2

i (1 + 2γi)σ4
n/κi + σ2

v .

For Neyman-Pearson (NP) detection with false alarm prob-
ability Pf = α, the global decision threshold is

τg =
N
∑

i=1

ωigiσ2
n + Q−1(α)

(

N
∑

i=1

ω2
i g2

i σ4
n/κi + σ2

v

)1/2

,

where Q(x) is the complementary distribution function of the
standard Gaussian, i.e., Q(x) = 1√

2π

∫∞
x exp(−t2/2)dt. The

global detection probability is then

Pd = Q





Q−1(α)
√

∑N
i=1 ω2

i g2
i /κi + σ̃2

v −∑N
i=1 ωigiγi

√

∑N
i=1 ω2

i g2
i (1 + 2γi)/κi + σ̃2

v



 ,

where σ̃2
v = σ2

v/σ4
n. In the cognitive sensor networks, the

received primary user power measured by the secondary user
can be very small [6], i.e., γi � 1. Additionally, the number of

samples can be large, i.e., κi � 1. Thus, γi/κi ≈ 0. Then, for
NP detection with false alarm probability Pf = α, the global
detection probability can be approximated as

Pd = Q



Q−1(α) −
∑N

i=1 ωigiγi
√

∑N
i=1 ω2

i g2
i /κi + σ̃2

v



 . (5)

B. Optimization Problem Formulation

Our objective is to find the number of samples κ and the
linear combining weights ω to maximize the global detection
performance. This is in contrast to [2], where only ω is
considered to be optimized for cooperative spectrum sensing.
The optimization problem can be formulated as1

max
κ,ω

Pd(κ, ω)

s.t. ‖ω‖ = 1, ω � 0

1Tκ = κtot, κ � 0. (6)

This is equivalent to

max
κ,ω

∑N
i=1 ωigiγi

√

∑N
i=1 ω2

i g2
i /κi + σ̃2

v

s.t. ‖ω‖ = 1, ω � 0

1Tκ = κtot, κ � 0. (7)

Let us denote the solution as
(

κ(opt), ω(opt)
)

and the maximum
global detection probability as P(opt)

d . In the sequel, we will
focus on the high fusion SNR regime for cooperative spectrum
sensing. As shown below, the practical system design has min-
imal implementation complexity and negligible performance
loss, thus provides an efficient system design alternative.

IV. HIGH FUSION SNR ANALYSIS

In this section, we investigate the practical system design for
cooperative spectrum sensing in the high fusion SNR regime.
This indicates that σ̃2

v is small compared to the first term in
the denominator in (5). Hence, the global detection probability
can be further approximated as

Pd = Q



Q−1(α) −
∑N

i=1 ωigiγi
√

∑N
i=1 ω2

i g2
i /κi



 . (8)

As discussed below, the design criteria depend on whether
the fusion center or the secondary users has full or partial
knowledge of local information, i.e., the local received SNR
γ and the amplifier gains g, where γ = [γ1, γ2, · · · , γN]T

and g = [g1, g2, · · · , gN]T. In particular, we consider four
scenarios: 1) the fusion center has full knowledge of (γ, g)
and the secondary users know the norm square of the local
received SNR; 2) the fusion center has full knowledge of
(γ, g) while the secondary users are blind; 3) the fusion center
is blind while the secondary users know the total amplifier

1If κi = 0, we simply assume that the secondary user i does not perform
the local energy calculation and does not transmit the local information to the
fusion center.
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gain; 4) the fusion center and secondary users are both blind.
Let us define the system solutions for these four scenarios
as
(

κ(i), ω(i)
)

, i = 1, · · · , 4, and the global detection
probabilities as P(i)

d , i = 1, · · · , 4, respectively.

A. Case I

Here, we assume that the fusion center knows the local
information (γ, g) and the secondary users know ‖γ‖2. In
practice, this can be realized for the secondary users to report
the local information to the fusion center and for the fusion
center to broadcast ‖γ‖2 to the secondary users2. In this
scenario, we consider a two-stage optimization strategy to
maximize the global detection performance. Specifically, we
first optimize the linear weights based on the number of
samples, then we optimize the number of samples accordingly.

1) First Stage: Optimization of Linear Weights: We first
assume that κ is known to the fusion center, then we see
that the objective of the optimization problem is equivalent to
maximizing the following function.

f(ω) =

(

∑N
i=1 ωigiγi

)2

∑N
i=1 ω2

i g2
i /κi

=
(ωTa)2

ωTAω
,

where A = diag
{

g2
1/κ1, g2

2/κ2, · · · , g2
N/κN

}

and a =
[g1γ1, g2γ2, · · · , gNγN]T. Using the Cauchy-Schwarz inequal-
ity, we see that

f(ω) =
(ωTa)2

‖A1/2ω‖2 =

(

ω̃TA−1/2a
)2

‖ω̃‖2 ≤ ‖A−1/2a‖2

and equality holds only when ω̃ = ζA−1/2a, or equivalently,
ω = ζA−1a, where ζ is a constant. Since ‖ω‖ = 1, the
optimal linear weights are given as

ωi =
κiγi/gi

√

∑N
i=1 κ2

i γ2
i /g2

i

. (9)

2) Second Stage: Optimization of Number of Samples:
Plugging (9) into (8), the global detection probability reduces

to Pd = Q
(

Q−1(α) −
(

∑N
i=1 γ2

i κi

)1/2
)

. Based on the

Cauchy-Schwarz inequality and recall that 1Tκ = κtot, it is
easy to show that the optimal number of samples is given

as κ(1)
i =

[

γ2
i

‖γ‖2 κtot

]†
, where [·]† denotes the integer oper-

ation. It is worth noting that this operation should guarantee
1Tκ = κtot. A simple strategy for the integer operation can be
given as

[xi]
† =

{

dxie , when γi ∈ S+

bxic , when γi ∈ S−,

where d·e and b·c denote the ceiling and floor operations,
respectively, S+ =

{

γ[Nmid+1], γ[Nmid+2], · · · , γ[N]
}

and S− =
{

γ[1], γ[2], · · · , γ[Nmid]
}

. Here Nmid = bN/2c and γ[i] denotes
the i-th smallest component of γ, i.e., γ[1] ≤ γ[2] ≤ · · · ≤ γ[N].

2We assume that local information remains unchanged during cooperative
spectrum sensing.

For simplicity, we neglect the rounding effect of κ in the
following analysis. It is interesting to note that κ(1) follows
from the maximal ratio combining strategy, i.e., when the local
received SNR of one secondary user is larger, this secondary
user is assigned more number of samples to achieve better
global detection performance.

Then, plugging κ(1) into (9), the optimal linear weights
can be given as ω(1)

i = γ3
i /gi√

∑N
i=1 γ6

i /g2
i

. Furthermore, the global

detection probability can be calculated as

P(1)
d = Q



Q−1(α) −

√

∑N
i=1 γ4

i

‖γ‖ (κtot)
1/2



 . (10)

B. Case II

In this case, we consider a simple strategy for local energy
calculation where the number of samples for all secondary
users is same, i.e., κ(2)

i = [κtot/N]†. Then, we see that the op-
timal linear weights can be computed as ω(2)

i = γi/gi√
∑N

i=1 γ2
i /g2

i

.
Moreover, the global detection probability is given as

P(2)
d = Q

(

Q−1(α) − ‖γ‖
(κtot

N

)1/2
)

.

It is interesting to note that the soft combining scheme in [5]
can be viewed as a special case of this scenario when gi = g.

C. Case III

Since the fusion center has no knowledge of the local infor-
mation, an equal gain combining scheme is utilized to make a
global decision, i.e., ω(3)

i = 1/
√

N. Then, the global detection

probability is given as Pd = Q
(

Q−1(α) − γTg√
∑N

i=1 g2
i /κi

)

.

To maximize this global detection performance, we formu-
late the following convex optimization problem by choosing
appropriate number of samples.

min
N
∑

i=1

g2
i /κi

s.t. 1Tκ = κtot, κ � 0. (11)

The Lagrangian dual problem can be formulated as

max − κtotν + 2
N
∑

i=1

gi
√

ν − λi

s.t. λi ≥ 0. (12)

It is easy to see that λ∗
i = 0 and ν∗ = (1Tg)2/κ2

tot. Then,
the optimal number of samples can be calculated as κ(3)

i =
[

gi

1Tg κtot

]†
. Hence, the global detection probability is given as

P(3)
d = Q

(

Q−1(α) − γTg

1Tg
(κtot)

1/2
)

.
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D. Case IV

In this case, since the fusion center and secondary users
have no knowledge of the local information, we use a simple
strategy: equal number of samples and equal gain combining,
i.e.,

(

κ(4)
i , ω(4)

i

)

=
(

[κtot/N]† , 1/
√

N
)

. Hence, the global
detection probability is given as

P(4)
d = Q

(

Q−1(α) − γTg

‖g‖
(κtot

N

)1/2
)

.

E. Performance Comparison

Here, we compare the global detection performance of
practical system design in the high fusion SNR regime.
Interestingly, we see that the global detection probabilities for
all four scenarios are increasing functions of κtot, i.e., when
the total number of samples increases, the global detection
performance improves. Furthermore, we note that

P(1)
d ≥ P(2)

d ≥ P(4)
d and P(3)

d ≥ P(4)
d . (13)

The above can be readily derived based on Cauchy-Schwarz
inequality and thus omitted from the paper. We see that the
design solution

(

κ(4), ω(4)
)

has the worst global detection
performance. This is not surprising since it does not require
a prior information for system design. Moreover, it is worth
noting that we can not guarantee P(1)

d ≥ P(3)
d , but though

extensive simulations, we find that it is true in most cases.

V. SIMULATION RESULTS

In our simulations, we assume N = 4, σ̃2
v = 1,

κtot = 200, γ = [−10,−13,−16,−19]T(dB) and g =
[23.03, 25.42, 20.51, 26.98]T(dB) for the high SNR regime.

Fig. 2 shows the receiver operating characteristic (ROC)
performance in the high fusion SNR regime by choosing
different system design solutions. From the plot, we see that
the design solution

(

κ(1), ω(1)
)

has negligible performance
degradation compared to the optimal solution

(

κ(opt), ω(opt)
)

,
but with minimal implementation complexity, thus provides an
efficient system design alternative. Additionally, we see that
the design solution

(

κ(4), ω(4)
)

has the worst global detection
performance as mentioned in Section IV-E.

Fig. 3 shows the global detection performance as a func-
tion of κtot in the high fusion SNR regime when choosing
(

κ(1), ω(1)
)

. As expected, we see that the global detection
performance improves when the total number of samples
increases as discussed in Section IV-E.

VI. CONCLUSIONS

In this paper, we have considered the practical system design
approach for cooperative spectrum sensing in the cognitive
sensor networks with centeralized fusion center. In particular,
we investigate practical system design to achieve a desirable
global detection performance in the high fusion SNR regime
by choosing appropriate number of samples and linear weights.
We show that our design solutions have minimal implementa-
tion complexity and negligible performance loss, thus provide
an efficient system design alternative.
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