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Abstract—We consider the ergodic fading Gaussian interfer-
ence relay channel (EF-GIFRC) with individual power con-
straints at the nodes. Aiming at design insights to emerge from
the optimal power allocation, we focus on scenarios similar to that
of the degraded/reversely degraded relay channels. In particular,
we focus on models where the source-to-relay (S − R) links
are either stronger than direct links, or completely blocked,
i.e., with an “on-and-off” relay. To characterize the capacity
of EF-GIFRC with an on-and-off relay, we first investigate the
parallel interference relay channel. We propose an achievable
scheme based on partial decode-and-forward (DF) strategy and
show that the capacity for the parallel IFRC can be achieved
under strong interference and degradedness conditions. Based
on the achievable rate region for parallel IFRC, we propose an
achievable rate region for EF-GIFRC, and present the properties
of optimal power allocation. We also present a sum capacity result
when the EF-GIFRC satisfies certain channel conditions.

I. INTRODUCTION

Cooperation and interference are two attributes of a wireless

network that have a fundamental impact on its design. The

interference relay channel (IFRC), which consists of two

senders with two corresponding receivers and an intermediate

relay, is the simplest model that characterizes both interference

and cooperation. Various achievable schemes for this channel

based on decode-and-forward (DF) at the relay have been

proposed in [1]–[3]. References [4], [5] considers a compress-

and-forward based achievable scheme and improves the DF-

based rates when the source-to-relay (S −R) links are weak.

There have also been two outerbounds proposed for the GIFRC

[5]–[7]. References [6] and [7] complement each other in the

sense that the bound in [6] is tighter when the relay has large

power, and the one in [7] is tighter when the relay has small

power. We note that all the effort up to date consider the

channel in a static environment.
One can easily argue the need for addressing fading chan-

nels particularly for a wireless environment. It is then a

natural next step to consider a setting when the links between

the nodes are subject to fading, and take advantage of the

time varying nature of the channels. For example, in ergodic

fading channels, when the channel side information (CSI) is

available at the sources and destinations, the transmitter can

opportunistically allocate its power to achieve higher rates. The

capacity of fading channel is first considered in [8], where the

authors showed that the capacity achieving power allocation

has a water-filling structure. In [9], the authors showed that

the optimal power allocation for the multiple access channel

(MAC) is a generalization of the water-filling construction

for single-user channels. In [10], the authors derived capacity

region for the parallel relay channel under degradedness con-

ditions. They also obtained the optimal power allocation for an

asynchronous relay under ergodic fading by solving a max-min

problem. In [11], the authors developed the capacity of ergodic

fading interference channel (IC) under strong interference, and

obtained the optimal power allocation based on the solution

of the max-min problem. They also showed that the ergodic

fading IC is in general not separable. In [12], the authors

showed that for parallel Gaussian IC, under certain channel

conditions, sum capacity can be achieved by independent

encoding across all subchannels by treating interference as

noise.

In this paper, we consider the GIFRC with a full-duplex

relay under stationary and ergodic fading with individual

power constraints at the nodes, where CSI is globally known.

With the general aim of improving communication rates and

finding capacity when possible, we investigate the optimal

power allocation problem for the sources and the relay. In

the relay channel, the decoding capability of the relay plays

an important role on the performance of DF type of relaying

strategies: When the S − R link is weaker than the direct

link, the relay is actually turned off. Motivated by this fact, to

better characterize the influence of relay’s decoding capability

in the GIFRC with time varying links, we consider a model

where the S − R links are either stronger than the direct

links, or completely blocked, which we term an “on-and-off”

relay. This model simplifies the derivation, and is insightful in

demonstrating the role the relay should play in communication,

by inheriting the features of degraded/reversely degraded relay

channel [13]. The physical reality this situation models is one

where a relay is close to the sources and can occasionally

encounter objects that block its signal.

To investigate the capacity of EF-IFRC with an on-and-

off relay, we first consider the parallel IFRC with an on-

and-off relay, since each fading realization for the ergodic

fading channel can be considered as a subchannel for the

parallel channel. This model is appropriate, for example, for

wireless systems employing orthogonal frequency division
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Fig. 1. Parallel Interference Relay Channel.

multiplexing (OFDM). We employ the partial DF scheme to

obtain an achievable rate region which in general holds for

any parallel IFRC. We further show that it yields the capacity

region for our specific model when each subchannel satisfies

certain strong interference and degradedness conditions. Based

on the results for the parallel channel, we then obtain an

achievable rate region for the EF-GIFRC with an on-and-off

relay. In particular, we are interested in the case when the

relay is asynchronous to the sources since this simplifies the

transmitter design [10]. To find the optimal power allocation,

we generalize the method in [10] to solve a max-min problem

which contains multiple objective functions. We derive the

resulting optimal power policy which offers design insights.

The rate expressions imply that for both sources, the messages

can be divided into two parts. One part is conveyed directly

to the destinations, and the other part is conveyed through

the relay, which is similar to the scheme in [14]. The rate

splitting factor depends on the channel condition. The relay

stores the messages to be conveyed through itself from both

sources, and then forwards the messages to the destinations ac-

cordingly. We classify the resulting power allocation schemes

as (i) orthogonal waterfilling with nonselective fowarding, (ii)
orthogonal waterfilling with selective forwarding, (iii) two-step
waterfilling, and (iv) iterative waterfilling. We further show

that under certain fading distributions, the sum capacity of the

EF-GIFRC can be achieved.

II. SYSTEM MODEL

A. The Parallel IFRC

In this section, we first provide the model for the discrete

memoryless parallel IFRC, which is shown in Fig. 1. A par-

allel IFRC consists of K subchannels with channel transition

probability distribution

K∏
k=1

pk(y1ky2kyRk|x1kx2kxRk) (1)

The source encoder i (i = 1, 2) maps a message into a

codeword

xn
i = (xn

i1, . . . , x
n
iK) (2)

The relay uses an encoding function fm, m = 1, . . . , n, such

that

xR,m = (xR1,m, . . . , xRK,m) = fm(ym−1
R1 , . . . , ym−1

RK ) (3)

The decoder i maps the channel output (yni1, . . . , y
n
iK) into a

message. Error occurs when the decoded message of either

source is different from its transmitted message. The relay is

allowed jointly encode and decode across all subchannels.

B. The Ergodic Fading Gaussian IFRC

For the Ergodic Fading Gaussian IFRC (EF-GIFRC), the

received signals at the destinations and the relay are:

Y1 = h11X1 + h21X2 + hR1XR + Z1 (4)

Y2 = h12X1 + h22X2 + hR2XR + Z2 (5)

YR = h1RX1 + h2RX2 + ZR (6)

where the channel coefficients hij , i, j = 1, 2, R, are assumed

to be independent random variables. We further assume that

the fading processes hij(n) are ergodic and stationary over

time, where n is the time index. The noise Zi is assumed

to be a Gaussian random variable with unit variance. The

power constraints for the input signals at each node are
1
n

∑n
k=1 E[X

2
i,k] ≤ Pi, i = 1, 2, and 1

n

∑n
k=1 E[X

2
R,k] ≤ PR.

III. THE PARALLEL INTERFERENCE RELAY CHANNEL

To investigate the capacity region for EF-GIFRC with an

on-and-off relay, we start with the parallel IFRC with an on-

and-off relay, where each subchannel can be categorized into

four sets (A1, A2, A3, A4) based on the S−R links. We denote

A1 as the set of subchannels where the relay can hear from

both sources, A2 = {k : pk(yR|x1x2xR) = pk(yR|x1xR)}
as the set of subchannels where the relay can only hear from

source 1, A3 = {k : pk(yR|x1x2xR) = pk(yR|x2xR)} as the

set of subchannels where the relay can only hear from source

2, A4 = {k : pk(yR|x1x2xR) = pk(yR|xR)} as the set of

subchannels where the relay cannot hear from either source.

Since the quality of each subchannel is different from one

another, DF relaying is not beneficial for some subchannels.

Hence, we first propose an achievable rate region using the

partial DF scheme for the IFRC. The proof of this proposition

is omitted due to space limitations (see reference [15] for

partial DF).

Proposition 1: For the IFRC, the following rate region is

achievable for any rate pairs R1 = R1d+R1r, R2 = R2d+R2r

that satisfy R1d, R1r, R2d, R2r ∈ R1

⋂R2

⋂Rr, where R1

includes rate pairs such that

R1d ≤ I(X1;Y1|U1V1X2XR) (7)

R1d +R2d ≤ I(X1X2;Y1|U1V1U2V2XR) (8)

R1d +R1r ≤ I(X1XR;Y1|U2V2X2) (9)

R1d +R1r +R2d ≤ I(X1X2XR;Y1|U2V2) (10)

R1d +R2d +R2r ≤ I(X1X2XR;Y1|U1V1) (11)

R1d +R1r +R2d +R2r ≤ I(X1X2XR;Y1) (12)
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and R2 is obtained by switching indices of 1 and 2 in R1,

Rr includes rate pairs such that

R1r ≤ I(V1;YR|XRU1U2V2) (13)

R2r ≤ I(V2;YR|XRU1V1U2) (14)

R1r +R2r ≤ I(V1V2;YR|XRU1U2) (15)

for any distribution

p(u1)p(v1|u1)p(x1|u1v1)p(u2)p(v2|u2)p(x2|u2v2)p(xR|u1u2)

Remark 1: It is easy to see that this rate region includes

the ones in [3] [7], by setting appropriate auxiliary random

variables to ∅.
We are now ready to derive an achievable rate region for

the parallel IFRC with an on-and-off relay.

Proposition 2: Rate pair (R1, R2) ∈ Rp1

⋂Rp2 is achiev-

able, where Rp1 is the rate pairs that satisfy the following

constraints. Rp2 is obtained by switching the indices 1 and 2
in both the rate pairs and the random variables, and switching

A2 and A3.

R1 ≤
∑
k

I(X1kXRk;Y1k|U2kX2k) (16)

R1 ≤
∑
k∈A1

I(X1k;YRk|XRkX2kU1k)

+
∑
k∈A2

I(X1k;YRk|XRkU1k)

+
∑

k∈A3,A4

I(X1k;Y1k|XRkX2kU1k) (17)

R1 +R2 ≤
∑
k

I(X1kX2kXRk;Y1k) (18)

R1 +R2 ≤
∑
k∈A1

I(X1kX2k;YRk|XRkU1kU2k)

+
∑
k∈A2

(I(X1k;YRk|XRkU1k) + I(X2k;Y1k|X1kXRkU2k))

+
∑
k∈A3

(I(X2k;YRk|XRkU2k) + I(X1k;Y1k|X2kXRkU1k))

+
∑
k∈A4

I(X1kX2k;Y1k|XRkU1kU2k) (19)

R1 +R2

≤
∑
k∈A1

(I(X2k;YRk|XRkX1kU2k) + I(X1kXRk;Y1k|U2kX2k))

+
∑
k∈A3

(I(X2k;YRk|XRkU2k) + I(X1kXRk;Y1k|U2kX2k))

+
∑

k∈A2,A4

I(X1kX2kXRk;Y1k|U2k) (20)

R1 +R2

≤
∑
k∈A1

(I(X1k;YRk|XRkX2kU1k) + I(X2kXRk;Y1k|U1kX1k))

+
∑
k∈A2

(I(X1k;YRk|XRkU1k) + I(X2kXRk;Y1k|U1kX1k))

+
∑

k∈A3,A4

I(X1kX2kXRk;Y1k|U1k) (21)

Proof: This can be shown by replacing

Xi, Yi, Uj , Vj (i ∈ {1, 2, R}, j ∈ {1, 2})
with (Xi1, .., XiK), (Yi1, .., YiK), (Uj1, .., UjK), (Vj1, .., VjK)
where (X1k, X2k, XRk, Y1k, Y2k, YRk, U1k, U2k, V1k, V2k) are

independent for each different k. In addition, we need to set

V1k = X1k, V2k = X2k when k ∈ A1, V1k = X1k, V2k = ∅
when k ∈ A2, V1k = ∅, V2k = X2k when k ∈ A3,

V1k = ∅, V2k = ∅ when k ∈ A4,and and apply Fourier-

Motzkin elimination.

Remark 2: The achievable scheme is, in general, valid for

any parallel IFRC. Above, we have made the particular choices

on V1k, V2k in different subchannels in order to specialize the

rate to the relevant scenario at hand.

Considering the case when each subchannel is in one of the

sets A1, A2, A3 or A4, and satisfies the following degradedness

conditions:

D1 : pk(y1y2|yRxRx1x2) = pk(y1y2|yRxR), k ∈ A1

D2 : pk(y1y2|yRxRx1x2) = pk(y1|yRxR)pk(y2|xR), k ∈ A2

D3 : pk(y1y2|yRxRx1x2) = pk(y2|yRxR)pk(y1|xR), k ∈ A3

D4 : pk(y1y2|yRxRx1x2) = pk(y1y2|x1x2xR), k ∈ A4

we can characterize the capacity region of the parallel IFRC

with an on-and-off relay as follows:

Theorem 1: Under the above degradedness conditions D1−
D4, the rate region in Proposition 2 is in fact the capacity

region for parallel IFRC with an on-and-off relay when all

subchannels satisfy the following strong interference condition

I(X1k, XRk;Y1k|X2k) ≤ I(X1k, XRk;Y2k|X2k) (22)

where Xik = {Xi1, . . . , XiK}, the following “average very

strong interference” conditions∑
k∈A3A4

I(X1k;Y1k|X2kXRkU1k) ≤
∑

k∈A3A4

I(X1k;Y2k|U1k)

(23)∑
k∈A2A4

I(X1kXRk;Y1k|X2kU2k) ≤
∑

k∈A2A4

I(X1kXRk;Y2k|U2k)

(24)∑
k∈A1A4

I(X1k;Y1kYRk|X2kXRkU1k)

≤
∑

k∈A1A4

I(X1k;Y2kYRk|XRkU1k) (25)

and the counterpart of (22)(23)(24)(25) obtained by switching

the indices of sets A2 and A3 and the indices of the random

variables 1 and 2.

Sketch of the Proof: Due to the space limitation, we only

provide a sketch of the proof. The sum rate bounds (20)-(21)

and the corresponding bounds in Rp2 become non-binding

under the average very strong interference condition (23)-(24).

The bounds (16)-(18) and the corresponding bounds in Rp2

can be bounded by applying (22) as in [7] using vector inputs
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along with the fact that each subchannel is independent. The

rest can be obtained from the cut set bound and by applying

the condition (25) and the degradedness conditions D1 −D4.

IV. POWER ALLOCATION FOR THE ERGODIC FADING

GAUSSIAN INTERFERENCE RELAY CHANNEL

Equipped with the results for the parallel IFRC, we are

now ready to study the EF-GIFRC with an on-and-off relay

with individual power constraint at each node. Reference [10]

considered the power allocation problem in a fading relay

channel, where they assumed an asynchronous relay which

simplifies the transmitter design by resulting in a convex

problem. This leads to an assumption we adopt here as well,

namely, the signals sent from the relay and the sources being

independent. Consistent with the notation in the previous

section, we set A1 = {hij : h1r ≥ h11, h2r ≥ h22},
A2 = {hij : h1r ≥ h11, h2r = 0}, A3 = {hij : h1r =
0, h2r ≥ h22}, A4 = {hij : h1r = 0, h2r = 0}. We further

denote H = {hij}. All fading realizations are constrained to

belong to one of these sets. We first derive an achievable rate

region for the EF-IFRC.

Proposition 3: For the EF-IFRC with an on-and-off asyn-

chronous relay, the following rate region is achievable.⋃
P (H)∈P(H)

R(P (H)) (26)

The union is for all the power allocation P (H) =
[P1(H) P2(H) PR1(H) PR2(H)] ∈ P(H) satisfying

EH [P1(H)] = P1, EH [P2(H)] = P2

EH [PR1(H)] + EH [PR2(H)] = PR (27)

R(P (H)) is the set of rate pairs (R1, R2) that satisfy the

following rate constraints under power policy P (H).

R1 ≤ min{T1, T2} (28)

R2 ≤ min{T3, T4} (29)

R1 +R2 ≤ min{T5, T6, T7, T8} (30)

R1 +R2 ≤ min{T9, T10, T11, T12} (31)

where C(x) = 1
2 log(1 + x) and

T1 = EH [C(h2
11P1(H) + h2

R1PR1(H))]

T2 = EA1A2 [C(h2
1RP1(H))] + EA3A4 [C(h2

11P1(H))]

T5 = EH [C(h2
11P1(H) + h2

21P2(H) + h2
R1PR1(H)

+ h2
R1PR2(H))]

T6 = EA1 [C(h2
1RP1(H) + h2

2RP2(H))] + EA2 [C(h2
1RP1(H))

+ C(h2
21P2(H))] + EA3 [C(h2

2RP2(H)) + C(h2
11P1(H))]

+ EA4 [C(h2
11P1(H)) + C(h2

21P2(H))]

T7 = EA1A3 [C(h2
2RP2(H)) + C(h2

11P1(H) + h2
R1PR1(H))]

+ EA2A4 [C(h2
11P1(H) + h2

21P2(H) + h2
R1PR1(H))]

T8 = EA1A2 [C(h2
1RP1(H)) + C(h2

21P2(H) + h2
R1PR2(H))]

+ EA3A4 [C(h2
11P1(H) + h2

21P2(H) + h2
R1PR2(H))]

T3, T4, T9, T10, T11, T12 are obtained by switching indices 1
and 2, and switching A2 and A3 in T1, T2, T5, T6, T7, T8

respectively.

Proof: To show this, we first fix a power policy P(H)
satisfying the power constraint. For each channel state realiza-

tion, we have one subchannel. We replace each input variable

in Proposition 2 by Gaussian inputs according to the power

policy. Specifically, we set XR = U1 + U2, where U1, U2 are

Gaussian inputs with power PR1(H), PR2(H). The region is

obtained by replacing the sum over all the subchannels by

averaging over all fading realizations, and taking the union

over all power policies.

Remark 3: From the rate constraints, R1 can be written as

EA3A4 [C(h2
11P1(H))] + min{EA1A2 [C(h2

1RP1(H))],

EH

[
C

(
h2
R1PR1(H)

h2
11P1(H) + 1

)]
+ EA1A2 [C(h2

11P1(H))]}
(32)

R2 can also be written in a similar form. We can see that

part of the message is transmitted directly to the destinations,

while the other part is transmitted through the relay, as in

[14]. When the S−R links are present, the relay decodes the

messages to flow through itself, and transmits these messages

to the destinations at all channel realizations.

It is easy to see that the rate region is convex. Next, we

aim to find the optimal power allocation to maximize the sum

rate. We denote S1(P (H)) = T1+T3 as the rate under power

policy P (H), and S2(P (H)) = T1+T4, S3(P (H)) = T2+T3,

S4(P (H)) = T2 + T4, Si(P (H)) = Ti, for i = 5, 6, . . . , 12.

The problem is formulated as

max
P (H)∈P(H)

minS1(P (H)), S2(P (H)), . . . , S12(P (H)) (33)

The authors in [10] proposed a method to solve the max-min

problem with two objective functions. In the same spirit, we

now generalize this method to N objective functions to solve

our problem (where for our case N = 12). First, construct a

function

V (α) = max
P (H)∈P(H)

αTS(P (H)) (34)

where α = [α1, α2, . . . , αN ]T ,
∑N

i=1 αi = 1, S(P (H)) =
[S1(P (H)), S2(P (H)), . . . , SN (P (H))]T . The solution of

this optimization problem depends on the shape of V (α).
The form of the function V (α) is not known in advance.

Hence, the procedure in [10] is needed to find the optimal

solution. In essence, this procedure is to determine which

subset of the objective functions are “active” for the max-

min problem. Note that since the problem is convex, Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient

for optimality. We let S ⊂ {1, 2, . . . , 12}, and M = |S| is the

cardinality of S . We further denote k1, . . . , kM as the elements

in S . If for
∑M

i=1 αkM
= 1, the power policy P ∗S(H) which

maximizes
∑N

i=1 αkM
Ski(P (H)) satisfies Si∈S(P ∗S(H)) =

Sj∈S,j �=i(P
∗
S(H)) and

Si∈S(P ∗S(H)) < Si∈Sc(P ∗S(H)) (35)
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then P ∗S(H) is the optimal solution for the max-min problem.

To find the optimal solution, we need to search over all

possible subsets S . This yields the following different types

of power allocation policies.

i) Orthogonal Waterfilling with Non-selective Forward-
ing: First, we consider the case when α1 = 1. The optimal

power allocation P ∗1(H) has an orthogonal waterfilling format

[10]. The relay decodes the messages from both sources, and

allocates power to be used for helping each source according

to the strength of R − D links. The relay keeps forwarding

messages from both sources irrespective of whether the S−R
links are present or not. When α5 = 1 or α9 = 1, the power

policies also have orthogonal waterfilling format.

ii) Orthogonal Waterfilling with Selective Forwarding:
For the cases when α7 = 1 or α8 = 1 or α11 = 1 or α12 = 1,

the optimal power allocation strategies also have orthogonal

waterfilling format. However, even if the relay can decode

the messages to be flowed through itself from both sources, it

only selectively forwards the messages from one source for all

channel realizations. Thus, from the perspective of the other

pair of users, the relay performs interference forwarding. This

occurs when one of the S−R link is in average much stronger

than the other.

Note that for the special case when α2 = 1, the rate expres-

sion requires to allocate all of the relay’s power to help source

1, i.e., PR2(H) = 0, which yields S1(P
∗
2(H)) < S2(P

∗
2(H)),

due to the definition of the sets A1, A3. Hence P ∗2(H) is not

a solution to the max min problem. Similar arguments hold

for the case when α3 = 1 and PR1(H) = 0.

iii) Two-Step Waterfilling: For the cases when α4 = 1 or

α6 = 1 or α10 = 1, the optimal power allocation for the

sources in these cases is to waterfill on the corresponding

links for different channel realizations. However, to further

obtain the condition under which these cases are active, we

need to solve the power allocation problem for the relay and

then arrive at a condition that depends on the average power

constraint at the relay. The relaying strategy depends on the

solution of the power allocation problem for the relay, which

also has waterfilling format. Hence, we term this policy two-
step waterfilling.

iv) Iterative Waterfilling: The above schemes characterize

the boundary cases for the optimization problem, i.e., αi = 1,

and αj = 0 for all j �= i. For all other cases, the optimal

power allocation does not have a simple format or a closed

form, and can be found by an iterative waterfilling strategy as

in [10]. Due to limited space, the details are omitted here.

Lastly, we present a capacity result for the EF-GIFRC.

Theorem 2: For the EF-GIFRC with an on-and-off asyn-

chronous relay where all fading realizations are subject to

strong interference, if the fading distribution dictates power

policy P ∗5(P ∗9) for the case α5 = 1(α9 = 1) the solution for the

max-min problem, or equivalently S5(P
∗
5) < Si(P

∗
5), i �= 5

(S9(P
∗
9) < Si(P

∗
9), i �= 9), the sum capacity is S5(P

∗
5)

(S9(P
∗
9)), and power policy P ∗5(P ∗9) is optimal.

Sketch of Proof: Note that for the static channel, under strong

interference, the following rates are always upperbounds for

the sum capacity [7]:

R1 +R2 ≤ I(X1X2XR;Y1) R1 +R2 ≤ I(X1X2XR;Y2)

These bounds are maximized by Gaussian inputs, and the end

result is obtained by extending them to fading case as in [8].

V. CONCLUSION

In this paper, we investigated the capacity region for the

ergodic fading GIFRC (EF-GIFRC). We first presented a

partial DF scheme for the IFRC and generalized this scheme

to parallel IFRC. Under the strong interference and degrad-

edness conditions, the capacity region of parallel IFRC is

characterized. The achievable scheme is used in the EF-GIFRC

to study the optimal power allocation for the DF relaying

scheme. It is shown that to maximize the sum rate, the

relay decodes the messages from both sources, and selectively

or nonselectively forwards the messages to the destinations

according to the channel realizations. Sum capacity of the EF-

GIFRC is obtained under certain channel conditions.
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