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Abstract— We consider the Gaussian Multiple Access Wire-
Tap Channel (GMAC-WT) where multiple users communicate
with the intended receiver in the presence of an intelligent and
informed wire-tapper (eavesdropper). The wire-tapper receives
a degraded version of the signal at the receiver. We assume
that the wire-tapper is as capable as the intended receiver, and
there is no other shared secret key. We consider two different
secure communication scenarios: (i) keeping the wire-tapper
totally ignorant of the message of any group of users even if
the remaining users are compromised, (ii) using the secrecy of
the other users to ensure secrecy for a group of users. We first
derive the outer bounds for the secure rate region. Next, using
Gaussian codebooks, we show the achievability of a secure rate
region for each measure in which the wire-tapper is kept perfectly
ignorant of the messages. We also find the power allocations that
yield the maximum sum rate, and show that upper bound on the
secure sum rate can be achieved by a TDMA scheme. We present
numerical results showing the new rate region and compare it
with that of the Gaussian Multiple-Access Channel (GMAC) with
no secrecy constraints.

I. INTRODUCTION

The notion of communication security is first analyzed by
Shannon in [1], where he showed that the necessary and suf-
ficient condition for perfect secrecy is to make the conditional
probability of the cryptogram given a message independent of
the actual transmitted message.

In [2], Wyner applied this concept to the discrete memory-
less channel, with a wire-tapper that is modeled as receiving a
degraded version of the intended receiver’s signal. In this work,
the amount of “secrecy” is measured using the conditional
entropy ∆ � H(SK |ZN), where SK is the transmitted
symbol, and ZN is the received signal at the wire-tapper.
The region of all possible (R, ∆) pairs is determined, and
the existence of a secrecy capacity, Cs, for communication
below which it is possible to transmit zero information to the
wire-tapper is shown [2].

Several research results followed reference [2]. Carleial and
Hellman, in [3], showed that it is possible to send several
low-rate messages, each completely protected from the wire-
tapper individually, and thus use the channel at capacity. The
drawback is, in this case, if any of the messages are revealed
to the wire-tapper, the others might also be compromised. In
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[4], the authors extended Wyner’s results to Gaussian channels.
In addition, they showed that Carleial and Hellman’s results
in [3] also held for the Gaussian channel [4]. Csiszár and
Körner, in [5], showed that Wyner’s results can be extended to
weaker, so called “less noisy” and “more capable” channels.
Furthermore, they analyzed the more general case of sending
common information to both the receiver and the wire-tapper,
and private information to the receiver only.

In this paper, we consider the Gaussian Multiple Access
Channel (GMAC) in the presence of a wire-tapper. In order
to extend Leung’s results to the multiple-access channel, we
first define the necessary security measures for keeping the
wire-tapper perfectly ignorant of the messages. We consider
two different sets of security constraints: (i) the normalized
entropy of any set of messages conditioned on the transmitted
codewords of the other users and the received signal at the
wire-tapper, and (ii) the normalized entropy of any set of
messages conditioned on the wire-tapper’s received signal.
The first set of constraints is more conservative to ensure
secrecy of any subset of users even when the remaining users
are compromised. The second set of constraints ensures the
collective secrecy of any set of users, utilizing the secrecy
of the remaining users. Under these constraints, we find
an outer bound for the perfectly secure rate region. Using
random Gaussian codebooks, we find an achievable secure
rate region for each constraint, where users can communicate
with arbitrarily small probability of error with the intended
receiver, while the wire-tapper is kept totally ignorant. We then
find the optimum power allocation policy that maximizes the
secure sum rate. We also show that by using optimum time-
sharing, it is possible to achieve the secure sum rate outer
bound, as for the standard MAC region [6]. Our results indicate
that to maintain secrecy while keeping the data rates close to
the maximum requires that the wire-tapper sees a much more
noisier version of the signal that the intended receiver gets.
Even if the powers of the users are unlimited, the sum rate
with the perfect secrecy constraints is limited.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider K users communicating with a receiver in the
presence of a wire-tapper, as illustrated in Figure 1.
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Fig. 1. The GMAC-WT System Model

Transmitter j chooses a message Wj from a set of equally
likely messages {1, . . . , Mj}. The messages are encoded using
(2nRj , n) codes into {Xn

j (Wj)}, where Rj = 1
n log2 Mj .

The encoded messages are then transmitted, and the intended
receiver and the wire-tapper each get a copy Y n and Zn. We
would like to communicate with the receiver with arbitrarily
low probability of error, while maintaining perfect secrecy, the
exact definition of which will be made precise shortly.

The signal at the intended receiver is given by

Y =
K∑

j=1

Xj + N1 (1)

where each component of N1 ∼ N
(
0, σ2

1

)
. The receiver then

uses its decoder to estimate g(Y) = (Ŵ1, . . . , ŴK).
The wire-tapper receives

Z = Y + N2 (2)

where each component of N2 ∼ N
(
0, σ2

2

)
.

We will also assume the following power constraints:

1
n

n∑
i=1

X2
ji ≤ Pj,max, j = 1, . . . , K (3)

III. SECRECY MEASURES

In this section, we define the secrecy measures for the
GMAC-WT. We aim to provide each user with perfect secrecy.
To that end, we use an approach similar to [4], and define
two different sets of secrecy constraints using the normalized
equivocations for sets of users.

A. Individual Secrecy

Let us first define

∆(I)
j � H(Wj |Xjc ,Z)

H(Wj)
∀j = 1, . . . , K (4)

where jc is the set of all users except user j. ∆(I)
j denotes

the normalized entropy of user j’s message given the received
signal at the wire-tapper as well as all the other users’
transmitted codewords.

As our secrecy criterion, we require that each user j ∈
{1, . . . , K} must satisfy ∆(I)

j = 1. This constraint guarantees
that information obtained at the wire-tapper about the user j’s
signal is zero even if all the other users are compromised.
Let us define the secrecy measure for a subset of users,

S ⊆ K = {1, . . . , K}, as

∆(I)
S � H(WS |XSc ,Z)

H(WS)
∀S ⊆ K = {1, . . . , K} (5)

where Sc = K \ S. We can show that the individual secrecy
constraints {∆(I)

j = 1} for all users in the set S result in

H(WS |XSc ,Z) ≥
∑
i∈S

H(Wi|Xic ,Z) =
∑
i∈S

H(Wi) = H(WS)

Thus, for any set of users S ⊆ K = {1, . . . , K}, the
individual secrecy constraints {∆(I)

j = 1} for all users in the
subset S also guarantees the joint perfect secrecy of the set S,
i.e. ∆(I)

S = 1. By using individual perfect secrecy constraints,
we can also provide perfect secrecy for all users.

B. Collective Secrecy

Clearly, (4) is a conservative measure. Let us now define a
revised secrecy measure.

∆(C)
S � H(WS |Z)

H(WS)
∀S ⊆ K (6)

We again need to ensure that ∆(C)
S = 1 ∀S ⊆ K. This con-

straint guarantees that each subset of users maintains perfect
secrecy. Since this must be true for all sets of users, collectively
the system is secure. These constraints, as expected, lead to a
larger rate region than the more strict individual constraints.
However, if a group of users are somehow compromised, the
remaining users may also be vulnerable.

In this case, it can be shown that perfect secrecy for the set
of all users guarantees perfect secrecy for any subset of users.

H(WS |Z) + H(WSc |Z) ≥ H(WK|Z)) (7)

= H(WK) (8)

= H(WS) + H(WSc) (9)

which, since conditioning reduces entropy, implies
H(WS |Z) = H(WS).

This is a reversal of what happens for the individual con-
straints case, where perfect secrecy of individual users leads
to perfect secrecy of all sets of users.

IV. OUTER BOUNDS

Our aim here is to find an outer bound for the rate tuples
(R1, R2, . . . , RK) for which the individual or collective se-
crecy constraints ∆S = 1 ∀S ⊆ K can be satisfied.

Before we state our results, we define the following quan-
tities for any S ⊆ K.

PS �
∑
j∈S

Pj RS �
∑
j∈S

Rj

CM,S � C

(
PS
σ2

1

)
CMW,S � C

(
PS

σ2
1 + σ2

2

)
C′

MW,S � C

(
PS

PSc + σ2
1 + σ2

2

)
where C(ξ) � 1

2 log(1 + ξ). The quantities with S = K will
sometimes also be used with the subscript sum.
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A. Individual Secrecy

Theorem 1. For the GMAC-WT, the secure rate-tuples
(R1, . . . , RK) such that ∆(I)

S = 1, ∀S ⊆ K must satisfy

RS ≤ CM,S − CMW,S ∀S ⊆ K (10)

The set of all such rate vectors will be denoted R(I)
out.

Proof: We have proved a more general version of the
outer bound for any ∆ ∈ [0, 1], such that ∆S ≥ ∆ i.e., where
secrecy is not necessarily perfect. Due to space constraints, we
present a brief outline in Appendix I.
The maximum sum rate is then bounded by

Rsum = RK ≤ C

(
PK
σ2

1

)
− C

(
PK

σ2
1 + σ2

2

)
(11)

B. Collective Secrecy

Theorem 2. For the GMAC-WT, the secure rate-tuples
(R1, . . . , RK) such that ∆(C)

S = 1, ∀S ⊆ K must satisfy

RS ≤ CM,S − C

( ∑
j∈S 2

2
n H(Xj)

2πe (PSc + σ2
1 + σ2

2)

)
(12)

The set of all such R is designated as R(C)
out .

Corollary 2.1. The sum-rate with perfect secrecy satisfies

RK ≤ CM,K − CMW,K (13)

Corollary 2.2. The perfectly secure rate-tuples using Gaus-
sian codebooks must satisfy

RS ≤ CM,S − C′
MW,S ∀S ⊆ K (14)

This region will be denoted by R̂(C)

out .
Proof: We again have stronger versions of these results.

See Appendix I for a brief outline.

Remark: Since CMW,K = C′
MW,K, Corollary 2.2 indicates

that Gaussian codebooks have the same upper bound on sum
capacity as what is given by Corollary 2.1.

C. Comments on the Outer Bounds

Note that there is a reduction of CMW,K = C
(∑ K

i=1 Pi

σ2
1+σ2

2

)
in

the sum rate due to providing full secrecy for all users. Thus,
by limiting the information at the wire-tapper we also limit our
sum rate. The outer bounds are polymatroids as for the general
GMAC. Both upper bounds have the same sum-rate bound, but
the individual secrecy polymatroid will be contained within the
collective secrecy polymatroid.

V. INNER BOUNDS

In this section, we find coding schemes that provide a rate
region close to the outer bound we found for the rate tuples in
Section IV. We find a region smaller than the bound given in
Theorem 1 for the individual case, while achieving the outer
bound for Gaussian codebooks presented in Corollary 2.2.

A. Individual Secrecy

In [4], it has been shown that Gaussian codebooks can be
used to maintain secrecy for a single user wire-tap channel.
Using a similar approach, we show that an achievable region
for perfect secrecy using individual constraints is given by:

Theorem 3. The following region, R̂(I)

ach, is achievable with
perfect secrecy for the GMAC-WT using Gaussian codebooks.

R̂(I)

ach =
{
R : RS ≤ CM,S −

∑
j∈S

CMW,j ∀S ⊆ K
}

(15)

Proof: See Appendix II for an outline.
In this case, the maximum sum rate achievable is given by

RS = CM,K −
K∑

j=1

CMW,j (16)

Observe that there is a reduction of
∑K

j=1 CMW,j ≥ CMW,sum

in the sum rate due to secrecy constraints. This scheme, using
stochastic encoding and Gaussian codebooks, achieves a sum
rate that is less than the outer bound defined in (11). Also
observe that transmission of all the users with their maximum
power may not be optimal for this case. To maximize the sum
rate, we pose the following power allocation problem:

max
P

Csum = CM,K −
K∑

j=1

CMW,j s. t. Pj ≤ Pj,max (17)

The solution to this problem is given by the theorem below:

Theorem 4. The optimum power allocation is such that:

• Any given user transmits either with all its power or does
not transmit, i.e., Pj = 0 or Pj = Pj,max, j = 1, . . . , K .

• The sum-capacity maximizing set of users who are trans-
mitting with full power, T , should satisfy

∂Csum

∂Pj
> 0 ∀j ∈ T ⇒

∑
k∈T

Pk,max ≤ Pj + σ2
2 , ∀j ∈ T

∂Csum

∂Pj
< 0 ∀j /∈ T ⇒

∑
k∈T

Pk,max ≥ σ2
2

Proof: The optimum point can be shown to lie on the
boundaries, implying Pj is either 0 or Pj,max for all j =
1, . . . , K . To see the second part, assume T is the set of all
transmitting users. For all j ∈ T , we then have ∂Csum

∂Pj
> 0,

and for all j /∈ T , ∂Csum

∂Pj
< 0.

This, in general, does not lead to any closed form solutions.
The following special cases are notable:

• If σ2
2 ≤ P1,max ≤ P2,max ≤ . . . ≤ PK,max, then only

user K transmits.
• If

∑K
j=1 Pj,max ≤ σ2

2 , then all users transmit with
maximum power.

• If P1,max ≤ P2,max ≤ . . . ≤ σ2
2 ≤ Pj,max ≤ . . . ≤

PK,max, then either

– a subset of users from the set {1, . . . , j − 1} will
transmit with full power, or

– user K transmits with maximum power.
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B. Collective Secrecy

The main result for this section is the following:

Theorem 5. We can transmit with perfect secrecy using Gaus-
sian codebooks at the rates given by

RS ≤ CM,S − C′
MW,S

The region containing all such R is denoted R̂(C)

ach.
Proof: See Appendix II for an outline.

There are two observations we can make:
1) This is the same region as given in Corollary 2.2,

characterizing the rate region for Gaussian codebooks.

We will hence call this region Ĉ(C)
.

2) We can achieve a sum rate of CM,K − C′
MW,K =

CM,S − CMW,K which is the outer bound given in
Corollary 2.1, proving that Gaussian codebooks achieve
the sum capacity for the GMAC-WT.

Remark: The sum capacity maximizing power allocation is
easily seen to be P ∗

j = Pj,max for all users.

VI. TIME-DIVISION

We will show that we can achieve the sum capacity bound
in the outer bound using TDMA among users, so that each of
them sees a single user wire-tap channel.

In this case, an achievable secure rate region, R̂TDMA,
using Gaussian codebooks is given by

Rj ≤ αjC

(
Pj

αjσ2
1

)
− αjC

(
Pj

αj(σ2
1 + σ2

2)

)
(18)

where user j is transmitting for αj of the time with Pj

αj
power,

such that its average transmitted power over a single interval
is still Pj . The achievable secure sum rate becomes

Csum,TS =
K∑

j=1

αjC

(
Pj

αjσ2
1

)
−αjC

(
Pj

αj(σ2
1 + σ2

2)

)
(19)

Maximizing this quantity over {αj}, we get:

C∗
sum,TS = C

(∑K
j=1 Pj,max

σ2
1

)
−C

(∑K
j=1 Pj,max

σ2
1 + σ2

2

)
(20)

with
α∗

j =
Pj,max∑K

j=1 Pj,max

(21)

VII. NUMERICAL RESULTS & DISCUSSIONS

In this section, we present numerical results for the two-user
GMAC-WT. The maximum received powers of the users are
P1,max = 10, P2,max = 5 and the noise variance of the main
channel is σ2

1 = 1. We compare our achievable rates to the
outer bound and the secure sum rate obtained via optimum
time sharing for three different wire-tapper noise variances,
σ2

2 = 20, 7 and 2 in Fig. 2–4, respectively. We observe that
we get the least loss in capacity when the wire-tapper is sees a
higher noise power than received users’ powers. As we get into
the higher SNR regimes, to maintain the same level of perfect
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R
out
(I)

R
ach
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C(C)
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Fig. 2. Two User GMAC-WT: P1,max = 10, P2,max = 5, σ2
1 = 1

and σ2
2 = 20 ⇒ Csum = 1.6112. Sum rate for individual constraints

is maximized by P∗ = (P1,max, P2,max) ⇒ C∗
sum = 1.4488
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Fig. 3. Two User GMAC-WT: P1,max = 10, P2,max = 5, σ2
1 = 1

and σ2
2 = 7 ⇒ Csum = 1.2182. Sum rate for individual constraints

is maximized by P∗ = (P1,max, 0) ⇒ C∗
sum = 1.1448

secrecy, we have to give up more and more actual rate of
communication. In addition, using TDMA to provide single-
user Gaussian wire-tap channels for all users, it is possible
to achieve sum capacity. The time-sharing curves also show
that TDMA provides higher secure sum rates when the noise
variance of the wire-tap channel is high.

Another observation we can make is that even if the user’s
powers are unlimited, from (11), we can see that the maximum
achievable sum rate is limited by the noise powers since

C∞
sum � lim

PK→∞
C

(
PK
σ2

1

)
−C

(
PK

σ2
1 + σ2

2

)
= C

(
σ2

2

σ2
1

)
(22)

One interesting thing to note is that for low-noise regimes,
when one user is not transmitting any information, we can
achieve a rate region greater than the upper bound for the
single user constraints as can be seen from Figure 4. This is
because such a user can still transmit spurious information in
the form of generating R(s) keywords and uniformly choosing
one to send. Thus, even though that user might not be able to
transmit any useful information with perfect secrecy, it may
help the other user(s) increase their rate.

As seen in Figure 4, for the case when the maximum
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Fig. 4. Two User GMAC-WT: P1,max = 10, P2,max = 5, σ2
1 = 1

and σ2
2 = 2 ⇒ Csum = 0.7075. Sum rate for individual constraints

is maximized by P∗ = (P1,max, 0) ⇒ C∗
sum = 0.6720

powers are larger than σ2
2 , the achievable region is completely

contained within the TDMA achievable region. Only when at
least one of the users can transmit with power greater than
σ2

2 , is the rate region enlarged. This can also be seen from the
comments on Theorem 4. Since TDMA also provides a way
to satisfy both sets of constraints, the achievable region for

individual constraints is in fact given by R̂TDMA ∪ R̂(I)

ach.
To summarize, we have defined a set of constraints to ensure

the non-decodability by the wire-tapper of any user in a multi-
user environment while maintaining reliable communications
with the intended receiver. Limits on the users’ rates to
maintain perfect secrecy are found, providing upper bounds
on the GMAC-WT secrecy capacity region. We have also
found rate regions using Gaussian codebooks achieving perfect
secrecy, and the sum-capacity maximizing power allocations
for these achievable regions, giving us lower bounds on the
capacity region. For the collective secrecy constraints with
Gaussian codebooks, the upper and lower bounds coincide,
giving the capacity region. It is also shown that Gaussian
codebooks achieve the sum capacity for the collective secrecy
region. TDMA with optimal time-sharing allows us to achieve
the secret sum-capacity with perfect secrecy.

APPENDIX I
OUTER BOUNDS

We prove stronger results for outer bounds than presented
earlier. We find outer bounds such that ∆S ≥ ∆ ∀S ⊆ K for
any ∆ ∈ [0, 1]. ∆ = 1 is then the special case for perfect
secrecy.

Proof: [Proof of Theorem 1] The proof is a simple
extension of the proof of Lemma 7 in [4]. Specifically, we
start with

H(WS |XSc ,Z,Y) ≤ H(WS |XSc ,Y) ≤ nεn (23)

We can then write nRS∆S = H(WS |XSc ,Z) which, used
with (23), after some algebra, gives

nRS∆S = nC

(
σ2

2

σ2
1

)
− [H(Z|XSc) − H(Y|XSc)] (24)

Using Lemmas 8, 9, 10 in [4], we can write

H(Z|XSc) − H(Y|XSc) ≥ nC

(
σ2

2

PS + σ2
1

)
(25)

Using the above in (24), we arrive at

nRS∆S ≤ nCM,S − nCMW,S (26)

Proof: [Proof of Theorem 2] Proceeding similarly to
Lemma 6 in [4], we first find that

RS − ε ≤ 1
n

I(XS ;Y|Z) + δn ∀S ⊆ K (27)

where δn → 0 as ε → 0. We then proceed as in Lemma 7
from [4] to write

I(XS ;Y|Z) ≤ I(XS ;Y|XSc) − I(XS ;Z) (28)

leading to

I(XS ,Y|Z) ≤ nCM,S − nC

( ∑
j∈S 2

2
n H(Xj)

2πe (PSc + σ2
1 + σ2

2)

)
(29)

which, together with (27) completes the proof.
Proof: [Proof of Corollary 2.1] Follows from (28) with

S = K and using Lemmas 8, 9, 10 from [4].
Proof: [Proof of Corollary 2.2] Follows by letting

H(Xj) = n
2 log (2πePj) in (12).

APPENDIX II
INNER BOUNDS

Proof: [Proof of Theorem 3] Follows by a stochastic en-

coding scheme similar to [2]. Each user generates 2n(Rj+R
(s)
j )

codewords arranged into 2n(Rj) codebooks. To send message

Wj , user j uniformly chooses one of 2nR
(s)
j codewords to send.

We need to choose R
(s)
j = CMW,j to ensure perfect secrecy.

This makes ∆(I)
j = 1 for all users j, which in turn yields

∆(I)
S = 1 for all sets of users.

Proof: [Proof of Theorem 5] We use a similar coding
scheme as above, but we need to choose R

(s)
j as

R
(s)
S ≤ CMW,S ∀S ⊂ K, R

(s)
K = CMW,K (30)

and also RS + R
(s)
S ≤ CM,S to ensure perfect secrecy. This

makes ∆(C)
K = 1, which in turn yields ∆(C)

S = 1 ∀S .
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