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Abstract- The optimum receiver to detect the bits of mul- 
tiple CDMA users has exponential coniplexity in the num- 
ber of active users in the system. Previous work showed 
that the successive and parallel soft interference cancellers 
correspond to nonlinear programming relaxations of the op- 
timum multiuser detection problem. In this paper, we use 
this approximation method combined with the slowest de- 
scent approach to improve the performance of soft interfer- 
ence cancellers. The aim is to achieve a performance closer 
to the performance of the optimum receiver without sig- 
nificantly compromising the low complexity of the result- 
ing receiver. We derive the resulting detectors and evalu- 
ate their performance. Results show that they can achieve 
near-optimum performance and outperform several previ- 
ously proposed multiuser detectors. 

1 Introduction 
It is well known that the capacity of a CDMA system is lim- 
ited by the interference each user creates to other users in the 
system. Designing receivers that utilize the structure of the re- 
ceived signal to reduce the interference each user experiences 
is an effective method to enhance the system performance [ 11. 
The optimum such receiver, which performs maximum likeli- 
hood detection of multiple users' bits has been shown to be ex- 
ponentially complex in the number of users [2]. Following this 
development, many suboptimum linear and nonlinear receivers 
that outperform the matched filter receiver and that have rea- 
sonable complexity have been proposed [ 3-51. 

In [6-81, it has been stressed that the linear decorrelator de- 
tector [3] quantizes the output of an unconstrained maximizer 
of the likelihood function. In [9, lo], it has been shown that 
several other well-known suboptimum multiuser detectors cor- 
respond to approximate solutions for the maximum likelihood 
multiuser detector. Among the suboptimum detectors, the mul- 
tistage successive and parallel soft interference cancellers, pro- 
posed in [6, 111, are of particular interest due to their low 
bit error rate performance, and near-far resistant characteris- 
tics [6,10]. It is thus worthwhile to consider modifications that 
would improve the performance of such a receiver without in- 
troducing a significant increase in computational complexity. 
To this end, we consider the application of the slowest descent 
method, proposed in [7,8] for improving the performance of 
soft interference cancellers. 
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The slowest descent approach, introduced in [7], is applica- 
ble to detection techniques which quantize the relaxed maxi- 
mum of an objective (e.g., likelihood) function. Specifically, 
the slowest descent method searches for a more likely bit vec- 
tor by analyzing the slope of the likelihood function in a neigh- 
borhood of the relaxed maximum [8]. In the context of mul- 
tiuser detection, the search involves a quantized relaxed maxi- 
mizer bit vector estimate and a number of other estimates close 
to a line of least decrease in the relaxed likelihood function 
from its (relaxed) maximizer. In this work we investigate how 
the performance of soft interference cancellers being the quan- 
tized relaxed maximizers over a hypercube can be improved 
using the slowest descent method. We will offer evidence 
through numerical results that the resulting detectors perform 
better in terms of bit error rate compared with a number of 
other multiuser detectors including previously proposed inter- 
ference cancellers. 

2 System Model 
We consider a synchronous CDMA system employing BPSK 
Following references [ 10,121, the received signal is given by 

where K is the number of users, q, and a, are received power 
and the cransmitted bit (fl equiprobably) and s , ( t )  is the unit 
energy signature, i.e. so s,(t)s,(t)dt = 1, of user i ,  and n(t) 
is the additive white Gaussian noise (AWGN) process with 
power spectral density 02. The matched filter output of the 
ith user is given by y, = J:r(t)s,(t)dt. The received sig- 
nal vector at the output of the matched filters, y, is a sufficient 
statistic for the multiuser detection problem and is given by 

T 

where I' is the nonnegative definite cross correlation matrix 
with = J: s,(t)s3(t)dt ,  A is a diagonal matrix contain- 
ing the users' received amplitudes A,, = &, a is the vec- 
tor containing the information bits of the users and n is a 
zero mean Gaussian random vector with auto covariance ma- 
trix ~ [ n n ~ ]  = a2r. 
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3 Relaxations of the ML-MUD 
The maximum likelihood multiuser detection problem (ML- 
MUD) [ 1,3] solves for aAfL, the best estimate of the informa- 
tion bits of all users, given y ,  by maximizing the likelihood 
function which is quadratic in a. Specifically, 

aAtL = a rg  niax -aTRa + 2aTAy, (3) 
aq-i,i)K '-"-' 

l(a) 

where R = AI'A with R,, = f i a r , , .  Henceforth, we 
will assume that the signatures of the users are independent 
and I' and hence R are positive definite. 

The ML multiuser detection problem for general correlation 
matrices was shown to be NP hard which means that one can 
find the optimum a only by exhaustive search of 2 candi- 
date vectors [2]. Recently, ML multiuser detection problem 
has been examined from a nonlinear programming perspective 
leading to relaxations of the original problem [IO]. Specifi- 
cally, with a positive definite R, the likelihood function in (3) 
is strictly concave in a and it has a well defined unique maxi- 
mizer over a convex set. Thus, one can find solutions by relax- 
ing the constraint set -which in the original problem contains 
only the corners of the unit hypercube- such that the resulting 
"relaxed" constraint set, denoted in the following as R ,, is con- 
vex. The approach requires that the constraint set, R,, contains 
the feasible set of the original problem. The solution, denoted 
as a*, can then be mapped to the feasible set of the original 
problem by taking the sign of each component of the relaxed 
solution vector (since bits are equiprobably il). This is equiv- 
alent to mapping the maximizer to the closest (in Euclidean 
distance) bit vector. It has been shown that several well-known 
suboptimum detectors can be represented as relaxations of the 
ML multiuser detection problem [lo]. 

4 The Slowest Descent Method 
Consider an optimization problem where the feasible set con- 
sists of discrete values. If a closed form solution does not exist, 
one possible approach is to solve for a continuous optimizer 
of the problem and then exploit the assumed continuity of the 
likelihood function's second derivative in the neighborhood of 
this optimizer to generate a subset of the discrete feasible set 
which holds intuitively more likely values. The slowest de- 
scent method generates this subset by studying the slope of the 
likelihood function in the neighborhood of a maximizer and 
including all the feasible points closest (in Euclidean distance) 
to P lines of the least decrease in the likelihood function. The 
slowest descent estimate is the best (most likely) feasible point 
from this subset. 

A slightly more general formulation of the slowest descent 
method than the one introduced in [8,13] follows. The slow- 
est descent lines are the P mutually orthogonal lines {a* + 
pa&,,, i = 1,. . . , P }  of the least local decrease in the like- 
lihood function 1 (a )  from the maximizer a * of 1 ( a )  over the 
convex set R,. Here, p is such that a* + PA;,, E R,. Each 

Akin is a feasible direction at a* , that is, it belongs to the 
feasible direction set: 

RA(a*) = closure{A : a* + EA E R,, 0 < E < E O } ,  (4) 

where E O  is some positive number. 
A .  

ALin are mutually orthogonal solutions of 

ALin = a rg  min {l(a*) - 
/lAll=l. AERa(a*) l(a* + EA)} ( 5 )  

for a sufficiently small (positive) E < E O .  

Efficient recursive algorithms for computing bit vectors 
closest to the line intervals of the least decrease in l(a) and 
their respective likelihoods are given in [8]. 

It is easily seen that the unconstrained maximizer of the ML 
multiuser detection problem given in (3) results in the non- 
quantized (and normalized) decorrelating solution [ I], i.e., for 
a, = RK, a* = U, = A-'I?'y. It can also be seen that 
Akin are the eigenvectors of the Hessian of l(a),  R [7] .  In 
Section 6 we derive the slowest descent solution based on the 
convex set R, = [-I, 1IK. 

5 Soft Interference Cancellation 
The constraint set of the ML multiuser detection problem (3) 
consists of the corner points of the unit hypercube. An effective 
approximation method is to relax the constraint set to cover the 
whole hypercube and use nonlinear programming algorithms 
to find the solution of the new convex programming problem 
[14]. The relaxed problem is 

a* = a rg  max  -aTRa + 2aTAy. (6) a€ [ -  i,i] K 

The cost function in (6) is concave and has a unique maximum 
over the convex constraint set [-1, 1IK. However, the opti- 
mum point does not have a closed form representation and one 
should use iterative methods to obtain a solution. The class of 
iterative methods that can be used include the nonlinear Gauss- 
Seidel and nonlinear Jacobi methods [15]. Reference [IO] 
showed that the resulting iterative (multi stage) algorithms us- 
ing these two methods yield the successive and the parallel soft 
inte~erence cancellers respectively. The algorithms have been 
shown to converge to a* in (6) under mild conditions [IO]. For 
each user i, the first step of the Gauss-Seidel iteration is 

q t  + 1) = 

and the first step for the Jacobi iteration is 
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The second step for both algorithms is 

?( t+  1) < -1 

q t  + I )  > 1 
a z ( t  + 1) = 2(t + 1), -1 5 q t  + 1) 5 1 (9) { II; 

At each stage, to get the estimate of each user’s bit, both re- 
ceivers use soft estimates of the bits to reconstruct the interfer- 
ence and subtract this estimate from the user’s matched filter 
output, scale the result by the amplitude of the user and project 
onto [-1, 11. The difference between the two is that while the 
Gauss-Seidel algorithm uses the available current stage esti- 
mates of the users (successive), i.e., feedback from a group 
of users whose bit estimates are already computed, the Jacobi 
algorithm uses only bit estimates from the previous stage (par- 
allel). 

In the following, we describe how to use the slowest descent 
approach (SD) to improve upon the perFormance of the soft 
interference cancellers (SIC). 

6 Improving on SIC Using SD Search 
We have observed in Section 5 that the maximizer a* of l(a) 
over R, = [-1, 11” is the convergence point of the iterative al- 
gorithms given by (7)-(9), i.e., the non-quantized output of the 
soft interference canceller after several stages (iterations) are 
performed [IO].  One can take the sign of U *  as is convention- 
ally done and arrive at a users’joint bit vector estimate. Instead 
of selecting this quantized relaxed maximizer as our estimate, 
we will choose the most likely of bit vectors which are clos- 
est (in terms of the Euclidean distance) to the slowest descent 
lines determined by direction vectors (5) and a *. A solution to 
the problem on the right hand side of (5)  for R, = [--1, 1IK is 
given below. 

First, we notice that the difference on the right hand side 
of (4) is non-negative for any feasible direction defined in (5). 
The difference can be expanded as 

I(a*) - I ( u *  +EA) = e2ATRA - 2eATgl(a*) ,  (10) 

where 
g l ( a * )  = -Ru* + A y  

is the gradient of l(a) at the maximizer a*.  
Since a* is the maximizer of l(a) on 52, we have 

for all feasible directions A E RA(u*), i.e., the function has 
to be locally non-increasing in 0,. 

From (lo), we observe that, for a sufficiently small E ,  the 
dominating term is the linear term. Thus to minimize this dif- 
ference, we first need to seek those feasible A which are or- 
thogonal to g l ( a * ) ;  

[Ahzi ,]Tgl(U*) = 0 (12) 

for i = 1,. . . , P. We select P 5 K in such a manner that 
all solutions to ( 5 )  are orthogonal to g l ( a * ) .  The feasible di- 
rections non-orthogonal to g l ( a * )  are deemed to decrease l(a) 
excessively and are neglected. 

For 0,: = [-1, l]”, it can be seen that 

Ra (a* )  = {A: sign{&} = sign{-a%} when lafl = l} 
(13) 

and 
[g l (a* ) ] i  = 0 iff 1u;l < 1. 

Thus, for ( 1  2) to hold, we need 

Ah,,, E Rk(a*)  = {A : 6i = 0 when la%l = 1). (14) 

Consequently, ( 5 )  becomes 

= arg  min e2ATRA. (15) 
llAll=1 

where d is a reduced vector obtained by eliminating the zero 
elements of A, and R is the corresponding reduced subma- 
trix of R. whose corresponding rows/columns have been elim- 
inated. Formally, we can express R as: 

R = PAS~SAP,  

where P is the projection matrix 

P = diag(S(/a:l < 1) for i = 1,. . . , K } ,  

where b ( z )  = 1 for z = 1 and 0 otherwise. Note, that S A P  
results in eliminating those columns (user sequences and cor- 
responding amplitudes) of SA which correspond to the index i 

for which la,*l = 1. Thus, from (15) ye  see that Am,, are left 
eigen-vectors of the reduced matrix S obtained by eliminating 
sequences of all users for which the corresponding element of 
U* is in {+I}. 

Thus, the proposed improved soft interference canceller can 
be summarized as follows: 
0 Compute a* from (4) using a soft interference canceller. 
0 Compute the index set 3 = { i  : I u : ~  < 1) and the corre- 
sponding projection matrix 

- 2  

P = diag{l for i E 2 and 0 otherwise} 

0 Find feasible directions { ALzi,} orthogonal to gl (a*)  which 
correspond to the P smallest eigen-values of S = S A P .  
0 Employ the recursive algorithms from [8] to compute bit vec- 
tors closest to the lines of the least decrease in l (a) ,  {a* + 
p A &  : p E R} for i = 1, . . . , P, and their respective likeli- 
hoods, and select the best one. 

Note that, in the general case, the eigen-vectors { hZ,,,} are 
a function of y and, thus, pre-computing all possible eigen- 
vector sets has prohibitive complexity. On the other hand, if 
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U* is in the interior of the hypercube [-1,1] then U* = &, is 
the (normalized) non-quantized decorrelator output. Further- 
more, {A,,,} are the left eigen-vectors of the matrix s, and, 
consequently, can be pre-computed. 

In the following section, we present the numerical results re- 
porting the bit error performance of the proposed detectors. We 
also present, for comparison purposes, the simplified improved 
detectors that searches the lines corre_sponding to eigen-vectors 
of S instead of the eigen-vectors of S. 

7 Numerical Results 
We consider two systems, one with a processing gain G = 7, 
and K = 6 users and another one with G = 7 and K = 7. In 
all experiments, we have simulated the bit error rate of the user 
of interest which is taken to be user 3. Two types of graphs are 
presented. One set depicts the error rate of user 3 versus the 
equal SNR of all users in the system. The second set analyzes 
the near-far resilience of provided algorithms by depicting the 
error-rate versus the SNR of the interfering users. The SNR of 
the user of interest is kept fixed and is depicted on the graph as 
well. 

The following list relates the abbreviations for the employed 
algorithms to either their description or their more complete 
name: 
0 ML: the maximum likelihood detector 
0 DEC: the decorrelating detector 
0 SIC: soft interference canceller 
0 DEC-EV*: the slowest descent method from [7] based on 
R, = RK; the non-quantized decorrelator and the singular 
value decomposition (svd) of S, which searches 

- DEC-EV 1 : one slowest descent direction 

- DEC-EVA: all slowest descent directions 

0 SIC-EV*: the soft interference canceller described in Sec- 
tion 6 based on R, = [-1, 1IK; the non-quantized SIC and the 
singular value decomposition (svd) of the reduced matrix S, 
which searches 

- SIC-EV1: one slowest descent direction 

- SIC-EVA: all slowest descent directions 

0 EV*-SIC: the improved soft interference canceller described 
in Section 6 based on R, = [-1, 1IK; the non-quantized SIC 
and the singular value decomposition (svd) of the non-reduced 
matrix S, which searches 

- EVl-SIC: one slowest descent direction 

- EVA-SIC: all slowest descent directions 

0 PIC: The two-stage parallel interference canceler (PIC), ini- 
tialized with a decorrelator. Further iterations did not provide 
a significant improvement. 

The cross correlation matrix for the K = 7 system is the 
symmetric three-valued Gram matrix, r, with ri, = 1, rij = 
-1/7, for all i # j ,  except r17 = r,, = -3/7. The cross 

correlation matrix for the K = G system is [16]: 

-‘1 1 3  7 - 3  3 1 - 1  
7 3 1 - 1  

-3 1 (16) 
r = i  1 1 -3 7 -3 

7 -1 3 -3 7 -3 -1 

-31 1 1  3 - 3  
-1 -1 -3 -1 -3 7 

Figures 1 through 4 show that the SIC-EV* detectors perform 
very close to the ML detector in both the equal power and the 
near-far situations, with SIC-EVA performing slightly better. 
In most cases, the EV*-SIC algorithms contribute very little 
degradation relative to the SIC-EV* detectors. The slowest de- 
scent based methods significantly improve on their “initializa- 
tion” detectors: decorrelator and the soft interference canceller 
and frequently outperform both of these regardless of the “ini- 
tialization” method used. In the near-far situation, the slowest 
descent based techniques behave in a consistent manner with 
ML detector, while the SIC and the decorrelator’s performance 
is insensitive to near-far ratios [ I ,  61. The PIC detector has 
poorer performance consistently in the equal-power case, and 
works better in the near-far situations. 

8 Conclusion 
In this work, we have introduced a detector which improves on 
the performance of the soft interference canceller for multiuser 
detection in CDMA systems based on both the idea of con- 
straint optimization and the slowest descent approach. Simu- 
lation examples show that the derived improved soft interfer- 
ence canceller and its simplified version perform very well and 
can achieve near-optimal performance for two situations of in- 
terest in a CDMA system: the case of equal-power and the 
case of unequal-power interferers. It is also observed that they 
outperform several previously proposed detectors. Finally, 
the simplified version of the improved soft interference can- 
cellers, EV*-SIC, has almost identical performance as the non- 
simplified improved interference cancellers, SIC-EV*. The 
significant reduction in the implementation complexity, via the 
pre-computation of necessary eigen directions, favors the use 
of the simplified version of the improved soft interference can- 
cellers in practical systems. 
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