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Abstract—We consider the problem of joint rate scheduling
and lossy data compression in a two-way relay network with
distortion-sensitive stochastic packet traffic. A relay node fa-
cilitates exchanging packets between the two sources. Network
coding at the relay improves energy efficiency at the expense of
additional packet delay. In addition, network coding couples the
source queues through the distortion levels of their individual
packet traffic. This fact motivates having each source adapt the
transmission rate and the compression ratio jointly. We first
formulate a centralized dynamic scheme for scheduling and com-
pression with the objective of minimizing the energy consumption
at the relay while satisfying stability and average distortion
constraints. Lyapunov stability arguments are used to define a
centralized policy based on the instantaneous queue backlogs and
distortion levels. In addition, a decentralized algorithm is pro-
posed where sources have limited (1-bit) information about each
other’s queue backlog and distortion levels. Numerical results
demonstrate that the performance of the proposed decentralized
algorithm approaches the energy-delay tradeoffs resulting from
the centralized solution.

Index Terms—Compression, Network Coding, Scheduling,
Queue Stability, Distortion, Energy, Delay, Two-Way Relaying.

I. I NTRODUCTION

Data compression is fundamental for resource-efficient com-
munications by reducing transmission rates for data trafficwith
redundancy. Rate-distortion theory focuses on quantifying the
distortion incurred in the lossy compression of sources that
produce a constant supply of bits. Though the classical setting
did not take into account the effects of stochastic traffic and
delay constraints, recently, there has been an increasing inter-
est in performing compression paying attention to queueing
aspects [1], [2], and stringent delay constraints [3], [4].

Lossy compression is considered in [3] for a single link
carrying packets with delay deadlines. The objective in [3]
is to minimize the total distortion while meeting the delay
constraints. Again for a single link, [5] provides a two-step
compression and rate scheduling algorithm for minimizing the
compression and transmission power while satisfying queue
stability for lossless compression. This work has been ex-
tended to the multi-hop scenario in [6]. On the other hand, [1]
builds upon [5] to account for lossy compression as well with
distortion constraints for a single link. Multiple description
coding (MDC) is considered in [4], where it is shown that for
delay-sensitive data, MDC reduces the end-to-end distortion
compared with single description coding.

All of the work mentioned previously addresses queueing
and delay aspects of compression for networks that operate
under the traditional store-and-forward paradigm. In thispaper,
we consider such problems in a a two-way relay network,
that may operate using network coding [7]. The fundamental
rate limits of this model have been studied in [8], [9]. In
particular, network coding can improve energy efficiency bysi-
multaneously serving packets from both sources. However, for
practical scenarios where packet traffic arrives at the sources
randomly, energy efficiency through network coding may
come at the price of higher delay, since the relay would have
to match packets incoming from both sources. We investigated
this energy-delay trade-off in [10] (without considering source
compression), and provided centralized and decentralizedrate
allocation algorithms which operate with different levelsof
queue information available at the individual sources. There
have been a number of works studying the interaction of
network coding with stochastically varying traffic in both two-
way relay networks [11], [12] and other network topologies
[13]–[17]. Network coding has also been examined in [18]
jointly with source coding such that compression is performed
for correlated sources under the assumption of backlogged
traffic.

More precisely, we consider a model in which packets of
distortion sensitive data arrive at two sources. The sources
compress their data packets and transmit them over a two-
way relay network, where the relay can employ XOR network
coding. The network coding operation at the relay couples the
sources in terms of both energy consumption and distortion
levels. The sources attempt to match the rates at which their
compressed packets arrive at the relay in order to exploit the
energy efficiency of network coding. For that purpose, they can
adjust the service rates of the packet queues (subject to stabil-
ity constraints) and the compression rates (subject to distortion
constraints). Optimally, rate scheduling and compressiondeci-
sions should be made jointly to balance energy, distortion and
delay in stable operation. We use Lyapunov stability arguments
to develop algorithms that attempt to strike such a balance.
Our first algorithm requires a centralized scheduler with full
information of instantaneous queue backlogs and distortion
levels.

We next present a decentralized algorithm where sources
individually adjust their transmission and compression rates
depending on the availability of information on queue backlogs
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Fig. 1. Two-way relay network with data compression at sources.

and distortion levels. Numerical results demonstrate thatone
bit of information is sufficient to approach the energy-delay
tradeoffs of our centralized solution.

The paper is organized as follows. Section II presents
the system model, compression mechanism and queue dy-
namics. The problem of joint scheduling and compression
is formulated in Section III and the centralized solution is
presented. In Section IV, we introduce a distributed threshold-
based algorithm. We demonstrate the energy-delay trade-offs
for different distortion-sensitive scenarios in Section V. Final
conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a two-way relay network with sources1 and2,
and one relayR, as shown in Fig. 1. We assume a synchronous
slotted system, in which each sourcei = 1, 2 buffers the
incoming packets in queueQi with backlogqi(t) at time (slot)
t.

Each sourcei chooses the service rateri(t) at time t that
corresponds to the amount of data removed from the buffer.
Hence, the queue length at sourcei = 1, 2 evolves as

qi(t + 1) = max (qi(t) − ri(t), 0) + ai(t), (1)

whereai(t) is the number of bits/packets arriving at source
queueQi at time t. For each sourcei, we assume thatai(t)
is generated via an ergodic process and letλi denote its long-
term average rate.

For stochastic arrivals routed over a single link, [1] consid-
ers the case where all packet arrivals at a slot are compressed
within that slot. Different than [1], here we assume that the
incoming packets are buffered and the source chooses how
many packets to compress before transmission at that slot.
This provides the source with additional flexibility to adjust
its transmission rate. At time slott, ri(t) packets are served
from the packet queue and only those packets are compressed
by reducing the description length toci(t) for i = 1, 2,
where ci(t) ≤ ri(t). The length of compressed data,ci(t),
is function g(·, ·) of the raw data served from queue,ri(t),
and the compression rate,ki(t) given by:

ci(t) = g(ri(t), ki(t)) := ki(t)ri(t), (2)

where0 ≤ ki(t) ≤ 1. We assume lossy compression such that
packets from sourcei incur distortion

di(t) = h(ri(t), ci(t)), (3)

i = 1, 2, for some functionh(·, ·). We first note that a valid
distortion functiond = h(r, c) should have the following
properties:

• h(r, c) should be decreasing withc for fixed r.
• h(r, c) should be increasing withr for fixed c.
• h(r, c) = 0 should be satisfied forr = c, i.e. there should

be no distortion without compression.

We will further characterize the functionh(·, ·) in Section
III. We assume thatri(t) is upper bounded byrmax

i to limit
the maximum packet distortion. For each sourcei = 1, 2, we
consider an average distortion constraintdav,i such that

lim
t→∞

1

t

t−1
∑

τ=0

E[di(τ)] ≤ dav,i. (4)

Note that this is a constraint on the average distortion per
unit-time. Another constraint that would be of interest is the
average distortion per packet, which is given by the same
expression scaled byλ (since the system is stable).

We assume that relayR does not buffer the incoming
packets in queues and immediately forwards any received data
over a single channel which is orthogonal to the channels
used by each source. In particular, the relay uses network
coding to transmit packets from both sources simultaneously at
the common rateminj=1,2(cj(t)). Any residual traffic is then
routed in uncoded form at rateci(t) − minj=1,2(cj(t)) only
from the source with largerci(t). Decoding is accomplished
by combining the received network-coded packets with the
individual packets previously transmitted by a source.

The relay communication consists of two phases: (i) multi-
ple access from sources to the relay, and (ii) broadcast from
the relay to sources. We assume that the achievable rates in
the first phase are significantly larger than those in the second
phase thereby making the rates in the second phase the only
bottleneck that needs to be considered. Each use of the relay
R is assumed to incur a cost, e.g., representing the energy
expended by the relay. For simplicity, we do not consider here
the energy cost of the sources, although our approach could
readily extend to such a setting. If we assume additive white
Gaussian noise channels with unit noise power and bandwidth
in the broadcast phase, the individual min-cut capacities for
each sourcei can be achieved via XOR-based network coding
[19], [20], resulting in the end-to-end rate

µi(t) ≤ log(1 + P (t)) (5)

at time slott for each sourcei = 1, 2, i 6= j, whereµi is
the rate (normalized to units of bits per time-slot) from source
i forwarded by the relay,P (t) is the common transmission
power, and channel gains from the relay to sources are as-
sumed to be normalized symmetric. The relay power is chosen
such as to satisfy the signal-to-noise-ratio (SNR) requirement
at both receivers. Accordingly, the power consumption at the
relay node in this phase,Prel(t), depends on the maximum
of the two ratesc1(t) and c2(t) to be transmitted. More
specifically, by (5), the relay power expended with network
coding is given by

Prel(t) = f(max(c1(t), c2(t))) = (22 max(c1(t),c2(t)) − 1), (6)

for Gaussian channels.
Based on the above assumptions, in this paper, we focus

on a simple achievable rate regionC(t) = {(c1(t), c2(t)) :
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0 ≤ ci(t) ≤ µmax
i (t), i = 1, 2} for the relay R, where

µmax
i (t) < rmax

i . This represents the case of orthogonal chan-
nels from sources to the relay and provides a simple example
that highlights the coupling of the transmission scheduling
decisions between the sources. Note that this coupling would
further increase for more general rate regions.

III. JOINT RATE SCHEDULING AND DATA COMPRESSION

We start with the case where a centralized controller makes
transmission decisions for both sources based on complete
knowledge of the system parameters and the history of queue
backlogs and received distortions. The objective is to minimize
the total energy consumption at the relay while ensuring that
the average delay does not exceed a given thresholdD and
average distortion constraint (4) is satisfied. This leads to the
following optimization problem:

min
(r1(t),r2(t),c1(t),c2(t))

lim
t→∞

1

t

t−1
∑

τ=0

E [Prel(c1(τ), c2(τ))]

(PD)

s.t. lim
t→∞

1

t

t−1
∑

τ=0

2
∑

i=1

E[qi(τ)]

λ1 + λ2
< D,

lim
t→∞

1

t

t−1
∑

τ=0

E[di(τ)] ≤ dav,i, i = 1, 2,

(c1(t), c2(t)) ∈ C(t), t ≥ 0,

ci(t) ≤ ri(t) ≤ min(qi(t), r
max
i ), t ≥ 0, i = 1, 2.

Here, the average delay constraint follows from the ratio
of the average queue length to the total arrival rate according
to Little’s theorem [21]. Note that the objective in(PD) is
equivalent to minimizing the average power per packet by
normalizing by the total long-term arrival rateλ1 + λ2. Let
P∗(D) denote the solution to(PD) as a function of the delay
constraintD. This solution represents the energy-delay trade-
off. In general, this will be a decreasing function ofD and as
D → ∞, it will yield the minimum cost solution subject to
the condition that the queues are stable.

In principle, for a given delay constraint,(PD) can be solved
via dynamic programming. However, such a solution quickly
becomes intractable except for very simple arrival processes
and requiresa priori knowledge of arrival statistics. Instead,
we will follow the approach in [22], [1], and use Lyapunov
stability arguments to yield an approximate solution to(PD).
This approach is based on generalizing the classical back-
pressure algorithm, which is guaranteed to stabilize the packet
queues, if this is possible under capacity constraints [23].

A. Centralized Solution

We propose a joint rate scheduling and compression algo-
rithm (CA) which chooses the service rate of the packet queue
and the compression rate for each source to approximate the
solution to(PD).

To track the average distortion constraint over time, we use
the idea of avirtual distortion queue introduced in [1]. Define

xi(t) as the distortion queue for sourcei with constant service
rate dav,i and arrival ratedi(t). If this distortion queue is
stable, then (4) is satisfied. Then, the virtual distortion queue
dynamics are given by:

xi(t + 1) = max (xi(t) − dav,i, 0) + di(t). (7)

We note that sincedi(t) is bounded by assumption, it has
a finite second moment.

Let S(t) = [q1(t), q2(t), x1(t), x2(t)] denote the combined
state of the system. We define the corresponding Lyapunov
function as

L(t) = L(S(t)) =
1

2
(q1(t)

2 + q2(t)
2 + x1(t)

2 + x2(t)
2). (8)

Since

X2 ≤ Y 2 + Z2 + W 2 − 2Y (Z − W ) (9)

for X ≤ max(Y − Z, 0) + W , the Lyapunov drift can be
written as

∆(S(t)) = E{L(S(t + 1)) − L(S(t))|S(t)} = B (10)

−q1(t)E{r1(t) − a1(t)|S(t)} − q2(t)E{r2(t) − a2(t)|S(t)}

−x1(t)E{dav,1 − d1(t)|S(t)} − x2(t)E{dav,2 − d2(t)|S(t)},

whereB is a term that can be bounded by the sum of second
moments of the arrival rates, and distortion values. Here, the
expectations are taken over the arrival and control decision
statistics. If we add the weighted expected power as a penalty
term to (10), we have

∆(S(t)) + V E{Prel(t)|S(t)} = B

−q1(t)E{r1(t) − a1(t)|S(t)} − q2(t)E{r2(t) − a2(t)|S(t)}

−x1(t)E{dav,1 − d1(t)|S(t)} − x2(t)E{dav,2 − d2(t)|S(t)}

+V E{Prel(t)|S(t)}, (11)

where the weightV is a control parameter to tune the trade-off
between the upper bound to the average queue backlog and
the distance from the minimum achievable cost. The algorithm
(CA) aims at minimizing the sum of Lyapunov drift and
penalty by solving the following optimization problem for the
given system stateS(t):

max
(ri(t),ci(t)),i=1,2

q1(t)r1(t) + q2(t)r2(t) (12)

−x1(t)d1(t) − x2(t)d2(t)

−V [Prel(max(c1(t), c2(t)))].

s.t. (c1(t), c2(t)) ∈ C(t), ci(t) ≤ ri(t), i = 1, 2

Remark 1: The first two terms in (12) are maximized by
maximizing the rateri(t) for each sourcei and the last
term is maximized by minimizing the compressed rateci(t).
However, the other terms are optimized by minimizing the
distortion, which in turn minimizesri(t) and maximizesci(t).
Hence, the optimal solution to (12) balancesri(t) and ci(t)
objectives. We also note that in contrast to [10], the optimal
network coding rates are not necessarily equal, i.e.,c1(t) is
not necessarily equal toc2(t) and the optimal solution depends
on the particular instances ofd1(t) andd2(t) at any time slot
t.
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Next, we discuss this joint rate scheduling-compression
algorithm for a specific distortion-rate function and energy
cost. Note that all constraints in (12) are linear. Therefore,
choosingdi(t) as a strictly convex function of(ri(t), ci(t))
would result in standard convex optimization with unique opti-
mal transmission and compression rates. The choice ofh(r, c)
depends on the underlying application for data transmission,
and it is outside the scope of this paper. For simplicity, we
assume the distortion functionh(r, c) = r−c, which represents
the number of bits discarded in the compression operation.
Furthermore, for boundedr and c, the second moment of
distortion is also bounded, which is necessary to show the
stability of the distortion queues.

The energy consumption depends on the underlying channel
model. Again, for simplicity, we assume that there exists
a linear relationship between the energy expended and the
amount of data transmitted, which corresponds to the low SNR
regime. Also, without loss of generality letrmax

i = rmax and
µmax

i = µmax, i = 1, 2.
Accordingly, (12) can be rewritten as

max (q1(t) − x1(t))r1(t) + (q2(t) − x2(t))r2(t)
+x1(t)c1(t) + x2(t)c2(t) − V max(c1(t), c2(t))

s.t. 0 ≤ ri(t) ≤ min(qi(t), r
max),

0 ≤ ci(t) ≤ min(ri(t), µ
max).

(13)

Note that (13) is a standard linear program. The explicit
solution depends on the particular instances ofqi(t) and
xi(t), i = 1, 2. For illustration purposes, we point out at the
following special cases:

• qi(t) > xi(t), xi(t) > V , i = 1, 2:
ri(t) = min(qi(t), r

max), ci(t) = min(ri(t), µ
max)

(Maximum rate scheduling with compression)

• qi(t) < xi(t), i = 1, 2,
q1(t) + q2(t) > V > max(q1(t), q2(t)):
r1(t) = r2(t) = c1(t) = c2(t) = min(q1(t), q2(t), µ

max)
(No compression with perfect rate match at the relay for
network coding)

• qi(t) < xi(t), i = 1, 2, q1(t) + q2(t) < V :
r1(t) = r2(t) = c1(t) = c2(t) = 0,
(No rate scheduling)

A particular case of interest is the symmetric queue backlog
and distortion level at both sources:

• q1(t) = q2(t) = q, x1(t) = x2(t) = x:
If q > x and x > V , ri(t) and ci(t) are maximized for
i = 1, 2, with possible lossy compression.
If V

2 < q < min(x, V ), then r1(t) = r2(t) = c1(t) =
c2(t) = min(q, µmax), i.e., no compression with perfect
network coding applied at the relay.
If q < x and q + x < V , thenr1(t) = r2(t) = c1(t) =
c2(t) = 0.

Note that the queue service rate increases with increasing
buffer size and decreasing distortion state, while the lengths
of compressed representations increase with larger virtual
distortion queues and lower trade-off parameterV , reflecting

the priorities at the current time slot among the different
objectives of stability, distortion sensitivity, and relay power
consumption.

IV. D ECENTRALIZED ALGORITHM WITH 1-BIT

INFORMATION

Next, we consider a decentralized algorithm where each
source has only limited information about the queue backlogs
and distortion levels of each other. From the solutions to (13),
it is seen that the sourcei tends to serve the packet queue
if qi(t) > xi(t) (with possible compression) orqi(t) > V

(without compression), and tends to transmit data ifxi(t) > V

or qi(t) > V .
To exploit the energy efficiency through network coding, it

is necessary to synchronize both source transmissions as much
as possible with limited queue backlog and distortion infor-
mation. We consider a decentralized algorithm in which each
sourcei has 1-bit information on whethermin(qj(t), xj(t))
exceedsV or not. We are motivated by the fact that in
the centralized algorithm sourcej is likely to transmit, if
min(qj(t), xj(t)) ≥ V . If so, instead ofV each user focuses
on its own queue states and energy consumption with parame-
terV replaced withµmax, which would increase the likelihood
of transmission for the source, provided that the other source
is likely to transmit as well.

The resulting algorithm(DA) is given by:

(ri(t), ci(t)) =


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(0, 0), if qi(t) < µmax,

(ui(t), ui(t)), if µmax ≤ qi(t) < xi(t),

min(qj(t), xj(t)) > V,

(vi(t), ui(t)), if µmax ≤ xi(t) < qi(t),

min(qj(t), xj(t)) > V,

(vi(t), 0), if xi(t) < µmax ≤ qi(t),

V < min(qj(t), xj(t)),

(vi(t), ui(t)), if V < xi(t) < qi(t),

V > max(qj(t), µ
max),

(ui(t), ui(t)), if V < qi(t) < xi(t),

V > max(qj(t), µ
max),

(vi(t), 0), if xi(t) < min(qi(t), V ),

V > max(qj(t), µ
max),

(DA)
where ui(t) = min(qi(t), µ

max), vi(t) = min(qi(t), r
max)

and j 6= i.
We will show in Section V that the cost performance of

(DA) is very close to the centralized algorithm, especially as
we increase the parameterV .
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V. COMPARISON OFCOST-DELAY TRADE-OFFS

We compare the cost and delay performance of the(CA)
and (DA) algorithms for scenarios with different distortion
requirements and traffic loads. We consider Poisson traffic with
symmetric arrival ratesλi = λ and assumecmax

i (t) = µmax,
andrmax

i = 5µmax, i = 1, 2.
Figures 2 and 3 depict the average delay as function of the

average cost per packet (by varying the parameterV ). The
two figures differ in the choice of the distortion constraint
dav,i = dav, i = 1, 2. As expected, the average energy cost
increases with more stringent distortion constraints. However,
there is no significant effect on the average delay.

For both algorithms(CA) and(DA), the usual energy-delay
trade-off is observed such that the energy cost decreases, as
delay increases.

For comparison purposes, we also consider the case where
each source only knows its own queue and distortion state.
Then, each source optimizes its individual transmission rate
and compression rate assuming the other source makes the
worst-case decision at each time slot (i.e. sourcei assumes
cj(t) = 0, j 6= i). The cost-delay trade-off for this decen-
tralized algorithm(DWC) cannot approach the behavior of
the centralized solution because sources make blind decisions
without any information on each other’s queue backlogs.

Note that the average cost per packet achieved by(DA)
is very close to the centralized algorithm(CA), which also
provides low delay. When transmission decisions are adapted
depending on whether the other user is expected to transmit,
the cost and delay performance can be significantly improved
compared to the case without any knowledge about the other
source queue.

VI. CONCLUSION

In this paper, we considered the problem of minimizing
an energy cost subject to distortion and stability constraints
in a two-way relay network. The relay exchanges distortion
sensitive data from two sources with stochastically varying
packet traffic. The sources apply lossy compression before
transmitting to the relay node for more efficient use of the
relay under rate constraints. Either network coding or routing
is used at the relay depending on the availability of packets
incoming from both sources. We considered different levelsof
source cooperation and availability of queue state information
at the sources. First, we derived a centralized control scheme
to jointly optimize the cost and stable throughput rates. For
distributed operation, we assumed that each source has limited
information of one bit on the queue and distortion state of
the other source. We showed that with only one bit queue
information, the threshold-based scheduling and compression
algorithms approach the performance of the centralized solu-
tion.
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