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Abstract—A cognitive Multiple Access Channel with a Wire-
tapper (cMAC-WT) is studied, where one of the two encoders is
cognitive, in the sense that it knows a priori the message of the
other encoder. Both the discrete and Gaussian models are consid-
ered. General achievable rates and outer bounds to the secrecy
capacity region are derived, and the secrecy capacity region is
identified for the special cases of less noisy discrete cMAC-WT,
degraded Gaussian cMAC-WT and degraded Gaussian cMAC-
WT with orthogonal components. Numerical results are provided
to illustrate the main findings.

I. INTRODUCTION

Information-theoretic approaches that aim at providing se-
curity as well as reliability of communication emerge as
powerful tools to provide an alternative to, or to complement
or strengthen, the more traditional computation-based security
strategies. As an example, information-theoretic security, when
channel conditions are (or can be made to be) favorable,
enables the confidential exchange of a key between two
nodes of a network in the absence of a certified authority.
Recent works have addressed information-theoretic security in
a number of networks of interest, including broadcast [1] [2],
multiple access [3] [4] [5], interference [2] and relay channels
[6], as well as multiantenna (MIMO) links [7] [8]. In this
body of work, a recurring theme is that of assessing how much
the availability of a certain communication resource can help
improving the secrecy level in a given network. Examples
are the possibility to deploy multiantenna terminals [7] [8],
to leverage synergies in multi-terminal networks, possibly via
cooperation [6] [5] or jamming [4] [2], or to exploit the side
information available at certain (cognitive) nodes regarding
the messages to be conveyed by other nodes [9]. In this work,
we further explore the latter two issues by studying a model
that relate to both the multiple access channel with a wire-
tapper (also referred to as eavesdropper) of [3] [4] and the
cognitive interference channel of [9]. Specifically, we consider
the scenario in Fig. 1, in which two users communicate with
an intended receiver in the presence of an eavesdropper. The
difference with the model of [3] [4] (see also [10]) is that
here one of the two users is cognitive, in the sense that it
knows the message of the other encoder. Moreover, the model
differs from the one in [9] in that here we are interested,
as in [3] [4], in keeping both users’ messages secret from
the eavesdropper, whereas in [9] the "eavesdropping" node is
actually a legitimate receiver for one of the messages, but not
for the other.

We derive general achievable rates and outer bounds to
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Fig. 1. A cognitive Multiple Access Channel with a Wiretapper (cMAC-WT).
Variables W1,W2 represent finite-rate messages and S1, S2, S12 random
variables of arbitrary entropy that can be used for stochastic encoding.

the secrecy capacity region for the model in Fig. 1, referred
to as Cognitive Multiple Access Wiretap Channel (cMAC-
WT). Furthermore, we identify the capacity region for the
special cases of less noisy discrete cMAC-WT, degraded
Gaussian cMAC-WT and degraded Gaussian cMAC-WT with
orthogonal components [10].

Notation: Instances of a random variable, identified by a
given capital letter, are denoted by the corresponding lower-
case font. We use the standard sequence notation xn =
(x1, ..., xn).

II. SYSTEM MODEL

A cMAC-WT, illustrated in Fig. 1, is characterized by
two independent and uniformly distributed messages W1 ∈
[1, 2nR1 ] and W2 ∈ [1, 2nR2 ] of rates R1 and R2 (bits/channel
use), where n is the coding block size, two encoders (users), a
legitimate destination that receives Y n and a wire-tapper that
receives Zn. User 1 is the cognitive user and encodes both
W1 and W2 via an encoder f1,n into a codeword Xn

1 and user
2 encodes W2 via an encoder f2,n into a codeword Xn

2 as

Xn
1 = f1,n(W1,W2, S1, S12) (1a)

Xn
2 = f2,n(W2, S2, S12), (1b)

where S1, S2 and S12 are independent random variables of
arbitrary entropy. Since f1,n, f2,n are deterministic functions,
S1, S2 and S12 are used to randomize the mapping between
messages and codewords (stochastic encoders). Notice that
variable S12 provides common randomness shared by the
two encoders. The codewords are transmitted over a discrete
memoryless channel characterized by a conditional distribution
p(y, z|x1, x2). Decoding at the intended receiver takes place



via a function gn as (Ŵ1, Ŵ2) = gn(Y
n) based on the

received sequence Y n. The secrecy level is measured by the
equivocation at the wire-tapper upon reception of the sequence
Zn as H(W1,W2|Zn). A pair of rates (R1, R2) is said to
be achievable if for n → ∞, the probability of error at the
intended destination vanishes, i.e.,

P (n)e = Pr[gn(Y
n) 6= (W1,W2)]→ 0, (2)

and the equivocation tends to the messages’ entropy:

H(W1,W2|Zn)/H(W1,W2)→ 1. (3)

Notice that the secrecy constraint (3) implies secrecy also for
each user in the sense of the normalized equivocation, i.e.,
H(Wj |Zn)/H(Wj)→ 1 for j = 1, 2 [3]. The secrecy capac-
ity region is defined as the closure of the set of all achievable
rates. It is finally remarked that the secrecy capacity region
depends only on the marginals p(y|x1, x2) and p(z|x1, x2)
(see, e.g., Lemma 1 of [5]).

A stochastically degraded cMAC-WT (or in short degraded)
is defined as being such that the marginal p(z|x1, x2) is the
same as that of a physically degraded channel (for which
p(y, z|x1, x2) = p(y|x1, x2)p(z|y) or equivalently the Markov
chain condition (X1,X2) − Y − Z holds), i.e., we have
p(z|x1, x2) =

P
y∈Y p(y|x1, x2)p0(z|y) for some conditional

distribution p0(z|y). We also say that the cMAC-WT is less
noisy (more precisely, the main channel is less noisy than
the wire-tapper’s channel) if for every set of variables sat-
isfying the Markov chain V − (X1,X2) − (Y,Z) we have
I(V ;Y )− I(V ;Z) ≥ 0 [1].

We also consider the Gaussian cMAC-WT defined by

Y = X1 +X2 +Ny (4a)

Z =
p
h1X1 +

p
h2X2 +Nz, (4b)

with Ny and Nz Gaussian random variables with unit power,
and individual average power constraints P1 and P2 for the two
users: 1/n

Pn
i=1 x

2
ji ≤ Pj for j = 1, 2 and any codeword. As

noted above, the secrecy capacity region depends only on the
marginal distributions, and hence the correlation of Ny and
Nz is immaterial. Moreover, it can be seen that the Gaussian
cMAC-WT is (stochastically) degraded if h1 = h1 = h ≤ 1
[3].

We finally remark that if we set R1 = 0, the model at hand
reduces to a special case of the relay channel studied in [11]
(see "case 2" therein and assume a noiseless channel between
source and relay). The results presented below are consistent
with the findings of [11] when specialized to the case R1 = 0.

III. ACHIEVABLE SECRECY REGIONS

We first review, and generalize, an achievable region derived
in [3] [4], which applies to the "non-cognitive" Multiple Ac-
cess Wiretap Channel (MAC-WT). In this setting, user 1 does
not know message W2 and encoding is limited to functions of
the type xn1 = f1,n(w1, s1) and xn2 = f2,n(w2, s2). Clearly,
this achievable secrecy rate region sets a reference result for
the scenario at hand, in which the more general form of
encoding (1) is possible.

Proposition 1 (Achievable secrecy region for MAC-WT): For
a discrete MAC-WT, the following is an achievable rate region

[
{(R1, R2) : R1, R2 ≥ 0,

R1 ≤ I(V1;Y |V2,Q)− I(V1;Z|Q) (5a)
R2 ≤ I(V2;Y |V1,Q)− I(V2;Z|Q) (5b)

R1 +R2 ≤ I(V1, V2;Y |Q) (5c)
−I(V1, V2;Z|Q)},

where the union is taken over all joint distributions that
factorize as

p(q)p(x1, v1|q)p(x2, v2|q)p(y, z|x1, x2)

such that the right-hand sides in (5) are non-negative. More-
over, for the Gaussian MAC-WT, assuming without loss of
generality h1 ≥ h2, the following rate region is achievable:[

{(R1, R2) : R1, R2 ≥ 0,

R1 ≤ 1

2

NX
i=1

λi(log (1 + aiP1i) (6a)

− log
µ
1 +

h1P1i
1 + h2P2i

¶¶
R2 ≤ 1

2

NX
i=1

λi(log

µ
1 +

P2i
1 + āiP1i

¶
(6b)

− log
µ
1 +

h2P2i
1 + h1P1i

¶¶
R1 +R2 ≤ 1

2

NX
i=1

λi log

µ
1 + P1i + P2i

1 + h1P1i + h2P2i

·1 + āih1P1i
1 + āiP1i

¶¾
, (6c)

where the union is taken over all choices of parameters
λi, P1i, P2i, ai such that λi, P1i, P2i ≥ 0,

PN
i=1 λi = 1,PN

i=1 λiPji ≤ Pj for j = 1, 2, ai ∈ {0, 1} (with definition
āi = 1 − ai) such that the right-hand sides in (6) are non-
negative . Moreover, we can set N ≤ 5 without loss of
generality.

Remark 1: The proposition above is a generalization of the
region obtained by time-sharing the "superposition", "TDMA"
and cooperative jamming schemes of [3] [4] (see Theorem 1 of
[4]), since we allow for a more general form of time-sharing,
and we treat also the discrete model. For the discrete model,
variable Q in the achievable region (5) is a time-sharing vari-
able, auxiliary variables V1, V2 represent the codebooks of the
two users, and the transmitted signals X1,X2 are obtained as
the output of "artificial" channels p(x1|v1, q) and p(x2|v2, q)
employed at the two users to further confuse the wire-tapper
(see, e.g., [5] [6]). This may provide the opportunity for
cooperative jamming. Cooperative jamming amounts, in the
Gaussian model, to sending additional noise from a given
transmitter so as to jam the wire-tapper’s reception [4]. In
the achievable region (6) for the Gaussian model, we define



variables ai to define whether user 1, who has the better
channel to the wire-tapper, performs cooperative jamming
(ai = 0) or not (ai = 1). Notice that, as explained in [4],
here it is optimal for user 1 to either perform cooperative
jamming or not, without performing more general forms of
power allocation between signal and additional noise (see also
Remark 4 below).

Remark 2: The achievable rate region of Proposition 1
generally does not exhaust the secrecy capacity region, even
when restricting the setting to the MAC-WT. However, it was
shown in [3] that the sum-capacity for the degraded MAC-
WT is given by (6c) with λ1 = 1 and no cooperative jamming
(a1 = 1) for the Gaussian model, and, it can be seen similarly,
by (5c) with Q constant and Vj = Xj , for j = 1, 2, for the
discrete case. Moreover, assuming h1, h2 < 1, it was shown
in [10] that, for the Gaussian case, the region (6) is within 0.5
bits/channel use of the capacity region of the MAC-WT along
the individual rate dimensions. Another sum-capacity result of
[10] for a different Gaussian model is recalled in Remark 5.

Proof: The proof of achievability of (5) follows similarly
to [3] [4] by using a random coding argument (see also
discussion in Appendix A for related discussion). In particular,
the codewords at the two encoders are generated by first
drawing a typical time-sharing sequence qn according to
distribution p(q), which is revealed at all nodes (including the
eavesdropper), and then generating codebooks vn1 and vn2 in
the set of conditionally typical sequences with respect to dis-
tributions p(v1|q) and p(v2|q) respectively, which are used for
stochastic encoding. Stochastic encoding and randomization
via the channels p(x1|v1, q) and p(x2|v2, q) is made possible
by the available sources of randomness S1 and S2 at the two
transmitters. For the Gaussian model, starting from (5), we
set Q = i with probability λi, we select p(vj |q = i) so that
Vj , conditioned on Q = i, is Gaussian with power Pji, we
choose p(xj |vj , q = i) in (5) so that X1i = aiV1i+ āiX

0
1i and

X2i = V2i, where X 0
1i is a Gaussian variable independent of

all other variables and with power P1i. Finally, the constraint
on N for (6) follows from Theorem 2 in [12].

Proposition 2 (Achievable secrecy region for cMAC-WT):
The following secrecy rate region is achievable for the discrete
cMAC-WT

[
{(R1, R2) : R1, R2 ≥ 0

R1 ≤ I(V1;Y |V2, Q) (7a)
R1 +R2 ≤ (I(V1, V2;Y |Q) (7b)

− I(V1, V2;Z|Q))+},

where the union is taken over all joint distributions that
factorize as

p(q)p(v1, v2|q)p(x2|v2, q)p(x1|x2, v1, v2, q)p(y, z|x1, x2).

Moreover, the following rate region is achievable for the

Gaussian cMAC-WT[
{(R1, R2) : R1, R2 ≥ 0

R1 ≤
1

2

NX
i=1

λi log

µ
1 +

a1iP1i(1− ρ2i )

1 + ā1iP1i + ā2iP2i

¶
(8a)

R1 +R2 ≤
1

2

NX
i=1

λi log

µ
Ψ1(P1i, P2i, ρi, a1i, a2i)

Ψ2(P1i, P2i, a1i, a2i)

¶+
},

(8b)

with

Ψ1 =
1 + P1i + P2i + 2ρi

√
a1ia2iP1iP2i

1 + h1P1i + h2P2i + 2ρi
√
h1h2a1ia2iP1iP2i

and Ψ2 =
1 + ā1iP1i + ā2iP2i

1 + ā1ih1P1i + ā2ih2P2i
,

and where the union is taken over all choices of parameters
λi, P1i, P2i, a1i, a2i, ρi such that λi, P1i, P2i ≥ 0,

PN
i=1 λi =

1,
PN

i=1 λiPji ≤ Pj , 0 ≤ aji ≤ 1 (with definition āi =
1− ai), for j = 1, 2, and −1 ≤ ρi ≤ 1. Moreover, we can set
N ≤ 4 without loss of generality.

Proof: See Appendix A.
Remark 3: In the absence of an eavesdropper (Z = ∅), the

region (7) reduces to the capacity result for a cognitive MAC
of [13] by setting V1 = X1, V2 = X2 and Q constant. In
particular, in this case, no time-sharing is necessary since the
left-hand sides of (7) are concave in p(x1, x2|q). Moreover,
it can be seen that the rate regions of Proposition 2 include
those of Proposition 1.

Remark 4: In the Gaussian region of Proposition 2, time-
sharing is implemented as explained in Remark 1. Moreover,
parameter āji represents the fraction of power used by user
j for jamming when Q = i (see also proof in Appendix A).
Notice that in the cMAC-WT, it is not always true that users
should either jam or transmit information, so that we allow
for more general forms of power allocation (0 ≤ aji ≤ 1). We
also remark that cooperative jamming is implemented, as in
Proposition 1, by injecting independent noise at the two users.
However, in the cMAC-WT, one could potentially obtain better
performance by correlating the two jamming noises thanks to
the available common randomness S12, but this is not further
pursued here. On a related note, as explained in Appendix
A, region (8) is achieved without exploiting the "private"
randomness S1 and S2, but only the common randomness S12.
Finally, the region (8) can be proved to be attainable by simple
time-division/ frequency-division following Theorem 1 in [12].

A. Numerical Results

Consider a system in which h1 > 0 and h2 = 0, that
is, user 2 is not heard by the wire-tapper. In this case,
it is not always clear that user 2 can always benefit from
cognition, since the cognitive user is heard by the wire-
tapper due to the fact that h1 > 0. Fig. 2 shows the sum-
rate R1 + R2 obtained for the MAC-WT (no cognition) in
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Fig. 2. Sum-rate R1 + R2 obtained for the MAC-WT (no cognition) in
Proposition 1 and for the cMAC-WT in Proposition 2 for P1 = P2 = 3 or
10, versus h1, compared to the sum-rate achievable if only user 2 transmits
(R1 +R2 = R2 = 1/2 log(1 + P2), dashed line).

Proposition 1 (with N = 1 to simplify), and for the cMAC-
WT in Proposition 2, for P1 = P2 = 3 and 10, versus h1,
compared to the sum-rate achievable if only user 2 transmits
(R1 + R2 = R2 = 1/2 log(1 + P2), in dashed lines). It
can be seen that, as expected, if h1 is sufficiently large,
the maximum achievable rates with and without cognition
coincide with the rate of user 2 only, that is, cognition is
not useful. However, cognition leads to substantial sum-rate
benefits if h1 is sufficiently small and the gains are more
pronounced for low SNR P , as it is in this regime that coherent
power gains ("beamforming") are most relevant.

IV. OUTER BOUNDS AND CAPACITY RESULTS

In this section we derive a general outer bound to the
achievable rate region of the discrete cMAC-WT and obtain a
number of capacity results.

Proposition 3 (Outer bound for the discrete cMAC-WT):
The capacity region for the cMAC-WT is included in the set
of rates satisfying

R1 ≤ I(X1;Y |X2) (9a)
R1 +R2 ≤ (I(V1, V2;Y |Q)− I(V1, V2;Z|Q))+, (9b)

for some joint distribution

p(q)p(v1, v2|q)p(x1, x2|v1, v2)p(y, z|x1, x2).

Proof: Similarly to Appendix I of [6], we can obtain the
upper bound (9b), starting from the inequality R1 + R2 ≤
1/n ·H(W1,W2|Zn), which is due to the equivocation con-
straint (3), and using Fano’s inequality H(W1,W2|Y n) ≤ n�n
(with �n → 0 for n → ∞), which is due to (2). We use
the following definitions for the auxiliary random variables:
Q = (J, Y J−1, Zn

J+1), where J is a random variable inde-
pendent of any other variable and uniformly distributed in

[1, n], V1 = (J, Z
n
J+1,W1), V2 = (J, Y

J−1,W2), X1 = X1,J ,
X2 = X2,J , Y = YJ and Z = ZJ . The upper bound (9a) is a
direct consequence of the converse of a regular MAC and the
concavity of I(X1;Y |X2) in p(x1, x2).

The outer bound of Proposition 3 and the achievable region
of Proposition 2 do not match in general, but in some special
cases provide the capacity region, as shown next.

Proposition 4 (Capacity region for the less noisy discrete
cMAC-WT and degraded Gaussian cMAC-WT) For the less
noisy discrete cMAC-WT, the capacity region is given by[

{(R1, R2) : R1, R2 ≥ 0
R1 ≤ I(X1;Y |X2) (10a)

R1 +R2 ≤ (I(X1,X2;Y )− I(X1,X2;Z))
+}, (10b)

where the union is taken over all joint distributions that fac-
torize as p(x1, x2)p(y, z|x1, x2). Moreover, for the degraded
Gaussian cMAC-WT (h1 = h2 = h ≤ 1), the capacity region
is given by[
{(R1, R2) : R1, R2 ≥ 0

R1 ≤
1

2
log
¡
1 + P1(1− ρ2)

¢+ (11a)

R1 +R2 ≤
1

2
log

µ
1 + P1 + P2 + 2ρ

√
P1P2

1 + h1P1 + h2P2 + 2ρ
√
h1h2P1P2

¶+
},

(11b)

where the union is taken over all possible −1 ≤ ρ ≤ 1.
Proof: Achievability follows immediately from Proposi-

tion 2 by setting Vj = Xj and Q constant. For the converse,
the upper bound (10a) is a direct consequence of Proposition 3,
whereas the upper bound (10b) follows from Proposition 3 by
using Theorem 3 in [1]. The capacity region for the Gaussian
model follows similarly by noting that, for fixed correlation
ρ between the inputs and under the power constraints, the
two bounds (10a)-(10b) are both maximized by a Gaussian
distribution. In particular, for the sum-rate bound (10b), it is
sufficient to use the entropy power inequality similarly to [15]
to prove the claim.

For the Gaussian cMAC-WT with any h1 and h2 we can
also identify the sum-rate capacity as follows.

Proposition 5 (Sum-rate capacity for the Gaussian cMAC-
WT) The sum-rate capacity region of the Gaussian cMAC-WT
is given by

Csum = max
0≤P 0

j≤Pj
−1≤ρ≤1

1

2
log

Ã
1 + P 01 + P 02 + 2ρ

p
P 01P

0
2

1 + h1P 01 + h2P 02 + 2ρ
p
h1h2P 01P

0
2

!+
.

(12)
Proof: Achievability is given by Proposition 2 with an

appropriate choice of the parameters (see Remark 5 below).
The converse instead follows by a cut-set argument. Specifi-
cally, assume that the two transmitters can perfectly cooperate.
The model then reduces to a multiantenna wire-tap channel,
whose capacity upper bounds the sum-rate of the cMAC-WT
and is given by (12) as found in [8].



Remark 5: The results of Proposition 5 shows that, unlike
the MAC-WT [3] [4], for the sum-rate of the cMAC-WT
cooperative jamming is not useful, that is, it is optimal to set
a1i = a2i = 1 (and N = 1) in Proposition 2 (see also Remark
4). This may be interpreted in light of the results of [7] [8],
where it is shown that for a Gaussian wire-tap channel with
a multi-antenna transmitter (and possibly receivers [8]), it is
optimal to use Gaussian signalling with optimized covariance
matrix. In the cMAC-WT, due to the cooperation between the
two transmitters afforded by cognition, a similar behavior is
observed.

Remark 6 (Secrecy capacity region for the degraded
orthogonal-component Gaussian cMAC-WT) Following [10],
we can also consider the alternative Gaussian model in which
each user has an orthogonal link to the legitimate receiver, as
Y = (Y1, Y2) with

Y1 = X1 +Ny1, Y2 = X2 +Ny2, (13)

with independent unit-power Gaussian noises Ny1 and Ny2,
while the wire-tapper still receives (4b). From Proposition 2,
the following secrecy rate region is achievable

R1 ≤
1

2
log(1 + P1) (14a)

R1 +R2 ≤
1

2
log

µ
(1 + P1)(1 + P2)

1 + h1P1 + h2P2

¶+
. (14b)

Now, assume that h1 + h2 ≤ 1. It can be seen that, under
this assumption, the signal received by the eavesdropper is
(stochastically) degraded with respect to Y , since we can
equivalently write Z =

√
h1Y1+

√
h2Y2+

p
1− (h1 + h2)Ñz ,

where Ñz is unit-power Gaussian, independent of X1 and X2.
Therefore, we can exploit the capacity result of Proposition
4 to establish that (14) is the secrecy capacity region for the
model at hand when h1+h2 ≤ 1. This result is the counterpart
of the sum-capacity result in [10], where the sum-capacity
of an orthogonal-component MAC-WT is derived as (14b).
In other words, in terms of the sum-rate, cognition does not
provide any gain in this model due to the impossibility of
coherent power combining at the destination (though it may
do so for the individual rates).

V. CONCLUDING REMARKS

"Cognition", in an information-theoretic sense, can be seen
as a simple model that enables the study of the impact
of cooperation in communication networks. In this paper,
we extended the model of [3] [4], i.e., the multiple access
channel with an eavesdropper, to a scenario where cooperation
between the two sources is possible via cognition. Achievable
secrecy rates, outer bounds and secrecy capacity results for
some special cases have been derived focusing on a model
in which one of the two source knows the message of the
second in advance. Our conclusions shed light into scenarios
where cooperation is more or less effective in improving
the secrecy rates. Possible extensions of this work include
studying generalized-feedback multiple access channels with
an eavesdropper and fully assessing the impact of cooperative
jamming.

VI. APPENDIX

A. Appendix A: Proof of Proposition 2
We prove Proposition 2 for Q constant to simplify the

discussion and notation. The general result follows as dis-
cussed in the proof of Proposition 1 by conditioning on a
(typical) time-sharing sequence qn [5]. Moreover, we prove
the result for Xj = Vj , j = 1, 2, since the general result
follows similarly to, e.g., [6] [5], by substituting in the proof
below Vj to Xj and then prefixing channels p(x1|x2, v1, v2, q)
and p(x2|v2, q) (i.e., randomization). We proceed similarly
to [5] by first showing the existence of a codebook satisfy-
ing certain properties (by using random coding techniques)
and then calculating the equivocation for a specific code in
the class. Specifically, we are at first interested in showing
that there exists at least a code that: (i) satisfies (2); (ii)
guarantees at the same time that the probability of error
at the eavesdropper in detecting xn1 and xn2 , given W1,W2

vanishes as n → ∞. In other words, condition (ii) requires
that there exists a decoding function g̃n for the eavesdropper
such that Pr[g̃n(Zn,W1,W2) 6= (S12, S1, S2)] → 0, where
we recall that the codewords are generated as (1). The reason
for enforcing condition (ii) will be clear when we will evaluate
the equivocation at the eavesdropper. To prove the existence
of such a codebook, we use the following random generation.

Codebook generation: Generate 2n(R2+R
0
2) codewords

xn2 (a, b) with a ∈ [1, 2nR2 ], b ∈ [1, 2nR0
2 ] by choosing uni-

formly within the set of strongly typical sequences T (n)� (X2).
For each such sequence xn2 (a, b), generate 2n(R1+R

0
1) code-

words xn1 (a, b, c, d) with c ∈ [1, 2nR1 ], d ∈ [1, 2nR
0
1 ] by

choosing uniformly from the set of conditionally typical
sequences T (n)� (X1|xn2 (a, b)).

Encoding: Given messages W1 ∈ [1, 2nR1 ] and W2 ∈
[1, 2nR2 ] and random variables S1 ∈ [1, 2nR

0
1 ], S12 ∈

[1, 2nR
0
2 ], user 2 transmits xn2 (W2, S12) and user 1 sends

xn1 (W2, S12,W1, S1). Notice that private randomness at user
2, i.e., S2, is not used, and is therefore set to S2 = ∅. We will
see that it will be optimal to choose also R01 = 0.

Check of conditions (i) and (ii): In order for condition (i) to
be satisfied, the following rate constraints are sufficient (and
necessary) [13]

R1 +R01 ≤ I(X1;Y |X2) (15a)
R1 +R01 +R2 +R02 ≤ I(X1,X2;Y ). (15b)

Moreover, in order for (ii) to be guaranteed as well, it is
sufficient (and necessary) that

R01 ≤ I(X1;Z|X2) (16a)
R01 +R02 ≤ I(X1,X2;Z). (16b)

For reasons that will be clear below, we specifically impose

R01 +R02 = I(X1,X2;Z). (17)

Notice that (17), due to (15b), requires I(X1,X2;Z) ≤
I(X1,X2;Y ), which is assumed hereafter. Having proved
that under conditions (15) and (16), a codebook that satisfies



conditions (i) and (ii) exists, we now turn to the calculation
of the equivocation for any given code, say C, in the class
identified above (with (17)).

Equivocation: We have

H(W1,W2|Zn) = H(W1,W2)− I(W1,W2;Z
n) =

= H(W1,W2)− I(Xn
1 ,X

n
2 ;Z

n) (18)
+ I(Xn

1 ,X
n
2 ;Z

n|W1,W2),

where we have exploited the Markov chain (W1,W2) −
(Xn

1 ,X
n
2 )−Zn. Now, we consider the terms in (18) separately.

We start with

I(Xn
1 ,X

n
2 ;Z

n|W1,W2) = H(Xn
1 ,X

n
2 |W1,W2)

−H(Xn
1 ,X

n
2 |Zn,W1,W2)

≥ n(R01 +R02)− n�n,

where H(Xn
1 ,X

n
2 |W1,W2) = n(R01 + R02) follows

from the definition of the code given above, inequality
H(Xn

1 ,X
n
2 |Zn,W1,W2) ≤ n�n with �n → 0 for n → ∞

is due to Fano’s inequality and the condition (ii) satisfied by
the code. We then focus on the remaining term in (18):

I(Xn
1 ,X

n
2 ;Z

n) = H(Zn)−H(Zn|Xn
1 ,X

n
2 ). (19)

To treat the second term in (19), we observe that
H(Zn|Xn

1 ,X
n
2 ) equals

2−n(R1+R
0
1+R2+R

0
2)

X
(xn1 ,x

n
2 )∈C

H(Zn|Xn
1 = xn1 ,X

n
2 = xn2 ),

which is in turn equal to (see also [5]):X
(xn1 ,x

n
2 )∈C

X
x1∈X1,
x2∈X2

N(x1, x2|xn1 , xn2 ) ·H(Z|X1 = x1,X2 = x2) ≥

X
(xn1 ,x

n
2 )∈C

X
x1∈X1,
x2∈X2

(p(x1, x2)− �1) ·H(Z|X1 = x1,X2 = x2) =

H(Z|X1,X2)− �2,

where the first equality follows from the definition of
N(a, b|xn1 , xn2 ) as the joint type of sequences (xn1 , xn2 ), and
the inequality in the second line follows from the code
construction and the definition of jointly typical sequences.
We look now at the first term in (19). We have (see also [5])

H(Zn) = H(Zn) +H(Ẑn|Zn)

= H(Ẑn) +H(Zn|Ẑn),

having defined the sequence Ẑn as the function of Zn:
ẑn = zn if zn ∈ T

(n)
� (Z) and ẑn arbitrary otherwise. It

follows that H(Zn) ≤ log |T (n)� (Z)|+n�0n ≤ H(Z)+�+n�0n,
where we have used Fano’s inequality H(Zn|Ẑn) ≤ 1 +
n log |Z|Pr[Ẑn 6= Zn] = n�0n, with �0n → 0 for n→∞, since
we have Pr[Ẑn 6= Zn] → 0 by the conditional Asymptotic
Equipartition Property (AEP). As a result of the inequalities

derived above, recalling (17) and neglecting the o(n) and of
the order of � terms, we have from (18)

H(W1,W2|Zn) ≥ H(W1,W2)− nI(X1,X2;Z) + n(R01 +R02)

= H(W1,W2),

which shows that the desired equivocation condition (3) is
satisfied.

The proof is concluded by noting that the rate region from
(15), (16a) and (17) is given by (eliminating R02)

R1 ≤ I(X1;Y |X2)−R01 (20a)
R1 +R2 ≤ I(X1,X2;Y )− I(X1,X2;Z) (20b)

with R01 ≤ I(X1;Z|X2), which is maximized for R01 = 0.
For the Gaussian case, we evaluate (7) with Pr[Q = i] = λi,

p(v1, v2|Q = i) = N
µ
0,

∙
P1i ρi

√
P1iP2i

ρi
√
P1iP2i P1i

¸¶
and

Xji = ajiVji + ājiX
0
ji with X 0

ji being a Gaussian variable
independent of all other variables and with power Pji. The
constraint on N follows from Theorem 2 in [12].
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