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Abstract 

We consider noncoherent multiuser detection techniques 
for a system with users employing nonlinear modulation us- 
ing non-orthogonal signals. Our aim is to investigate near- 
optimum noncoherent multiuser detection techniques that 
utilize the structure of the received signuls while retaining 
reasonable complexity. We explore detectors that are de- 
rived using nonlinear programming approximations of the 
maximum likelihood multiuser detector as well as soft in- 
terference cancellers. We also propose a class of detectors 
called the partial detectors which improve the perfomnce  
of the decorrelator and MMSE type detectors. We evaluate 
the proposed detectors’ performunce to provide numerical 
comparisons. 

I. Introduction 

Noncoherent detection is often necessary for systems for 
which the phase estimation is difficult due to rapid changes 
in the channel conditions [5].  Nonlinear M-ary modulation 
in a multiuser setting and coherent and noncoherent mul- 
tiuser detection techniques for such systems have also be- 
come popular recently, using orthogonal or non-orthogonal 
(correlated) pulses to transmit different messages of the dif- 
ferent users [7,9]. 

The non-orthogonal multipulse modulation for a mul- 
tiuser system is investigated in [7] where each user chooses 
one of several waveforms to send a message. When cor- 
related waveforms are used to transmit the messages of 
the users, multiuser interference issues arise since the re- 
ceiver observes the superposition of all users’ transmis- 
sions. Similar to its coherent, linear modulation counter- 
part [8], the maximum likelihood (ML) detector that esti- 
mates all users’ messages jointly for noncoherent commu- 
nications with nonlinear modulation, has high complexity. 
References [7,2] propose several less complex noncoherent 
multiuser receivers that consist of a decorrelating or a mini- 

mum mean squared error (h4MSE) pre-filter for interference 
suppression followed by a non-coherent decision device that 
estimates the message sent by each user. These detectors 
will henceforth be referred to as the full detectors to distin- 
guish them from the partial detectors proposed in this paper. 

The transmitted signals in the non-orthogonal multipulse 
modulation scheme have a special structure, and in this 
paper, we investigate the effect of incorporating this spe- 
cial structure into the detection algorithms for noncoherent 
nonlinear multiuser communications. Our efforts can be 
broadly classified in three categories: constrained optimiza- 
tion, soft interference cancellation, and partial detection. 

The constrained detectors use nonlinear programming 
approximations of the ML multiuser detector @re-filter) 
[IO]. Several SIC (Soft Interference Cancellation) detec- 
tors are also investigated, some of which yield better perfor- 
mance than the full detectors in the near-far scenario. The 
partial detectors proposed in this paper also use the struc- 
ture of the signal and yield improved performance over the 
full detectors. We evaluate the performance of all the pro- 
posed detectors and compare the results obtained. We also 
compare our results with those of [2]. 

2. System Model 

We consider a synchronous CDMA system with process- 
ing gain N, K active users, and a signaling scheme where 
each user transmits one of M signals. A discrete-time model 
can be obtained by projecting the received signal onto an 
N-dimensional orthonormal basis. Using the pseudo-linear 
representation introduced in [71, we view the signal space as 
being an expanded signal space spanned by the MK signals, 
M messages for each of the K users. We concentrate on 
cases where the possible waveforms for all messages of all 
the users are linearly independent. The channel is assumed 
to be AWGN, and the receiver observes a superposition of 
the K signals. 

Let mk be the desired message of the kth user. We define 
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the vector b k  = [bkJ  + - bk,MIT E F ,  where 

1 m = m k  { 0 otherwise b k , m  = 

and F = ( [ l o  0lT, ...,[ 0 O 1 l T } .  The N x l  
vector S k m  represents the kth user's signature correspond- 
ing to message m. The N x M  signature matrix of the 

&m represent the amplitude and phase of user k asso- 
ciated with message m; A k  = diag[Akl,. . . , &M] and 
*k = diag[&l,. . . , ej+kM) are M x M  diagonal matrices 
representing the amplitudes and phases of all the M mes- 
sages of user I%. The phases are assumed to be independent 
and uniformly distributed over [0,27r]. The received vector 
at the output of the bank of matched filters can be written as 

A kth User iS denoted s k  = [ski . - . S ~ M ] ;  A k m  and 

A 

A 

K 
r = x S k A k ' P . k b k  + n (1) 

k = l  

where n is the AWGN vector. Further, r can be expressed 
in terms of the M K x l  vector b = [b:. . bf;lT, the 
N ~ M K  matrix s e [SI. + - SKI, the M K X M K  matrices 

A A A = diag[AI,. . . , AK] and @ = diag[4h,. . . , *K] as 
r = S A + b + n  (2) 

Thevectorb E F w h e r e F  = F x F x  ... xF. Theaim 
of the multiuser detector is to recover the message vector b. 
The ML estimate of b given r, and known A and @, is the 
solution to the optimum multiuser detector [81. The estimate 
may be written as 

b = argmin IIr - SA+bl12 
b€F 

(3) 

Note that (3) describes the coherent detector since it assumes 
the knowledge of 3. 

3. Noncoherent Multiuser Detection 

Consider the case where the amplitudes, A ,  are known 
at the receiver as in (3), but both + and b are unknown. In 
this case, we can estimate them jointly as x = *b, and the 
corresponding detector will be referred to as the Jointly Op- 
timum Detector. If we define the set G as 

G = { [e++1 o -.  . o ] ~ , .  . . , [O . . o e - 7 4 ~ 1 ~ )  (4) 

then, x E 8, where 0 = G x G x  . . . xG. The jointly opti- 
mal estimate f is the solution to 

minimize Ilr - SAxIl2 
subject to X € G  (5 )  

The implementation of this detector requires an exhaustive 
search. For a given b, let the vector 4 = [ej+l . &'KIT 
represent the phases corresponding to the K non-zero en- 
tries of b. Then, in terms of f(rlb, 4) the conditional PDF 
of r, the joint ML estimate of b and is 

(bl 6) = argmaxmaxf(r)b, 4) (6) b 4  
Since each of the elements of 9 lie on a unit circle, the in- 
ner maximization in (6) above is over a non-convex set and 
hence there is no guarantee of finding the global minimum. 
However, if we relax the constraints and allow each of the 
elements of q5 to lie within the unit circle, then the set is con- 
vex. This detector will be referred to as the Joint Detector. 

Next consider the decorrelative and the MMSE detectors. 
Let 

y = S H r  = RAX+ S H n  (7) 

The decorrelative detector consists of two stages. The first 
stage implements the decorrelative pre-filter [7] as follows 

a = (RA)-'Y = x + (RA)-'SHn (8) 

In the second stage, to obtain an estimate fhk of the kth 
user's message, the Maximum Magnitude (MM) rule is ap- 
plied as suggested in [2,3], where 

(9) 

The MMSE pre-filter on the other hand, applies the matrix 
transformation C H  to the output of the matched filters r [2]. 
It minimizes the mean-squarederror E IICHr - xll'], and 
the solution is 

[ 
c = H - ~ S A E  (10) 

where H = E[rrH] = SAEASN + a 2 1 ~  and E = 
E[xxH] = (~/M)IMK. where I, is the identity matrix of 
dimension n. The estimate of the desired vector x is ob- 
tained as f = C H r ,  and is sub-optimally decoupled in order 
to yield statistics kk for the kth user, where %k = Cfr and 
c k  = H - l S k A k E k .  The estimate of the kth user's mes- 
sage is then obtained by applying the MM rule to the vector 
x k  * 

4. Constrained Noncoherent Multiuser Detec- 
tion 

Due to the high complexity associated with the ML detec- 
tor, approximations are obtained by solving an easier prob- 
lem. The easier problem is a relaxation of the original prob- 
lem and can be solved efficiently. In this section, an effort 
is made to incorporate the structure of the signals into the 
relaxation to try and improve performance. 
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Since x k  E G, X F X ~  = 1 for all k. We will call this 
constraint a local constraint and explore its relaxation. Also, 
since x E Q, X*X = K. This constraint will be termed 
a global constraint, and its relaxation will also be explored. 
Note that the constraints are not representative of the com- 
plete structure of the signal since there are other vectors that 
satisfy the constraints but are not in the feasible set of trans- 
mitted signals. For example, Xk = [1/JM,. . . , 1/Jli?IT 
satisfies xfxk = 1. but does not belong to G. 
0 Local constraint 

This is the first constrained optimization problem we in- 
vestigate as an approximation to the on inal ML problem. 
Since the objective function Ilr - SAX11 is convex in x, it 
has a global minimum. However, the constraint xfxk = 1 
is not a convex set and hence there is no guarantee that the 
global minimum will be found. If we relax this constraint to 
be xfxk 5 1, which represents the interior of a unit sphere, 
we are guaranteed to find the global minimum. We can then 
use nonlinear programming techniques [ 11 to find this opti- 
mum value. The estimate x is the solution to 

Q 

minimize Ilr - S A X ~ I ~  
subject to ll~k11~ 5 1 k = 1,. . . , K (11) 

followed by the MM rule to obtain m k .  

0 Global Constraint 
The constraint xHx = K is also non-convex thus if we 

relax it to be the convex set xHx 5 K, we are guaranteed 
to find the global optimum. The estimate xis the solution to 
the foIlowing optimization problem 

minimize Ilr - S f W l 2  
subject to llX1l2 5 K (12) 

The convex set llx112 5 K may be thought of as the interior 
of a sphere of radius a. The MM rule is applied to kk to 
obtain %k as in (9) above. It can also be shown that the so- 
lution to the optimization problem in (12) results in exactly 
the same Generalized MMSE detector as derived in [ 11,101. 
Hence, the relaxation in (12) can be'termed as the general- 
ized MMSE solution. 

5. Soft Interference Cancellation (SIC) 

In contrast to the optimum multiuser detector, suboptimal 
multistage detectors have a relatively lower complexity [6]. 
This section explores different noncoherent realizations of 
the decision directed, nonlinear detectors proposed in [4,6]. 
All the implementations here use the decorrelator output in 
the first stage to obtain sufficient statistics, followed by mul- 
tiple stages of processing of these sufficient statistics. The 
goal once again is to obtain k. To obtain an estimate for the 
current user's message, soft estimates are used to reconstruct 

the interference and are then subtracted off from the desired 
user's matched filter output. Since the high energy users are 
successfully cancelled in the subsequent stages, these detec- 
tors perform very well in near-far scenarios. 
0 serial SIC 

In this detector, each element of x is found iteratively us- 
ing the Gauss-Seidel iteration [l]. In the first step, at the 
[TI + 1Jst stage, the kth user's ith element is determined as 
follows 

za[. + 11 = 

All the M entries of user k are thus iteratively determined, 
and then, in the second step, the entry with the maximum 
magnitude is selected as 

This vector estimate is then used by the (k+ 1)st user in (13) 
above for estimating its vector, and so on: 
0 clippea SIC 

The first step is exactly the same as in (13) above. In the 
second step, we incorporate the relaxed constraint Izil 5 1 
by clipping in accordance with the following rule: 

0 Parallel SIC 

step, we estimate all the elements of xk in parallel as 
Here, instead of estimating each element of xk in the first 

Xk[.+ 11 = 

+ 
j=1 j=k+l 

where Rkj and Ak are M x M block matrices. In the sec- 
ond step, the users' messages are obtained by using the same 
mapping as in (5).  

6. Partial Decorrelator 

Let the output of the full decorrelator [7] be 

z = (R.A)-'y = x + (RA)-'SHn (14) 

To obtain an estimate of each element xk, of x, decor- 
relation is performed not only against all the other users' 
M ( K  - 1) signals, but also against the desired user's M - 1 
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signals. Due to the total decorrelation strategy, this detector 
will be referred to as thefill decorrelator. 

It is interesting to note that in the full decorrelator, the de- 
sired user decorrelates against its other M - l possible sig- 
nals as well, even though we know that of the M possible 
signals of the desired user, only one signal was sent. Hence, 
there is no need for the desired user to decorrelate against 
its other M - 1 signals. In the proposed partial decorre- 
lation scheme, decorrelation is performed only against the 
interferers’ signals to obtain &,. First, the vector ykm is 
constructed which only contains ykm and the M(K - 1) en- 
tries of y belonging to the interferers. Similarly, the partial 
signature set Qkm consists of the kth user’s signature corre- 
sponding to message m, and the M(K - 1) signatures cor- 
responding to all the interferers’ signals. The matrix A k m  
may be interpreted in a similar manner. The following steps 
implement the partial decorrelator. 

Bkm = ’ ( R k m A k m ) - l y k m  

= Zkm + (Rk,Ak,) - lSkH,n (15) 

The first entry of Srkm is equal to 2km.  We perform the above 
partial decorrelative steps for all the messages of user I C ,  and 
finally obtain = (&I,. . . , & M ) ~ .  Then, the h4M rule 
is applied to ftk to obtain 7jlk. The partial MMSE detector 
is obtained in a similar way. Note that if a particular user’s 
signatures (associated with the M messages) are mutually 
orthogonal, then the partial and full detectors are identical. 

7. Numerical Results and Discussions 

In all our simulations, we used the same random signa- 
ture set that was used in [2]. The signatures are linearly in- 
dependent and hence the inverse of the cross-correlation ma- 
trix R exists. User l is assumed to be the desired user, and in 
all the figures, P, represents the Probability of Symbol Error 
of user 1. In all the simulations, the number of users K = 2, 
the number of messages per user M = 4, and the processing 
gain N = 20. 

Figure 1 plots P, versus the SNR of all the users (includ- 
ing the desired user) for the different detectors studied in this 
section. The local and global constrained detectors perform 
very close to the MMSE detector. This could be attributed 
to theresemblance of the analytical solutions (of constrained 
optimization problems) to the generalized MMSE solution. 
Figure 2 plots the Ps of the desired user versus the S N R  of 
the interferer in a near-far scenario. 

Figure 3 compares the performance of the different SIC’S 
proposed in this paper to the full decorrelative and MMSE 
detectors. In all the SICS, a decorrelative first stage was 
used followed by two more stages of processing of sufficient 
statistics. It is interesting to note that the MMSE detector 
does not converge to the decorrelator in the high interferer 

power region in contrast with multiuser systems that employ 
linear modulation, e.g., BPSK. This is a direct consequence 
of the fact that, in the near-far situation, the powers of the 
interferers are high compared to the powers associated with 
all possible messages of the desired user, and that the full 
detectors take the undesired M - 1 messages of the desired 
user (with relatively low powers) as well all interferers sig- 
nals (with high powers) into account in decoding the desired 
user’s message. As a result, the MMSE detector does not 
zero-force the contributions of the M - 1 undesired mes- 
sages of the desired user as the decorrelator does. Hence 
the difference in the two in the near-far scenarios. However, 
this problem does not arise in the partial detectors, and the 
MMSE and decorrelator do converge in the near-far situa- 
tions. 

Figure 4 compares the performance of the partial and full 
detectors. The partial detectors consistently outperform the 
full detectors at all values of SNR, and at P, = the 
gap between them is around 1 dB. Blind, adaptive imple- 
mentations of the partial detectors are also currently under 
investigation. 
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Figure 1. Comparison of various Noncoherent 
Detectors 
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Figure 2. Comparison in the Near-Far sce- 
nario. Desired user's SNR= 10dB. 
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Figure 3. Comparison of SICS in Near-Far sce- 
nario. Desired user's SNR= 10dB. 
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Figure 4. Comparison of the Partial and Full 
detectors. 
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