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Abstract—Collaborative algorithms are needed to improve
the reliability of spectrum sensing in a network of cognitive
radios (CRs). This work studies a consensus based approach
to sharing spectral measurements between a multihop network
of CRs. Specifically, the impact of link errors are incorporated
in determining the convergence behavior of consensus based
spectrum sensing. Results show that as the number of message
exchanges increases, the convergence time and the deviation
of the convergence value increase. Hierarchical consensus, a
modification to the original consensus algorithm, is proposed to
reduce the number of message exchanges while still obtaining
the collaborative gains of shared spectrum sensing.

I. INTRODUCTION
Cognitive radios [1], [2] utilize bandwidth resources based

on the spectrum utilization of authorized or primary users of
spectral bands. These agile radios can autonomously detect
the radio environment and exploit instances of primary user
inactivity to dynamically communicate with each other. The
result is improved spectrum utilization, a promise that has
fueled much recent research in this area.
A primary task of CRs is to therefore scan a wide range

of frequencies and to identify those spectral bands currently
unused by primary users. A great challenge in this task lies
in the uncertainty of measurements made over the wireless
channel. For example, the link between a CR and a primary
user may be in a deep fade and can result in an erroneous (and
potentially detrimental) decision that the primary user is ab-
sent. To overcome this unreliability, local CRs can collaborate
in making spectrum decisions [3] [4].
The basic premise of cooperative spectrum sensing is that

local CRs share their measurements (e.g., received power)
with each other and use the improved reliability of their
collective data to detect and estimate signal features of primary
users. When a centralized entity (e.g., a fusion center) is
present, it can collect data from all local CRs over an ap-
propriate side channel and make spectrum decisions/estimates
based on global spectral information; it can then broadcast
these conclusions to all CRs. More practically, since CRs
are self-organized, distributed cooperative spectrum sensing
algorithms are needed to improve the reliability of the sensing
process. One such cooperative scheme is based on consensus

[5] [6], where CRs exchange measured data with their neigh-
bors and then update their decisions according to a consensus
rule till a prescribed convergence criterion is met.
Although cooperation is desirable to overcome unreliability

of the wireless channel, cooperation also requires CRs to
exchange spectral measurements over this same inherently
unreliable media. That is, when any message (e.g., measured
spectral data) is exchanged over a wireless channel, the com-
munication link, and therefore the received message, may be in
error. In case of the consensus based spectrum sensing scheme,
such link errors add disturbance to the messages transmitted
between CRs during data exchange. Since measured spectral
data may be exchanged in error during each iteration of the
consensus algorithm, convergence will be harder to achieve
and convergence time may increase dramatically. A contribu-
tion of this paper is to quantify how the convergence time of
the consensus based spectrum sensing scheme is impacted by
such link errors over wireless channels.
Since the link errors are directly related to the number of

message exchanges, the number of collaborative nodes must
be limited to reduce the number of link errors. Therefore, we
propose a hierarchical consensus algorithm to alleviate the
effect of link errors. In this scheme, CRs are first grouped
into clusters and achieve in-cluster consensus. Then cluster
heads exchange data and run the consensus algorithm to reach
final agreement on spectrum usage. In this way, the number
of CRs involved in the consensus process is reduced and the
convergence time can be reduced dramatically.
The paper is organized as follows: Consensus algorithm is

presented and reviewed in Section II. The effect of link errors
on the performance of the consensus algorithm is analyzed
in Section III. Numerical results are presented in Section IV,
where we also introduce and present results for the hierarchical
consensus based scheme. Conclusions are made in Section V.

II. COLLABORATIVE CONSENSUS ALGORITHM
There are N cognitive radios distributed in a geographic re-

gionR which contains one local spectrum band of interest. We
assume theN CRs (denoted as set S) have access to a common
control channel over which they can communicate limited
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information to each other. Further, all CRs are connected either
directly or indirectly via multi-hops. In the following, we
simplify our discussion to examine consensus based spectrum
sensing for detecting the presence of a primary user in a
given spectrum band. Extensions to more complex signal
feature estimations of primary users over large spectral bands
(i.e., multiband sensing) are straightforward. Furthermore, we
assume throughout this work that the primary user status is
static for the time period under consideration.
CRs make decisions regarding the presence/absence of the

primary user based on some statistics y (e.g., signal strength).
Since individual sensing is unreliable due to the uncertainty
in the wireless channel, collaboration among CRs is desired
to improve the sensing process. The consensus algorithm
[5] [6] can be used to achieve agreement among multiple
agents in a distributed manner; the result is an agreement that
reduces uncertainties of individual observations. We import
the consensus approach here to help CRs cooperate with
each other and achieve more reliable spectrum sensing. In the
following, we give a brief review of the general consensus
approach and its known convergence properties (in the absence
of link errors).
The consensus algorithm has the following steps:
1) Initialization: CRs collect signal strength y(0);
2) Iteration: CRs exchange message with their neighbors.

The data at each individual CR is then updated according to
the following rule

y(t) = Ay(t − 1) = Aty(0) (1)

where y(t) is the message vector at iteration t; A is the
updating matrix which can be derived based on a desired
convergence property. For example, A must be a doubly
stochastic matrix to achieve average consensus [5]. Average
consensus ensures that upon convergence each node’s agreed
message is the average of the initial measurements made by
each individual node. In the following, we study consensus
assuming this average consensus rule is applied at each CR.
3) Convergence: Step 2 is repeated until y(t) meets a

prescribed convergence criterion. In the following description,
we detail an example of a practical convergence requirement.
To review the convergence properties of the algorithm given

above (and assuming no link errors), we first decompose the
matrix A using its spectral form [7] as

A =
N∑

i=1

λiuiu′
i (2)

where ui is unit length column eigenvector of matrix A
corresponding to eigenvalue λi, which satisfies

Aui = λiui, ||ui||2 = u′
iui = 1. (3)

Since the adjacency matrix A is doubly stochastic (i.e.,
assuming the average consensus rule is applied), it has a
unique largest eigenvalue of value 1 and the corresponding
eigenvector is u1 = 1/

√
N [5]. The rest of the eigenvalues

λi, i = 2, . . . , N are strictly less than 1. Therefore, the
consensus algorithm converges to

y∗ =
1
N

N∑
i=1

yi(0), (4)

that is, average consensus is achieved among the initial obser-
vations and the variance of this agreed observation is

Var[y∗] =
1
N

Var[y]. (5)

Above equation shows that the uncertainty of the final
decision is reduced by a factor ofN compared to the individual
measurement, i.e., the sensing reliability is improved. This
reduction by the factor of N is the collaboration gain from
the consensus algorithm.
For practical implementation, the consensus algorithm stops

when the disagreement ||e(t)|| between the message vector
and the convergence value is below some level ε. The conver-
gence time Tc can be derived in the following way,

e(t) = y(t) − y∗1

=
N∑

i=2

λt
iuiu′

ie(0)

≈ λt
2u2u′

2n

where the approximation step comes from λt
2 � λt

j , j =
3, ..., N and n is the initial disturbance vector to the mea-
surements made over the wireless channel, i.e., the effect of
unreliable spectral measurements.
Assuming that item u2i are i.i.d., we obtain E[u2

2i] = 1/N
from equation (3). Then, the expectation of ||e(t)||2 can be
computed as

E[||e(t)||2] = λ2t
2

N∑
i=1

N∑
j=1

E[u2
2i]E[u2

2j ]E[n2]

≈ λ2t
2 σ2 (6)

where σ2 is the variance of the initial measurement.
From the stopping criterion E[||e(t)||] ≤ ε, the convergence

time Tc of the consensus algorithm can be calculated as

Tc =
log(σ/ε)
log(1/λ2)

. (7)

From equation (6) and (7), we see that the nature of the
consensus algorithm is to drive the disagreement among CRs
to zero through consensus updates.

III. CONSENSUS ALGORITHM WITH LINK ERRORS
In the discussion above, we assume the consensus algorithm

operates on data exchanges over error free communication
channels. However, in practice, the wireless channel experi-
ences fading and introduces errors to exchanged messages.
We investigate here the impact of such link errors on the
convergence rate of the average consensus approach.
Link Error Model: As the reliability of the wireless channel

is unpredictable, not every link introduces error. For this
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reason, we assume link errors occur with probability p (i.e.,
messages are exchanged error free with probability 1 − p);
and when there are errors, we assume they are Gaussian
in nature. The Gaussian error model can be justified by
the different protection levels applied to message, e.g., the
most significant bits of a message have much lower error
probability than the least significant bits. In such a way, when
an error occurs, a message is more likely to shift to its closer
neighboring messages than those faraway messages (in terms
of disturbance). To ease analysis, we model such disturbance
as Gaussian random variable.
Mathematically, we assume the link error, denoted as Z, has

the following distribution

Z =
{

0, with prob 1 − p
N (0, σ2

l ), with prob p
, (8)

where σ2
l is the variance of link errors. Therefore, at time t,

the message after exchange can be written as

y′(t) = y(t − 1) + z(t) (9)

where y(t−1) is the message sent out by CR i at time t (i.e.,
message after update at time t − 1); y′(t) is the message1
received by its neighboring CRs at time t; z(t) is the error
vector such that each element is independent and distributed
as Z.
With link errors, the message vector at time t after consen-

sus update can be obtained by substituting equation (9) into
equation (1). The updating rule for consensus algorithm with
link errors can be written as

y(t) = Aty(0) +
t∑

k=1

At+1−kz(k) (10)

= r(t) + w(t)

where r(t) corresponds to the conventional consensus iteration
without link errors; and w(t) corresponds to the accumulated
link errors up to time t.
For y(t) to converge, both r(t) and w(t) must converge.

The first item is the conventional consensus algorithm and it
is guaranteed to converge according to the analysis of previous
section. Thus, the convergence property is largely determined
by the accumulated link errors w(t). The following questions
must be answered:

• Will y(t) converge?
• How do we define a practical convergence criteria when
link errors may be present?

• What is the convergence rate?
Unlike the error-free consensus algorithm in which the

disagreement between nodes diminishes to zero as the iteration
process evolves, the link errors (if and when they occur) will
constantly add disturbance during message exchange and as a
result the overall disagreement will not diminish. That is, y(t)

1Though in reality, it is likely that nodes experience different error, we
assume that the receiving nodes experience the same error. This simple model
will greatly ease subsequent analysis and provides valuable insight on how
link errors affect the consensus algorithm.

does not converge from equation (10) as t goes to∞. For this
reason, we must define practical convergence carefully.
First, we define a random vector v(t) which represents the

disagreement between message y(t) and its average, e.g.,

v(t) = y(t) − y∗1 (11)

where y∗ is the average value of message vector at time t

y∗ = r∗ + w∗ =
1
N

1′y(0) +
t∑

k=1

(
1
N

1′z(k)
)

where r∗ and w∗ represent the average of the original obser-
vations and the accumulated link errors up to time t.
Thus, v(t) can be written as

v(t) = r(t) − r∗1 + w(t) − w∗1
≈ w(t) − w∗1 (12)

where the approximation comes from the fact that the con-
vergence time with link errors is longer than the conventional
error-free consensus algorithm. For this reason, we assume the
disagreement r(t) − r∗1 is negligible compared to the item
w(t) − w∗1.
Therefore, the disagreement vector v(t) can be written as

v(t) =
t∑

k=1

(
N∑

i=2

λt+1−k
i uiu′

iz(k)

)

≈
t∑

k=1

λt+1−k
2 u2u′

2z(k). (13)

Now, we can define the convergence criterion as the first
occurrence when ||v(t)|| is below level ε, i.e.,

T = min{t : ||v(t)|| ≤ ε, ||v(l)|| > ε, l = 1, .., t − 1}. (14)

From the above definition, we see that T is determined by
the distribution of v(t), which is in turn determined by the
link errors.
We compute ||v(t)||2 in the following way, and obtain

||v(t)||2 =
t∑

k=1

λ
2(t+1−k)
2

⎛
⎝ N∑

i=1

u2
2i

N∑
j=1

u2
2jz

2
kj

⎞
⎠

≈
t∑

k=1

λ
2(t+1−k)
2

⎛
⎝ 1

N

N∑
j=1

z2
kj

⎞
⎠ (15)

where we approximate u2
2i = 1/N ; and zkj represents the link

error j at time k, i.e., it is the j-th element of the vector z(k).
Let the random variable X represent the effect of link errors

during any one iteration, i.e.,

X =
1
N

N∑
j=1

z2
j . (16)

Since Z is Gaussian distributed with probability p, the
characteristic function of Z2 can be computed as

ϕZ2(v) = 1 − p +
p√

1 − 2ivσ2
l

.
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Then, the characteristic function of X can be computed as

ϕX(v) =

(
1 − p +

p√
1 − 2ivσ2

l /N

)N

. (17)

From the characteristic function, we can obtain the distrib-
ution fX(x) of X with the following computation

fX(v) =
1
2π

∫ ∞

−∞
e−ivxϕX(v)dv. (18)

Now, define random variable Wt = ||v(t)||2 as the accu-
mulated link error up to time t, which can be written as

Wt =
t∑

k=1

λ
2(t+1−k)
2 Xk. (19)

We see that the accumulated link error is an exponential
sum of link errors during each iteration. It puts more weight on
recent errors and gradually forgets old errors. The distribution
of Wt can be derived from the distribution of X through the
characteristic function method, i.e.,

ϕWt
(v) =

t∏
k=1

ϕX(λ2(t+1−k)
2 v). (20)

Therefore, we can obtain the distribution fWt(w) as

fWt
(w) =

1
2π

∫ ∞

−∞
e−ivwϕWt

(v)dv. (21)

Once we have obtained the distribution fWt
(w), we can

compute the distribution of convergence time T in the follow-
ing way. First, notice that Wt can be written as

Wt = λ2
2Wt−1 + λ2

2Xt, (22)

thus, Wt is a Markov process and has the conditional inde-
pendence property, i.e.,

Pr[Wt|W1, . . . , Wt−1] = Pr[Wt|Wt−1]. (23)

Based on the distribution of W1,W2, . . ., we can write the
distribution of convergence time T as

Pr[T = t] = Pr[Wt ≤ ε2,Wk > ε2, k = 1, . . . , t − 1]

= Pt ·
t−1∏
k=2

(1 − Pk) · Pr[W1 > ε2] (24)

where Pt is the probability of convergence at time t given
failure of convergence at time t − 1, which is computed as

Pt = Pr[Wt ≤ ε2|Wt−1 > ε2] (25)

=
∫ ε2

λ2
2

wt−1=ε2
FX

(
ε2

λ2
2

− wt−1

)
fWt−1(wt−1)dwt−1

where FX(x) is the CDF defined in equation (18).
From equation (24), we can rewrite Pr[T = t] in an iterative

manner, which is

Pr[T = t] =
Pt

Pt−1
(1 − Pt−1)Pr[T = t − 1]. (26)

Finally, the distribution of Pr[T = t] can be calculated
iteratively with the initial distribution Pr[T = 1] as

Pr[T = 1] = Pr[W1 ≤ ε2] = FX

(
ε2

λ2
2

)
. (27)

Though we cannot obtain a closed-form formula for the
distribution of T , we have the following observations:

• The higher the link error probability p is, the more errors
are introduced, thus the longer the convergence time is;

• The larger the number of cooperating CRs N is, the
more link errors occur during message exchange, thus
the longer the convergence time is; and

• The poorer the CRs’ connectivity is, the larger λ2 is, and
the larger the variable Wt is in equation (19), thus the
longer the convergence time is.

IV. SIMULATION RESULTS
In this section, we give simulation results for the consensus

algorithm with communication link errors. CRs are uniformly
distributed in a square region of side length of 1km. The
transmit powers of the CRs are set so that the average number
of neighboring nodes (per CR) is half the total number of CRs
in the network. We assume the primary user is located faraway
from the CRs and is thus roughly the same distance from each
of the CRs. We therefore assume the CRs obtain Gaussian
distributed power measurements (due to slow fading) from this
primary user. The deviation of signal strength measurements
is σ = 1 and the deviation of link errors is σl = 0.5. The
convergence criterion is defined in equation (14) and ε = 0.05.
Fig. 1 plots the average convergence time for consensus al-

gorithm with link errors as a function of link error probability.
The number of cooperating CRs are 20 and 40 respectively.
For relatively reliable links, i.e., for error probability below
0.1, the increase in convergence time is moderate. However
as p increases, convergence is more difficult to obtain since
high probability of link errors disturb the message exchange
process. As a result, the convergence time increases much
faster when the error probability increases.
The practical convergence criterion used here requires a

relatively small number of link errors for fast convergence.
As the number of cooperating nodes increase, likelihood of
errors increases during each iteration. The convergence time
subsequently increases as well. For example, with an error
probability of 0.2, it takes almost 10 times as many iterations
for a network of 40 nodes to converge as compared to a
network of 20 nodes. This sharp increase in convergence time
motivates us to search for modifications to the consensus
scheme so that even large networks can expect reasonable
convergence time.
In Fig. 2, we show how closely the consensus algorithm

achieves average consensus under link errors. Specifically, we
plot the standard deviation (to the average consensus value) as
a function of the link error probability p. Not surprisingly, as
the link error probability increases, the deviation increases.
As the error probability increases, more errors disturb the
data exchange process; furthermore, the convergence time
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increases which in turn introduces additional rounds of such
disturbances. The overall effect is a larger deviation to the
true average value. However, we note here that when the error
probability is zero or small, the convergent value is closer to
the true average when there are more nodes in the network,
i.e., when there are 40 nodes versus when there are 20 nodes.
This is due to the collaboration gain offered by a larger number
of nodes to the initial disturbance, i.e., the unreliability in the
initial data measurements. However, as the error probability
increases, the number of message exchanges (and thus, the
number of disturbances) increases more dramatically in a
larger network and results in a larger deviation.
Based on our above observations, we propose a hierarchical

consensus algorithm. The motivation is to reduce the number
of nodes involved in the consensus process (thereby reducing
the number of message exchanges) while still including data
observed by each CR in the network. In this scheme, CRs are
grouped into clusters and each cluster is assigned a cluster
head. Each CR is assumed to be one hop from its cluster head
and therefore directly communicates its observed data to its
associated cluster head. The cluster heads then exchange data
with each other using the standard consensus approach.
As opposed to the flat consensus algorithm described earlier,

only a small fraction of CRs (cluster heads) participate in the
iterative consensus procedure. However, the data exchanged
by these cluster heads incorporates all data within its cluster,
i.e., all nodes contribute to all over agreement result. Since
the number of links involved in the consensus algorithm is
reduced, fewer disturbances are introduced. Thus, link errors
have less effect on convergence and the convergence time is
reduced.
To demonstrate the gains offered by hierarchical consensus,

we offer the following sample results: In a network of 40
nodes, we assume that every two nodes form a cluster. That
is, there are 20 clusters in the network. In this case, for a link
error of 0.2, the number of iterations needed for convergence
is observed to be 95. This is roughly the convergence time
we observed for flat consensus in a network of 20 CRs.
Furthermore, the deviation to the true average value is reduced
by a factor of 2. We also note that if more CRs are allowed
in each cluster, further reduction in convergence time can
be obtained. Thus, we conclude that hierarchical consensus
has the potential to reduce convergence time and perhaps
improve deviation dramatically. For this reason, we aim to
study properties of hierarchical consensus in future work.

V. CONCLUSION

In this work, we apply the consensus algorithm to a network
of CRs to improve the spectrum sensing process. Specifically,
we consider the impact of link errors on the convergence
behavior of the consensus algorithm. The convergence time
and error in convergence (to the true average value) increases
as the number of message exchanges increases. As a result,
networks with larger number of nodes or higher link error
probabilities have larger convergence time and more deviation.
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Fig. 1. Average convergence time of consensus algorithm with link errors
as a function of probability of link errors.
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Fig. 2. Standard deviation of convergence value of consensus algorithm with
link errors as a function of probability of link errors.

We propose hierarchical consensus as an approach to alleviate
these effects of link errors.
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