
OPT: Optimal Protocol Tree for Efficient Tag
Identification in Dense RFID Systems∗

Girish Khandelwal Aylin Yener Min Chen
Wireless Communications and Networking Laboratory

Electrical Engineering Department
The Pennsylvania State University, University Park, PA 16802
guk109@psu.edu yener@ee.psu.edu muc163@psu.edu

Abstract— We propose a novel collision resolution scheme
termed the Optimal Protocol Tree (OPT), which is based on
the tree search algorithm for RFID systems. The basic principle
of OPT relies on taking advantage of the similarities in the
identification strings of different tags, having the reader prompt
the tags to send only the mutually exclusive sub-portion of their
identification strings. The aim of OPT is to significantly reduce
the total identification time, in order to render the deployment
of dense RFID systems feasible. Simulation results are presented
to demonstrate the performance of OPT, and the considerable
improvement it provides with respect to the existing tree search
protocols.

I. INTRODUCTION

Radio Frequency Identification (RFID) is continuing to be a
promising technology, with recent advances in low operating
cost, ease of deployment, reliable data collection, etc. [1], [2].
The emergence of new applications mandates the future RFID
systems would be highly dense and mobile. It is likely that
multiple tags with unique identities move in the reader field at
once, and communicate with the reader simultaneously, which
will cause tag-collisions in RFID systems. An intense effort is
now underway to design intelligent communication protocols
to confront the tag-collision problems for RFID systems.

Up to date, a number of attempts have been made targeting
collision-free data transmission [3]–[5]. Among tree search
methods, Binary Tree Search [6] and Query Tree [7] have been
suggested specifically for collision resolution in RFID systems.
In Binary Tree Search protocol [6], tags continue to transmit
the remainder of their Electronic Product Code (EPC) strings
if their last transmitted bit matches with the one transmitted
by the reader in the current bit interval, otherwise the tags
get muted. Since EPC strings are unique for different tags,
gradually all tags except one are muted, and at the end of an
identification period, one tag is read successfully. Then another
identification period starts all over again to identify the next
tag. Query Tree [7] is also based on queries and responses,
but the length of the reader queries changes. Specifically, in
Query Tree algorithm, the reader broadcasts variable length
queries, and if the query string matches with the tags’ EPC
prefix, they respond with their EPC and CRC strings in the
next bit interval. If the reader observes a collision, it will refine

∗This research is supported in part by Techcollaborative Round 11 project

“Design of Efficient RFID Systems”.

the query and prompt the tags again till all tags are identified.
Clearly, the length of the new query is never less than any
previous query as the identification process unfolds. Both of
these tree-based methods perform well only when the number
of tags is relatively small, since each tag transmits its entire
information bit string to the reader to build a single identity.
If a large number of tags are present, the total identification
time increases to the point that the delay is not acceptable for
practical implementations.

The motivation of this work is to design a transmission
scheme that provides significant improvement to the total
identification time. Furthermore, we aim to accomplish this
with minimal additional complexity. To that end, we propose
the Optimal Protocol Tree (OPT), as an alternative to the tree-
based protocols previously proposed for RFID systems. OPT is
a novel strategy for tag identification in dense RFID systems,
and takes advantage of varying degrees of inherent correlated-
ness in the EPC strings of the tags during the identification
process. Note that the structure of the EPC code [8] is such
that a minimum of 17 bits characterize ‘Version Number’ and
‘Manufacturer Number’, which is likely to be identical in
tags in certain applications, such as in a factory production
environment, where EPCs are attached to the products.

Operationally, OPT successfully identifies one tag in each
identification period while muting the others; then it intelli-
gently reactivates only a subset of the muted tags and invokes
transmissions of only the un-transmitted portion of their EPCs
in the ensuing identification periods, until successful identify-
ing all tags. The transmissions of these mutually exclusive in-
cremental sub-portions of the EPC in subsequent identification
periods, as against the re-transmission of the entire EPC after
collisions in other contemporary multiple access protocols,
provides defining improvements. In this paper, we describe
the protocol, present its performance analysis and demonstrate
that considerable reduction of the total identification time in
dense RFID systems can be obtained by OPT.

II. SYSTEM DESCRIPTION

We consider a dense and stationary RFID system as shown
in Figure 1, which consists of a reader and K passive tags
[2] each of whom has a data string including L bits EPC

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

Reader’s fieldReader’s field

Figure 1. RFID System : Typical multiple access setup

and lc bits CRC. Assume there is single half-duplex error-
free1 communication channel between the reader and the tags.
The reader begins by broadcasting ‘Reset’ and ‘Calibration
Signals’ at the beginning of an identification process, to
energize and synchronize the tags [6]. We assume that once
the identification process has started, energized tags remain
synchronized to data bit boundaries and they remain within the
reader’s range. The singulation period is defined as the period
where the reader and the tag(s) exchange data bits and one tag
is identified successfully [6]. We also define the identification
process which consists of the entire K singulation periods,
i.e., the total identification time.

As proposed in [6], the reader uses three symbols to
communicate with tags: ‘binary 0’, ‘binary 1’ and ‘Null’ for
data transmission and control command. The reader and the
tags communicate with each other by exchanging one bit in
a data bit interval of 12.5µs in half duplex mode: the reader
transmits in the former portion and the tags in the latter portion
of that interval. The transmission patterns are explained in
detail in [6]. We differentiate the collision interval, where
more than one tag transmits both (‘0’ and ‘1’) types of data
bits in the same bit duration, from the contention interval,
where more than one tag transmits the same (‘0’ or ‘1’)
bit in the same interval. Furthermore, after the transmission
of the EPC string, tags also transmit the CRC string. The
reader does a CRC check and the successful reception of an
EPC are acknowledged, which singulates an active tag. We
point out that in view of our assumptions, we have ruled
out the possibility of a CRC error, i.e., a tag will always be
successfully identified in every singulation period.

We assume that the reader has sufficiently large memory
and computational power, whereas the passive tags have very
limited capabilities. We emphasize that tags cannot exchange
messages with each other and they can neither track any
statistics of the channel nor do they have the mechanism for
detecting collisions on the channel. It should also be noted that
the reader can detect whether there is a collision, however, it
does not attempt to estimate the number of tags that collide.

1The received SNR is shown to be high enough to justify this assumption
with passive tags communicating in a short range in [9].

TREE
TRAVERSAL

SINGULATED
COMMAND

START

GLOBAL
COMMAND

GLOBAL
COMMAND

START

TREE START

TRAVERSAL
MUTE

DORMANT

CALIBRATED

Initial
State

Data 0, 1

Reset

Valid
signals

Data 0

Data 0, 1
matching

Data “Null” at
ID Length + 1

Data
Null

Data Null

Data 1 AND
Null count =2

Command
matches LBT

Command
does not

match LBT
Data 0

Data 0, 1
(Commands)

• Data 0, 1 not
matching

• Data “Null” not at
ID Length + 1

• Data 0,1 after last
ID bit repeat

TREE
TRAVERSAL

SINGULATED
COMMAND

START

GLOBAL
COMMAND

GLOBAL
COMMAND

START

TREE START

TRAVERSAL
MUTE

DORMANT

CALIBRATED

Initial
State

Data 0, 1

Reset

Valid
signals

Data 0

Data 0, 1
matching

Data “Null” at
ID Length + 1

Data
Null

Data Null

Data 1 AND
Null count =2

Command
matches LBT

Command
does not

match LBT
Data 0

Data 0, 1
(Commands)

• Data 0, 1 not
matching

• Data “Null” not at
ID Length + 1

• Data 0,1 after last
ID bit repeat

Figure 2. Modification to the tag state machine for implementing OPT

III. OPTIMAL PROTOCOL TREE

In this section, we propose Optimal Protocol Tree (OPT).
In essence, OPT discards the inefficiencies of the Binary Tree
Search and utilizes the similarities among the EPCs of the tags.

The principle of OPT is that, the reader buffers the al-
ready transmitted data bits by each tag, and uses it later
to concatenate with the other portions of the EPC string
of the individual tag, to build each EPC string. Thus, OPT
reduces the re-transmission of the partial strings which are
common to multiple tags, and hence the total identification
time. We describe the mechanism of OPT in the following
with the assistance of the state diagram in Figure 2. We have
introduced two additional transitions (in dash ‘- -’) to the
already specified tag state machine in [6]. Section A–C below
describes necessary components of OPT, while Sections D and
E explain the protocol.

A. LBT (Last Bit Transmitted) Register

Each tag implements an 8-bit register for temporarily storing
the index of the last bit it transmits before it gets muted. The
8-bit register is sufficient to store the bit index of future 256-bit
EPC and has a minimal impact on the cost of the tags.

At the beginning of the identification process, tags must
initialize the LBT to decimal ‘1’ and increment it by ‘1’
synchronously with the receptions of a positive acknowledge-
ment, i.e., a matched bit from the reader. In case of negative
acknowledgement, i.e., an unmatched bit, tags locks the value
in their LBT registers and transition into the ‘Traversal Mute’
state. Tags that transition back into the ‘Tree Traversal’ state
in subsequent singulation periods unlock the LBT register, and
always increment the previously stored value in the LBT by
‘1’ for the first data bit transmitted, and subsequent increments
take place at the reception of the positive acknowledgments
from the reader, as explained earlier. Tags in the ‘Traversal
Mute’ state do not modify the contents of the LBT register.
For example, if a tag transmits its 19th data bit and observes

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

that the reader’s next data bit does not match, it stores ‘1001
0011’ in its LBT register and transitions into the ‘Traversal
Mute’ state.

B. LIFO (Last In First Out) Queue

Simultaneous reception of ‘0’ and ‘1’ from different tags in
the latter part of the 12.5µs bit interval results in a collision.
The detection of a collision implies that one or more tags
will not be positively acknowledged by the reader in the next
bit interval and hence these tags will get muted. The reader
will store the index of these collisions in the LIFO queue,
whose content in the top-most cell corresponds to the last entry
updated by the reader. For instance, if in the first singulation
period, the reader observes collisions in the 1st, 4th and 7th
bits of the EPC strings in sequence, values of 1, 4 and 7 will
be each stored in a cell in the LIFO queue from the bottom to
the top. In the second singulation period, the value 7, which
is in the top-most cell of LIFO queue is emptied since the
transmission will start from the 8th bit of the EPC code,
and any collisions observed in this period will be updated
accordingly in the LIFO queue. Assume collisions occur in
the 24th and 32th bits of EPC string in this period, then the
contents in the LIFO queue will be updated as 1, 4, 24 and 32
from the bottom to the top.

In general, the reader will observe these collision patterns
during the transmission of only the EPC portions by the tags
since the singulation of a tag is always accomplished before
the onset of the CRC transmission within a singulation period.
In view of this, the maximum value that will be stored in the
LIFO queue at any instant is limited by the size of the EPC.
If the LIFO queue at the end of a singulation period is empty,
it implies that all the K tags have been identified, and the
identification process is complete. Thus, the reader does not
require the tag count in advance.

C. EPC Buffer Memory

This refers to a buffer memory that the reader uses to store
the EPC string of the last successfully identified tag.

D. Working Principle of OPT

As shown in Figure 2, the reader completes a singulation
period by broadcasting a data ‘Null’. It serves as a positive
acknowledgment to the tag in the ‘Tree Traversal’ about its
successful identification, and transitions it into ‘Singulated
Start Command’ state. It also transitions the other tags in the
‘Traversal Mute’ state into the ‘Tree Start’ state. At this instant,
if the next data bit broadcasted by the reader is ‘0’, all tags in
the ‘Tree Start’ state transition into the ‘Tree Traversal’ state.
Otherwise, another ‘Null’ followed by a ‘1’ is broadcasted by
the reader, and all tags in the ‘Tree Start’ state transition into
the ‘Global Command’ state. These state machine transitions
are already provided in [6].

Once in the ‘Global Command’ state, the reader can com-
municate with the tags by broadcasting commands formed
using a set of data bits. The Binary Tree Search Protocol in
[6] has defined the 8-bit commands followed by a parity bit,

Tags in Global Command State

Tags in Singulated Command Start State

Tags in Traversal Mute State

LIFO Queue
Contents

Reader’s bit

Tag A: 01111

Tag B: 00010

Tag C: 10101

Tag D: 11001

Tag E: 01011

0 1 1 X

0 0 X

1 X

1 X

0 1 0 1 1 1 √

1 1 1 √

0

0

1

1

X

0 0 1 0 1 1 N 0 1 1 N 0 0 1 0 N 0 0 1 0 1

1 0 0 √

0 1 1

1st Singulation
Period-Tag Id :

‘01011’

2nd Singulation
Period-Tag Id :

‘01111’

3rd Singulation
Period-Tag Id :

‘00010

LBTA

LBTB

LBTE

LBTC

LBTD

3

2

5

1

1

1

2

Reader broadcasts
‘3’ with EPC

memory ‘011’

√

0 0 1 1 √

N 0 0 0 1 N

4th Singulation
Period-Tag Id :

‘10101’

5th Singulation
Period-Tag Id :

‘11001’

Reader broadcasts
‘2’ with EPC
memory ‘00’

Reader broadcasts
‘1’ with EPC
memory ‘1’

Reader
broadcasts ‘2’ with
EPC memory ‘11’

5

2

5

1

1

5

5

5

1

1

5

5

5

5

2

5

5

5

5

5

�

1

LBT
Contents

�

�EPC
Memory

Empty

3

2

1 2

Tags in Global Command State

Tags in Singulated Command Start State

Tags in Traversal Mute State

Tags in Global Command State

Tags in Singulated Command Start State

Tags in Traversal Mute State

LIFO Queue
Contents

Reader’s bit

Tag A: 01111

Tag B: 00010

Tag C: 10101

Tag D: 11001

Tag E: 01011

0 1 1 X

0 0 X

1 X

1 X

0 1 0 1 1 1 √

1 1 1 √

0

0

1

1

X

0 0 1 0 1 1 N 0 1 1 N 0 0 1 0 N 0 0 1 0 1

1 0 0 √

0 1 1

1st Singulation
Period-Tag Id :

‘01011’

2nd Singulation
Period-Tag Id :

‘01111’

3rd Singulation
Period-Tag Id :

‘00010

LBTA

LBTB

LBTE

LBTC

LBTD

3

2

5

1

1

1

2

Reader broadcasts
‘3’ with EPC

memory ‘011’

√

0 0 1 1 √

N 0 0 0 1 N

4th Singulation
Period-Tag Id :

‘10101’

5th Singulation
Period-Tag Id :

‘11001’

Reader broadcasts
‘2’ with EPC
memory ‘00’

Reader broadcasts
‘1’ with EPC
memory ‘1’

Reader
broadcasts ‘2’ with
EPC memory ‘11’

5

2

5

1

1

5

5

5

1

1

5

5

5

5

2

5

5

5

5

5

�

1

LBT
Contents

�

�EPC
Memory

Empty

3

2

1 2

LIFO Queue
Contents

Reader’s bit

Tag A: 01111

Tag B: 00010

Tag C: 10101

Tag D: 11001

Tag E: 01011

0 1 1 X

0 0 X

1 X

1 X

0 1 0 1 1 1 √

1 1 1 √

0

0

1

1

X

0 0 1 0 1 1 N 0 1 1 N 0 0 1 0 N 0 0 1 0 1

1 0 0 √

0 1 1

1st Singulation
Period-Tag Id :

‘01011’

2nd Singulation
Period-Tag Id :

‘01111’

3rd Singulation
Period-Tag Id :

‘00010

LBTA

LBTB

LBTE

LBTC

LBTD

LBTA

LBTB

LBTE

LBTC

LBTD

3

2

5

1

1

3

2

5

1

1

1

2

Reader broadcasts
‘3’ with EPC

memory ‘011’

√

0 0 1 1 √

N 0 0 0 1 N

4th Singulation
Period-Tag Id :

‘10101’

5th Singulation
Period-Tag Id :

‘11001’

Reader broadcasts
‘2’ with EPC
memory ‘00’

Reader broadcasts
‘1’ with EPC
memory ‘1’

Reader
broadcasts ‘2’ with
EPC memory ‘11’

5

2

5

1

1

5

2

5

1

1

5

5

5

1

1

5

5

5

1

1

5

5

5

5

2

5

5

5

5

2

5

5

5

5

5

5

5

5

5

5

�

1

LBT
Contents

�

�EPC
Memory

Empty

3

2

1 2

Figure 3. Evolution of an Identification process in OPT

and those in the range 128 - 255 (1000 0000 - 1111 1111)
are proposed as optional and reserved for manufacturers to
implement unique features and functions. In OPT, we propose
to use this set of commands for selectively transitioning the
tags in the ‘Global Command’ state into the ‘Tree Start’ state.
The reader uses the content in the top-most cell of the LIFO
queue to form the instantaneous command, and empties that
cell after the formation of the command. We propose to use 64
commands between ‘128’ (1000 0000) and ‘191’ (1011 1111),
interpreted upon receptions by tags as 1 to 64, for 64-bit EPC,
and 96 commands between ‘129’ (1000 0001) and ‘224’ (1110
0000), interpreted by tags as 1 to 96 for 96-bit EPC.

The interpreted command is then compared with the value
stored in the LBT register by each tag. Tag(s) with matching
commands, transition into the ‘Tree Start’ state, whereas the
unmatched tags transition into the ‘Traversal Mute’ state as
described in Figure 2. At this point, a new singulation period
begins. However, at this time, tags in the ‘Tree Traversal’ state
start with the transmission of the ‘LBT+1’ data bit of its EPC
string, in response to the reader’s first data bit ‘0’ in this
singulation period. Any collisions observed in this singulation
period will be updated accordingly in the LIFO queue. In
essence, the reader progressively identifies all EPCs one by
one, by intelligently utilizing the contents in the LIFO queue
and the EPC buffer memory.

We illustrate the identification process in OPT for 5 tags
each with 5-bit EPC string in Figure 3. We observe that OPT
takes only 27 bit intervals, including ‘ACK’ bits, as compared
to 35 bit intervals used in Binary Tree Search Protocol.

E. Reader-Tag Communication Structure

We now have a close look at the structure of the Reader-
to-Tag(s) communication (Figure 4). We observe that OPT
incurs an overhead of 11 extra data bits (‘Null’ + ‘1’ +
8-bit command + parity bit) for every singulation period,
which does not exist in Binary Tree Search Protocol. This
excludes the exchange of CRC bits and acknowledgment bits,
which are present in both protocols. Fortunately, OPT com-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

EPC string (64 bits) CRC 1/0 Null 1001 1000 1

Repetition of
last data bit

•Acknowledges Success

•Transition tags to Tree Start

Null 1 EPC string (40 bits)

Command in Global
Command State

Reader transmits ‘0’ Reader transmits ‘0’

Overhead : 29 data bits

EPC string (64 bits) CRC 1/0 Null 1001 1000 1

Repetition of
last data bit

•Acknowledges Success

•Transition tags to Tree Start

Null 1 EPC string (40 bits)

Command in Global
Command State

Reader transmits ‘0’ Reader transmits ‘0’

Overhead : 29 data bits

Figure 4. Reader-Tag communication structure in OPT

pensates for this overhead by having shorter length singulation
periods. Specifically, we have a shorter length singulation
period if tags have more than 11 common bits in the most
significant portion of their EPCs. Otherwise, OPT may de-
teriorate the performance. In order to get around this caveat,
we propose that OPT fall back to Binary Tree Search Protocol
intermediately, and return to OPT once the number of common
bits in the most significant portion of the EPCs increases
beyond 11. Since OPT is an enhancement of original Binary
Tree Search Protocol, switching between these two protocols
is easily implemented with the use of proper commands at the
end of each singulation period.

IV. TAG IDENTIFICATION TIME

In this section, we discuss the performance of OPT with
respect of the tag identification time. Since the duration of
each bit interval in OPT is fixed as 12.5µs, it suffices to find
the total number of bit intervals to compute the identification
time. We denote the degree of correlation, D, as the maximum
number of bits in the most significant portion of the EPC
strings, common to all K tags to be identified. Note that a
subset of these tags may have a higher degree of correlation.
We will restrict our analysis to RFID tags with L = 64 bits
EPC strings, lc = 16 bits CRC, and D > 11. When D ≤ 11,
OPT falls back to Binary Tree Search method which takes 82
bits to identify each tag. Since CRC, ‘ACK’ and command
bits are fixed overhead, they can be counted separately.

A. Tree Structure

For easy illustration of OPT, we show a tree diagram
composed of nodes and branches, where a node signifies
the reader’s transmitted data bit and a branch signifies tag(s)
transmission. A node and a branch tied together in this order
form a bit interval. When each of the tags transmits the same
bit in a given bit interval, the tree (or the subtree) continues
to grow deep in one direction, in sync with the EPC strings
of the tags. Whenever tags’ transmissions result in a collision
in the latter part of a bit interval, a node diverges into two
branches. Any node of the tree could have two branches at
most. When branching occurs, two subtrees are formed under
this node. The tree continues to grow until it hits a terminal
node at the bottom of the tree, which signifies the completion
of a singulation period, i.e., the successful identification of
a tag. The overall depth of the tree is L, i.e., the original
length of the EPC. Subsequently, the reader goes back to a
node, where it last observes a collision, and begins another
branching process as described previously. We revisit the
example of 5 tags and extend their EPC lengths L to 64 and
set D = 59 to illustrate the formation of the tree in Figure
5. Note that the pattern of the most significant 59 bits does

{[0],[C]}

{[X],[-]}

{[0],[-]}

{[0],[-]}

{[1],[-]}

{[1],[C*]}

{[X],[-]}

{0}

Singulation Period
Color Scheme

1st

2nd

3rd

4th

5th

{[0],[C*]} {[1],[C]}

{[0],[C]} {[1],[C*]}

{[1],[-]}

{[1],[-]}

{[1],[-]}

{[1],[-]}
{[1],[-]}

{[0],[-]}

{[1],[-]}

{[0],[-]}

{[0],[-]}{[1],[-]}

{[1],[C*]}
{[0],[C]} {0}

{0}

{0}

{0}

3rd 2nd 4th 5th1st

{[0],[C]}

{[X],[-]}

{[0],[-]}

{[0],[-]}

{[1],[-]}

{[1],[C*]}

{[X],[-]}

{0}

Singulation Period
Color Scheme

1st

2nd

3rd

4th

5th

{[0],[C*]} {[1],[C]}

{[0],[C]} {[1],[C*]}

{[1],[-]}

{[1],[-]}

{[1],[-]}

{[1],[-]}
{[1],[-]}

{[0],[-]}

{[1],[-]}

{[0],[-]}

{[0],[-]}{[1],[-]}

{[1],[C*]}
{[0],[C]} {0}

{0}

{0}

{0}

3rd 2nd 4th 5th1st

Figure 5. Tree diagram in OPT

not affect the analysis. We label each branch by {[A],[B]},
where A ∈ {0, 1} denotes the bit transmitted by the tag(s).
B ∈ {C,C∗,−} provides the information about the reader’s
action. When a collision is observed for that node-branch pair,
‘C’ marks the instantaneous chosen bit/branch/direction, and
‘C∗’ corresponds to the one not chosen, whereas ‘−’ means
no collision is observed and no choice is made. Note that
every singulation period starts with the reader broadcasting a
‘0’, which is denoted by a horizontal arrow in the figure. The
rings in the figure describe a pair of branches with collision.

From the formation of the tree, we observe that the total
number of bit intervals required to identify K tags is given
by the number of node-branch pairs of the tree. Terminal
nodes are not included in this counting since they are the
nodes without further branches. Also note that the order of
the identification of tags does not change the total number of
bit intervals, or the total identification time.

B. OPT in Full Binary Tree Case

We consider the case when the reader is tasked with the
identification of all EPCs that can be formed with a given D.
We show that a full binary tree will be formed with collision
at each node beyond depth D. From Section III, we know
that all tags will transmit the first D identical bits in the first
singulation period. Subsequent to depth D, we will begin to
observe collisions, i.e., the first branching occurs and two sub-
trees are formed under it. We use Dc = L − D to denote the
height of the subtrees. Since both subtrees will be full binary,
the number of bit intervals required in each of the subtrees
are the same. Thus, the number of bit intervals required for a
full binary subtree with height Dc +1 is one bit in addition to
twice of what is required in a full binary subtree with height
Dc. We note that the additional bit is spent in moving one
depth lower into the tree. The branching into full subtrees of
smaller height, continues to occur till the bottom of the tree is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

reached. Let ADc denote the number of nodes in the subtree
of Dc, by employing the recursive process and using the fact
that A1 = 1, we have

ADc = 1 + 2ADc−1 = 1 + 2(1 + 2ADc−2) = · · · (1)

=

Dc−1∑

i=0

2i = 2Dc − 1 = 2L−D − 1 (2)

The total number of bit intervals for the full binary tree can
be computed as

ND = D + ADc = D + 2L−D − 1 (3)

Further, we calculate the average bit intervals per tag for
a given D > 11 by adding the deterministic overhead as
discussed in Section III-E. Thus, the average bit intervals per
tag, END

, for a given D can be written as

END =
ND + 18 + 29(2L−D − 1)

2L−D
= 30 +

D − 12

2L−D
(4)

Here, the 18 bits are for the 2-bit ‘ACK’ and 16-bit CRC
in the first singulation period, and the 29 bits are for the 2-
bit ‘ACK’, 11-bit command and 16-bit CRC in the remaining
singulation periods. From (4), we observe that on average OPT
takes between 30 and 31 bits to identify each 64-bit EPC that
can be formed for D ∈ [12, 58].

C. Expected Total Number of Bit Intervals

We use the fact that the number of bit intervals required
for identification of K tags is given by the number of node-
branch pairs in the tree, to find the expected total number of
bit intervals. Thus, we will find the expected number of node-
branch pairs at each depth of the tree formed by K tags with D
degree of correlation. The expected value for the total number
of node-branch pairs can be found from the summation of the
individual expectations at each depth.

First we note that for a given D, the maximum number
of possible tags is 2L−D. With that, the probability of any
terminal node (tag) is

p0 =
K

2(L−D)
(5)

With p0 known, the probability that a node is present at the
immediate next height in the tree is given by

p1 = 1 − (1 − p0)
2 (6)

Generalizing the probability of the existence of a node at
height i for i ∈ [1, L − D − 1], we obtain

pi = 1 − (1 − pi−1)
2 (7)

Given that, the number of nodes at any depth is a binomial
random variable with parameters p = pi (q = 1 − pi) and
2(L−D−i), and thus the expected number of the nodes at height
i, Xi, is given by

E[Xi] = pi · 2L−D−i (8)

Consequently, the expected number of the node-branch pairs
in the whole tree is

L−D−1∑

i=1

E[Xi] =

L−D−1∑

i=1

pi · 2L−D−i (9)

Finally, the expected number of total bit intervals N given
K and D, including the fixed D bits in the first singulation
period, is

E[N |K, D] = D +

L−D−1∑

i=1

pi(K, D) · 2L−D−i (10)

Observe that in (10) the dependency of pi on K and D is
explicitly stated. We can compute the expected number of bits
in the final implementation of OPT by adding the deterministic
overhead, as explained in IV-B. The calculation of the expected
total identification time is straight forward.

Lastly, we note that for mobile/dynamic RFID systems
where the joint probability distribution of K and D is avail-
able, we can easily compute the total expected number of bits
E[N].

V. NUMERICAL RESULTS

We present numerical results related to the performance of
OPT in this section. First, we compare the performance of
OPT with Binary Tree Search Protocol [6], with the average
number of bit intervals per tag as the performance metric.
In each iteration of our simulation, we randomly generate K
EPC strings, which are identical in their D most significant
bits. In the identification process, the EPC strings are identified
sequentially in an increasing order of their numerical decimal
value. For a fair comparison between two protocols, we take
into account the bit intervals used in state transitions and
commands during the implementation of OPT. As discussed
in III-E, the identification procedure falls back to Binary
Tree Search, whenever contents of the top-most cell of the
LIFO queue falls below 11. In such a case, the intermediate
singulation period becomes a full length of 82-bit interval.

In Figure 6, we plot the average number of bit intervals
per tag for varying degrees of correlation D, when K is
between 1 and 100. We observe that OPT shows significant
improvement over the Binary Tree Search, especially for large
D. This is expected because OPT saves the re-transmission of
the identical prefix bits of different tags. We even observe an
improvement when the degree of correlation is 10. This is
because, when unique EPCs are randomly generated for large
K and D ≤ 11, it is possible that they have a subset of tags
with more than D identical bits, and any such subset will
be identified utilizing OPT in successive singulation periods
of shorter lengths. We note that it is also possible to have
many such subsets in an identification process, and hence the
identification protocol may switch between OPT and Binary
Tree Search multiple times. The average bit intervals for higher
values of K are plotted in Figure 7, and the trends observed
for small K are visible for large K as well. We also point out
that the simulation results compare closely with the values
computed from (10).

Recall from (4) that OPT requires an average of 30-31 bits
per tag i.e., a 62% improvement over Binary Tree Search
Protocol, when it identifies a complete set for a given D. These
trends are observed for D = 57 and K = 128 in Figure 6,
and for D = 54 and K = 1024 in Figure 7.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

0 20 40 60 80 100
30

40

50

60

70

80

90

 Number of tags

 A
ve

ra
ge

 n
um

be
r

of
 b

it−
in

te
rv

al
s

pe
r

ta
g

 Binary Tree
 D = 0
 D = 10
 D = 24
 D = 44
 D = 57
 D = 60

Figure 6. Trend for average number of bits as D varies, for small K.

0 2000 4000 6000 8000 10000
30

40

50

60

70

80

90

 Number of tags

 A
ve

ra
ge

 n
um

be
r

of
 b

it−
in

te
rv

al
s

pe
r

ta
g

 D = 0
 D = 10
 D = 14
 D = 24
 D = 34
 D = 44
 D = 54

Figure 7. Trend for average number of bits as D varies, for large K.

We also compare the performance of OPT with Query Tree,
and its variant QT-sl protocols proposed in [7]. In view of the
differences among these protocols, and for a fair compari-
son, the communication structures for Query Tree and QT-sl
protocols are devised in [9]. The average tag identification
time of different protocols are shown in Figure 8 and Figure
9 for D = 54 and D = 10, respectively. We observe that
OPT performs significantly better than both Query Tree based
protocols, even for small degree of correlation, e.g. D = 10,
despite the fact that the performance of Query Tree improves
as D decreases while the performance of OPT suffers with the
decrease in D.

VI. CONCLUSIONS

In this paper, we have proposed OPT, an efficient and tree
search based multiple access technique for RFID systems. We
have observed that OPT outperforms Binary Tree Search and
Query Tree Protocols significantly. We demonstrated analyt-
ically and numerically that OPT can significantly reduce the
re-transmission between tags and readers, and hence the total

0 200 400 600 800 1000
0

1

2

3

4

5

6

Number of tags

A
ve

ra
ge

 ta
g

id
en

tif
ic

at
io

n
tim

e(
m

s)

OPT
Query Tree
QT−sl

Figure 8. OPT vs. Query Tree : Average tag identification time for D = 54.

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of tags

A
ve

ra
ge

 ta
g

id
en

tif
ic

at
io

n
tim

e(
m

s)

OPT
Query Tree
QT−sl

Figure 9. OPT vs. Query Tree : Average tag identification time for D = 10.

identification time, a feature that is highly desirable in dense
RFID systems envisioned for the near future.

REFERENCES

[1] MIT Auto-ID Center. http://auto-id.mit.edu/.
[2] K. Finkenzeller. RFID Handbook: Radio-Frequency Identification Fun-

damentals and Applications. John Wiley & Sons, 2000.
[3] J. Capetanakis. Generalized TDMA: The multi-accessing tree protocol.

IEEE Transactions on Communications, COM-27:1476–1484, October
1979.

[4] B. Tsybakov. Survey of USSR contributions to random access communi-
cations. IEEE Transactions On Information Theory, IT-X, No. 2:143–165,
March 1985.

[5] J. Massey. Collision-resolution algorithms and random-access communi-
cations. Multi-User Communications Systems, Pages:73-99, 1981.

[6] Draft protocol specification for a 900 MHz Class 0 Radio Frequency
Identification Tag. Technical report, Auto-ID Center, Feb 2003.

[7] C. Law, K. Lee, and K. Siu. Efficient memoryless protocol for tag
identification. In 4th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, ACM, pages 75–84,
August 2000.

[8] 13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag
Interface Specification: Recommended Standard, Version 1.0.0. Technical
report, Auto-ID Center, May 2003.

[9] G. Khandelwal. Efficient design of dense and time constrained RFID
systems. M.S. Thesis, The Pennsylvania State University, August 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

	Select a link below
	Return to Main Menu
	Return to Previous View

