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Abstract—We consider a Gaussian two-hop link where the

source and the destination can communicate only via a relay A\ .
node who is both an eavesdropper and a Byzantine attacker. w @ + @W

Both the source and the destination have transmission capdlly, Y, Ty,
and the relay node receives a superposition of their transntied @ Zp )7
signals plus noise. The proposed coding scheme ensures that Byzamine/ @ ; |

o - Untrusted T !
the probability of an undetected Byzantine attack decrease Relay PR >®

exponentially fast with respect to the number of channel use
Nt while the loss in the secrecy rate can be made arbitrarily
small. This improves our previous result where this probability
only decreased exponentially with respect to/Nr.

Fig. 1. The Gaussian two-hop link. Phase 1 is indicated big divle, and
phase 2 by dashed line. R/E: Relay/Eavesdropper.

I. INTRODUCTION

Information theoretic secrecy, first proposed by Shannpn [BYzantine attack goes undetected decreases exponentitily
is an approach to study the secrecy aspect of a communicafi@pPect tathe square root of the number of channel useér,
System against a:omputation power unbounded adversary_ rather thanNT |tse|f Th|S iS essentia”y a Consequence Of
This approach was later applied to the wiretap channel [jme fact that the scheme used in [10] for Byzantine detection
[3] and recently extended to several other models. incydirentailed using a wiretap code which can provide strong sgcre
for example, the multiple access channel [4] and the braadc@nd employing a linear decoder. The only known code with
channel [5], [6]. these properties is for the Type Il wiretap channel, which is

The impact of information theoretic secrecy on cooperati@mposed of binary erasure links. Reference [10] in essence
communications was investigated in references [7]-[10} [ “transforms” the Gaussian model into a binary erasure celann
[9] considered the case where a relay node is “curious BI&ING repetition codes, which results in the teyfvr.
honest”. That is to say that the relay is not trusted with In this work, we present our new finding: the existence of a
confidential messages, ydébnestly employs its designated Wiretap code offering both strong secrecy and a linear decod
relaying scheme. An important insight that is gained froim thProved via a novel combination of Nested Lattice Codes [11]
body of work is that recruiting the help of such a relay can bd privacy amplification [12]. As a result, an exponential
useful in achieving a higher secrecy rate than merely trgatidecrease of the undetected attack probability with resfect
it as an eavesdropper [7]. Nr is obtained. The key is to view thebit information leaked

It is a next natural step to consider the problem where tarough observing the real sum of two nested lattice points
relay node is curious and is potentialtjshonest [10]. An [13] as the “spoiler information” [14]. This fact is then uke
example for this type of behavior can be that the relay node bound Rényi entropy and prove strong secrecy.
stops transmitting, which is relatively easy to detect. Areno
detrimental scenario would be for the relay to deceive the
destination into accepting a counterfeit message by dgtive The Gaussian two-hop link with a Byzantine relay node
manipulating the signals it relays, which we refer to as thie shown in Figure 1. Nodé wishes to send a confidential
“Byzantine attack” in this work. Reference [10] found thatnessagell to node2. Since it can not communicate with
for a two-hop link with untrusted relay node, it is possilde tnode 2 directly, it recruits the help of a relay node, who is
detect such behavior reliably with an arbitrarily small amb not trusted with the messag€&. We assume both nodeand
of loss in secrecy rate. Both a noiseless adder model an@ aan transmit [9], and the relay receives a superposition of
Gaussian model were considered. their transmitted signals plus noise, which is the case in a

This work is a continuation and presents a significamtireless environment. We leX;,i = 1,2, and X, denote
improvement over [10] for the two-hop Gaussian model. Féhe signal transmitted by node 2 and the relay respectively,
this model, the result from [10] shows the probability that and similarlyY;,7 = 1,2 andY,. denote their received signals

Il. SYSTEM MODEL AND PROBLEM STATEMENT
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respectively. After normalizing the channel gains, we have N | Main Channel = i

Y, =X+ X2+ Z, )
Yo=X,+2Zgr, Y1=hX,+ Z;% ) Eavesdropper's —= (tV + d}) mod A+
Channel
where Z,, Zr and Z}, are independent Gaussian random (85" +d3) mod Ac + 27

variables with zero mean and unit variance, ands the
normalized channel gain. Sind§ is not used in the scheme
described in this work, it is omitted in Figure 1 for clarity.

We assume each node is half duplex. Also, for simplicity, wgperation is defined as mod A, = = — argminyeca, d(x, 1),
assume that each node has an average power consttaint \whered(z, ¢) is the Euclidean distance betweerandt. The

Observe that since the relay can be a Byzantine adversaindamental region of a lattic®(A.) is defined as the set
node2 may or may not accept what it decodes as a genuiugg :z mod A, = z}.

Fig. 2. The Lattice-input Wiretap Channel

message from node based on certain criteria. Define Ry as the rate of the lattice codebook, i.e.,
The Byzantine detection problem for secure communication 1
can then be stated as follows: LBf be the estimate ofl/ Ry = N log, [ANYV (Ae) | (3

computed by the destination, i.e., node 2. We wish to find the ) o ) )
rate R, of W, defined ask. = lim 1 H (W), such that the where|A| is the cardinality of the sed. The signal transmitted

by each node is given b¥ ¥ = (¢ + d) mod A ,i = 1,2,

wheretY € ANV (A.), andd i = 1,2 are two fixed vectors

N . /) in V(A.) and are known by the relay nod€’ is computed
and Pr(W is not accepted by Node 2|[W = W) is  fom the confidential messagg) is independent from¥, and
negligible, i.e., they decrease exponentiallyrin is chosen from\ NV (A.) according to a uniform distribution.

2) Byzantine Detection: The probability that the Byzzm- Hence, XY = ¢ +dY mod A. serves as the jamming signal
tine adversary wins, defined aBr(A wins) = to confuse the untrusted relay node.

Pr(W is accepted by Node 2|W # W) is negligible.  The relay node will then decodg’ + ) mod A. and
3) Srong Secrecy: I(W;Y]") is negligible. SinceY," is  transmitt)Y +t) 4+ dY mod A. during phase two, wheré’ is

the observation of the eavesdropper, this means theixed vector inV (A.) and is known by node. Node2 then

adversary has virtually no idea on the valuelwt decodest™ = ¢V + ) mod A. from the signal it received
during phase two. An estimate 6}, denoted byt), is then
computed fromi™Y — ) mod A..

In this section, we briefly review the communication scheme with this coding scheme, the Gaussian two-hop link is
when the relay is “curious but honest’, which will be arequivalent to the lattice input wiretap channel shown in-Fig
underlying building block in the sequel. Each node is halfyre 2. Reference [15] proves that, whBp < %1Og2(% + P),
duplex, and consequently we have a two-phase scheme. Dukig probability Pr(iN +# ¢VV) decreases exponentially with
phase one, noddsand2 transmit, and the relay node receivesespect taN. Reference [13] proves the eavesdropper can get

During phase two, only the relay transmits. It was shown Jn [t most 1 bit of information from its observation; see also [16].
that these two phases can be used to facilitate the trariemis{ence the achievable secrecy rate is [13]:

of the confidential messad& from nodel to 2: The channel .
alternates between phase one and phase two. During phase Re =[Ro — 1] (4)
one, nodel transmits the confidential message vig and where[z]* equalsz if = > 0 or 0 otherwise.

at the same time nod® sends a signaKs, to jam _the relay  Remark 1: We emphasize the coding scheme [13ha-
node. During phase two, the relay node transmits to rbdgjnear. To achieve (4), the codewords are generated in an i.i.d.
based on the signal it received during phase one. Since n@gléhion from the set\ N V (A.). Hence each codeword is

2 knows X5, it can subtract it to obtain a cleaner signal. Th@omposed of a sequence of lattice points. These codewords
relay node, however, does not kno¥; and hence can only gre then randomly binned into several bins, such that each bi
observe a noisy version of;. Intuitively, this means nodé py jtself is a codebook with a rate df bit per channel use.
can transmit to nod@ at a rate higher than the relay node caffhe encoder at node first chooses a bin according 19,
decode. The exceeding part of the rate can be used to CONgyh randomly chooses a codeword to transmit from that bin
confidential messages. Reference [13] used this idea wéth Htcording to a uniform distribution. This is needed in order
compute-and-forward relaying [15]. to confuse the eavesdropper. However, it also introduces a

In this work, we utilize this scheme from [13] as it offersyonlinear mapping between the codewords and the message
the algebraic structure that facilitates reliable detection of aget,

Byzantine attack. The scheme uses Nested Lattice codes [11]
as follows: IV. BYZANTINE DETECTION

Consider a pair ofV dimensional nested lattice pdii, A.} For Byzantine detection, we use the algebraic manipulation
which is properly designed as in [11}. € A. The modulus detection (AMD) code [17]. An AMD codeword is composed

following three conditions are satisfied:
1) Reliability: When the relay is honest, both: (W # W)

IIl. SECRECY
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of three parts{s, x, h}, wheres is thed x 1 vector composed for a certain constant > 0.

of elements fromGF(¢") and represents the message. The Before proving the theorem, we need several supporting

componentz is called the random seed and is also froffesults: First, theepresentation theorem from [13] is useful:

GF(q"). h is the hash tag and is computed according to Theorem 3: [13, Theorem 1] [16, Corollary 1] For any

the hash ruleh = z9+2 + Zle s;z', wheres; is theith 4, w,, such thatu; € V (A,.),i = 1,2, Zi:l uy, is uniquely

component ofs and the addition and multiplication is definetjetermined by{T, Zi:1 ur mod A.}, whereT is an integer

overGF(q"). Suppose nodereceivess’, ', b/, wheres’ # s.  such thatl < T < 2V.

Let A, = 2’ —z. A = b’ — h. Then [17] has the following Based on Theorem 3, can be represented Hy>"7>_, (¢ +

result: d™)) mod A.,T}. Sinced ,i = 1,2 are known by all nodes,
Theorem 1: [17, Theorem 2] Assume at least one6f—  this meand’ N can be represented Kyt +t)) mod A, T'}.

s, Az, Ay, is not zero. If the distribution of conditioned on  \we also need the following result: L& be taken from

{Az, Ap, s, s} is uniform over the fieldGF(q"), ¢ being a 3 set of linear mappings froGF (¢)N to GF(q)" according

prime, andd + 2 is not divisible byg, then the probability that to a uniform distribution. Henc& can be represented as a

the hash rule holds fofs’, ', 7'} is bounded byt matrix overGF(q) with » rows andN columns. ForG, we
Remark 2: As shown in [10, Section II1.B], transmitting anhayve the following lemma. The proof is omitted due to space

AMD tuple {s, z, h} using a randomly generated wiretap cod@imitation, see [18].

whose decoder is nonlinear, will rendéx, correlated with Lemma 2: The probability thatG has full row rank is

z. Hence conditioned ofiA;, Ay, s', s}, z is not uniformly  greater thart — ¢"—V.

distributed and Theorem 1 can not be used. Finally, we need the results from [12]: For a discrete random

variable X, let Ho(X) denote the Rényi entropyH (X)

) ] denotes the Shannon entropy. The notion of “universal hash
As eluded in Remark 1 and 2, a new coding scheme g$nction” is as defined in [12].

needed to properly combine Byzantine detection and secrecy omma 3:

. : - [12] The set of linear mappings is a class of
sharing scheme for the Gaussian model. In [10], we Cifhiversal hash function.

cumvented this problem by transforming the channel into atpeorem 4 [12, Corollary 4] Let A, B be two random

Type Il wiretap channel via the repetition code. In this work,, iapjes. LetA be the alphabet set is defined on. LeiG

we describe a different coding scheme to transmand %, pe chosen according to a uniform distribution from a class of
which leads to faster decrease in the probability of undetec hiversal hash function fromd to GF(q)". For two random

Byzantine attack with a cost of arbitrarily small loss in the, iaplesA. B. if for a constant CHz(A|B = b) > ¢, then
strong secrecy rate. T ’

V. MAIN RESULTS

_ _ _ H(G(A)|G,B =b) >rlogy,q—2"°%297¢/In2  (7)

A. Extracting Strong Secrecy from a Lattice Point
1) When A, = ¢A for a prime ¢: In this case, the set
(A+dN)NV (A,.) is isomorphic to a finite field, as shown by

Lemma 1. The proof is omitted due to space limitation, plea8&00f for Theorem 2:
see [18]. Proof: Define a & b as a + b mod A.. Then for the

distribution fortY i = 1,2 stated in Theorem 2t @ tI¥
is independent from{'. Therefore we have:

Now, with the supporting results at hand, we provide the

Lemma 1. When A, = ¢A for a primeg and A has full
rank, (A +d™) NV (A.) , for the modulusA.. plus operation,
is isomorphic to the group_of a finite fiel@]_-"(qN). _ Hy (V1N @) = V) = Hy (1) = Nlogyg  (8)
The reason that we consider this case is that the resulting
coding scheme has a linear decoder and hence can be used k&t 7' be the integer defined in Theorem 3 affd be the
transmitz and A. This is shown by the following theorem: cardinality of the set of possible values f6r Then according

Theorem 2: For an integer-, such that to [14, Theorem 5.2] [19, Lemma 3], for a given integed <
, N a <2V andtY € ANV(A,.), with probability 1 — 2~(/2=1):
+e€
OSTSN{I—long] ®) Hy (N[ @t =V, T = a) 9)
N | N N _ 4N

wheree > 0 is a constant that can be arbitrarily small, there > H (tl [ty @ty =t ) —log, |T] s (10)
exists a linear mapping from GF(¢)" to GF(¢q)" such that =N (logog—1)—s (11)
1) g has full row rankr. Note that the adding group @f.F(¢") is isomorphic to

2) DefineY," =377 (Y + d}) mod A.), which is the GF(q)N. Hence we can write} € GF(q)V. Let G be
§ign_a| component in the observation of the e_av_esdropqgken from a set of linear mappings fra@ (q)~ to GF(q)"
in Figure 2. Wher}Y,i = 1,2 are uniformly distributed according to a uniform distribution. Then according to Leam
over (A + d¥) NV (A.) and are independent of eachy ‘G is a universal hash function. According to Theorem 4,
other, we have from (11) we have:

I(g (1) V") <2e77% (6) H(GH) |G et =N, T =a) (12)
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or log, g—c
In2

wherec = N(logy g — 1) — s.
Since (11) holds with probability —2—(/2=1) (13) means

H(G )G, Y o), T) (14)

rlogs, g—c
> (1 — 27(5/271)) <r10g2 q— %) (15)
n

Chooses = N, where0 < ¢ < log, g — 1. Chooser such
that foré > 0:

>rlogyq— (23)

rlogsq < N (logyg—1) —s—Ndé=N(logoqg—1—¢c—9)
(16)

/
ThenS = g(v(t))). Define A as the inverse o{ i } then
the encoder is given by:
!/
t _le{ S (No=ro)x1 } (20)
T‘()><1

whereS € GF(27) be the input to the encoder. We assune

is uniformly distributed oveg F(27). t € ANV(A,) be its
output.S’ represents the randomness in the encoding scheme.
We observe that, if{ S’ (ny—r,)x1,Srox1} IS uniformly dis-
tributed overGF(2)No and (20) is used as the encod#,

is also uniformly distributed over the sé&f. SinceG = g is
chosen wher! has a uniform distribution ovel, this means

that when (20) is used as an encoder, the secrecy constraint

which yields (5). For this- and s, from (15), we observe that in Theorem 5 still holds.

there exists3 > 0, such that
1(G (1)) @t TIG) < PN (17)

We next use the fact that for sufficiently largé, most G

will have full row rank as shown in Lemma 2. Therefore

with a uniform distribution fort) i = 1,2, ¢} andt) being
independent, there must exist€Ga= g, such that

1) g has full rank.

2) I(G(tY);t) @t) , T|G =g) <2e PN

Hence we have proved Theorem 2. |

B. Transmitting the AMD tuple

We now describe how to use the coding scheme in Section
V-A to transmit an AMD tuple. Note that the distribution
of hash tagh is in general not uniform. Hence, we can
hot directly use the linear coding scheme in Section V-A
to transmit 2, which needs an uniform input distribution.
However, this problem can be solved by introducing another
random seedk from GF(q"), which can be generated via
the linear coding scheme in Section V-A. From Section V-A,
k is uniformly distributed overGF(¢"). Hence h can be

2) The General Case: When (A, A.) does not have the transmitted by using: asa one-time pad [1].

self-similar relationship as described in Section V-Al, eea
still extract strong secrecy from a lattice point using taee

method, except that the resulting coding scheme is notrlinea
Let |«] be the operation that roundsto the nearest integer

less than or equal ta:. Define N = [log, [ANV (Ac)|].
Recall thatV is the dimension of latticd, and R is defined
in (3). Hence we haveVy > N Ry — 1. Choose the subsé{
of the codebook A + dY¥) NV (A,) that yields the minimal
average decoding error probability with the lattice decaohel

has sizg K| = 270, Definev as the one-to-one mapping from

K to GF(2N0). Then we have the following theorem:
Theorem 5: For an integer-, such that

OSTOSN[RO_1_5]+ (18)

for a constant > 0, there exists a linear mapping from
GF(2)No to GF(2)" such that

1) g has full row rankr.

2) Whent¥ is uniformly distributed overk, tY is uni-
formly distributed ovefA+dd )NV (A.), tI¥, t5 are in-
dependent of each other, we havég (v(t]')) ; V,V) <
2¢= AN for a certaing > 0.

The proof is similar to Theorem 2 and therefore omitted.

Theorem 5 can be used to construct an encoder with r

arbitrarily close to[R, — 1]*, as shown below:
/
Let g’ be an(Ny — r¢) x Ny matrix such that[ g ] is
invertible. DefineS andS’ such that

o= |

[ g/(No—ro)xNo

19
g’l‘oXNo ( )

SI(NQ*T())Xl :|
S’I‘()Xl

The transmission is hence divided into 4 stages:

1) z € GF(q") is extracted from arV dimensional lattice
code as shown in Section V-Al.

k € GF(q") is extracted from amV dimensional lattice
code as shown in Section V-Al. Létbe the estimate
of it computed by node&. Let P, be the average power
per channel use of th&” dimensional lattice code.

u = h & k is transmitted via the relay to nodeusing
an r-dimensional lattice code abg, ¢ bits per channel
use. Node2 does not transmit during this stage sirice
is already protected by the one-time pad_et & be the
estimate of it computed by node Let P, be the power
per channel use of the dimensional lattice code.

s is transmitted via the encoder described in Section
V-A2. Let § be the estimate of computed by node,
which corresponds te’ in Theorem 1.

Note that bothP; and P, are only a function of the rate
of their respective lattice code. Henég and P, are only a
function of g. Then we have the following lemma:

Lemma 4:

2)

3)

4)

I(x;AL, AR, 8,8) < dexp(—fSN)

%‘gereﬁ is a positive number defined in Theorem 2.
e proof of Lemma 4 is based on the strong secrecy offered
by Theorem 2 and Theorem 5 and is omitted here due to
space limitation. We next link Lemma 4 and Theorem 1 with
Pinsker’s inequality which leads to ourain result:

Theorem 6: For the Gaussian two-hop link, for a rate
smaller but arbitrarily close t&. given by (4), and a total
number of channel use¥; = O(N):

(21)
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1) When the relay is honest, the confidential mes-

V1. CONCLUSION

sage IV can be transmitted at this rate such that |n this work, we proved that for the Gaussian two-hop model

all the three termsPr(W # W), I(W;Y™)

where the relay is both an eavesdropper and a Byzantine

and Pr (W is not accepted by Node 2|W = W) de- attacker, the probability that a Byzantine attack goes unde

crease exponentially fast withv.
2)
exponentially fast withV.

tected can decrease exponentially fast with respect to the
When the relay is dishonesBr(A wins) decreases total number of channel uses. In this process, we showed
how to provide strong secrecy via a novel combination of

Proof Outline: Here, we only outline the proof for partNested Lattice Codes and privacy amplification. Furtheemor
2), due to space limitations. For the complete proof, seg [18#/€ Showed that the secrecy rate loss caused by the redundancy
The proof technique used is similar to the one used in [1d]troduced for Byzantine detection can be made arbitrarily

where Lemma 4 corresponds to [10, Lemma 1]. As in [1ogmall.

we use “HRH” for “hash rule holds” when fos # &/,
rdt2 4 Z';:l sipt = 22 4 Z';:l sha’t + Ay. This means
the message’, 2/, i’/ will be accepted by node. Hence the
probability that the adversary wins is given by:

(1]

(2]

Pr (A wins) 3l

_ Pr (HRH|z, Ap, Ay, s, 8") ”

R ””-g; Pr(z|An, As,5,8) Pr(An, Ag, s, 8') @2 W
Ap,s,s’

Define Q(A wins) as the term (22) wittPr (z|Ay, Ay, s,8) Bl
replaced byPr(z). Then as shown in [10, Lemma 2], Lemma

4 leads to the following result due to Pinsker’s inequality: [6]

| Pr (A wins) — Q (A wins) | < v/(8In2) exp(—8N) (23) -

From Theorem 1¢) (A wins) is bounded by%. Hence
[l

d+1

T

Pr (A wins) < 1/(8In2) exp(—3N) + (24)
[0l
Each{s} conveysdrlog, ¢ bits of information, where- is
defined in Theorem 2. Hence the total number of channel uses
Nr is given by
[10]

(25)

drl
Ny =2N +r+ [ww N 1

NR,
since N channel uses are needed to transmibr k£, andr
channel uses are needed to transinit h. The third term
in (25) is the number of channel uses needed to transmit
where[z] is the operation that roundsto the nearest integer [13
greater than or equal te.

The overall ratef? is given by Ry = 2224 The average [14]
power per channel usBr is given by

[12]

[15]
Pi2N + Pyr + P (4gae)
Nr

Rt and Pr can be made arbitrarily close t®. and P
respectively by choosing a sufficient largeOnceRr and Pr

is fixed,d is fixed. On the other hand, as shown by (25) and (347!
for a fixedd, N increases linearly with respect f§. Now,
chooser as in (5) such that increases linearly with respect to[1s]
N. Then, from (24), we observe that the probability that the
adversary wins decreases exponentially fast wthHence, [19]

we have the bound oRr(A wins) stated in the theorem.
|

Pr = (26)

[16]
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