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Abstract—We consider a Gaussian two-hop link where the
source and the destination can communicate only via a relay
node who is both an eavesdropper and a Byzantine attacker.
Both the source and the destination have transmission capability,
and the relay node receives a superposition of their transmitted
signals plus noise. The proposed coding scheme ensures that
the probability of an undetected Byzantine attack decreases
exponentially fast with respect to the number of channel uses
NT while the loss in the secrecy rate can be made arbitrarily
small. This improves our previous result where this probability
only decreased exponentially with respect to

√

NT .

I. I NTRODUCTION

Information theoretic secrecy, first proposed by Shannon [1],
is an approach to study the secrecy aspect of a communication
system against acomputation power unbounded adversary.
This approach was later applied to the wiretap channel [2],
[3] and recently extended to several other models. including,
for example, the multiple access channel [4] and the broadcast
channel [5], [6].

The impact of information theoretic secrecy on cooperative
communications was investigated in references [7]–[10]. [7]–
[9] considered the case where a relay node is “curious but
honest”. That is to say that the relay is not trusted with
confidential messages, yethonestly employs its designated
relaying scheme. An important insight that is gained from this
body of work is that recruiting the help of such a relay can be
useful in achieving a higher secrecy rate than merely treating
it as an eavesdropper [7].

It is a next natural step to consider the problem where the
relay node is curious and is potentiallydishonest [10]. An
example for this type of behavior can be that the relay node
stops transmitting, which is relatively easy to detect. A more
detrimental scenario would be for the relay to deceive the
destination into accepting a counterfeit message by actively
manipulating the signals it relays, which we refer to as the
“Byzantine attack” in this work. Reference [10] found that
for a two-hop link with untrusted relay node, it is possible to
detect such behavior reliably with an arbitrarily small amount
of loss in secrecy rate. Both a noiseless adder model and a
Gaussian model were considered.

This work is a continuation and presents a significant
improvement over [10] for the two-hop Gaussian model. For
this model, the result from [10] shows the probability that a
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Fig. 1. The Gaussian two-hop link. Phase 1 is indicated by solid line, and
phase 2 by dashed line. R/E: Relay/Eavesdropper.

Byzantine attack goes undetected decreases exponentiallywith
respect tothe square root of the number of channel usesNT ,
rather thanNT itself. This is essentially a consequence of
the fact that the scheme used in [10] for Byzantine detection
entailed using a wiretap code which can provide strong secrecy
and employing a linear decoder. The only known code with
these properties is for the Type II wiretap channel, which is
composed of binary erasure links. Reference [10] in essence
“transforms” the Gaussian model into a binary erasure channel
using repetition codes, which results in the term

√
NT .

In this work, we present our new finding: the existence of a
wiretap code offering both strong secrecy and a linear decoder,
proved via a novel combination of Nested Lattice Codes [11]
and privacy amplification [12]. As a result, an exponential
decrease of the undetected attack probability with respectto
NT is obtained. The key is to view the1-bit information leaked
through observing the real sum of two nested lattice points
[13] as the “spoiler information” [14]. This fact is then used
to bound Rényi entropy and prove strong secrecy.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The Gaussian two-hop link with a Byzantine relay node
is shown in Figure 1. Node1 wishes to send a confidential
messageW to node2. Since it can not communicate with
node2 directly, it recruits the help of a relay node, who is
not trusted with the messageW . We assume both node1 and
2 can transmit [9], and the relay receives a superposition of
their transmitted signals plus noise, which is the case in a
wireless environment. We letXi, i = 1, 2, and Xr denote
the signal transmitted by node1, 2 and the relay respectively,
and similarlyYi, i = 1, 2 andYr denote their received signals
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respectively. After normalizing the channel gains, we have

Yr = X1 + X2 + Zr (1)

Y2 = Xr + ZR, Y1 = hXr + Z ′

R (2)

where Zr, ZR and Z ′

R are independent Gaussian random
variables with zero mean and unit variance, andh is the
normalized channel gain. SinceY1 is not used in the scheme
described in this work, it is omitted in Figure 1 for clarity.
We assume each node is half duplex. Also, for simplicity, we
assume that each node has an average power constraintP .

Observe that since the relay can be a Byzantine adversary,
node2 may or may not accept what it decodes as a genuine
message from node1 based on certain criteria.

The Byzantine detection problem for secure communication
can then be stated as follows: Let̂W be the estimate ofW
computed by the destination, i.e., node 2. We wish to find the
rateRe of W , defined asRe = lim

n→∞

1
nH (W ), such that the

following three conditions are satisfied:

1) Reliability: When the relay is honest, bothPr(W 6= Ŵ )
and Pr(Ŵ is not accepted by Node 2|W = Ŵ ) is
negligible, i.e., they decrease exponentially inn.

2) Byzantine Detection: The probability that the Byzan-
tine adversary wins, defined asPr(A wins)

∆
=

Pr(Ŵ is accepted by Node 2|W 6= Ŵ ) is negligible.
3) Strong Secrecy: I(W ; Y n

r ) is negligible. SinceY n
r is

the observation of the eavesdropper, this means the
adversary has virtually no idea on the value ofW .

III. SECRECY

In this section, we briefly review the communication scheme
when the relay is “curious but honest”, which will be an
underlying building block in the sequel. Each node is half-
duplex, and consequently we have a two-phase scheme. During
phase one, nodes1 and2 transmit, and the relay node receives.
During phase two, only the relay transmits. It was shown in [9]
that these two phases can be used to facilitate the transmission
of the confidential messageW from node1 to 2: The channel
alternates between phase one and phase two. During phase
one, node1 transmits the confidential message viaX1 and
at the same time node2 sends a signalX2 to jam the relay
node. During phase two, the relay node transmits to node2
based on the signal it received during phase one. Since node
2 knowsX2, it can subtract it to obtain a cleaner signal. The
relay node, however, does not knowX2 and hence can only
observe a noisy version ofX1. Intuitively, this means node1
can transmit to node2 at a rate higher than the relay node can
decode. The exceeding part of the rate can be used to convey
confidential messages. Reference [13] used this idea with the
compute-and-forward relaying [15].

In this work, we utilize this scheme from [13] as it offers
the algebraic structure that facilitates reliable detection of a
Byzantine attack. The scheme uses Nested Lattice codes [11]
as follows:

Consider a pair ofN dimensional nested lattice pair{Λ, Λc}
which is properly designed as in [11].Λc ⊂ Λ. The modulus
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Fig. 2. The Lattice-input Wiretap Channel

operation is defined asx mod Λc = x − argmint∈Λc
d(x, t),

whered(x, t) is the Euclidean distance betweenx andt. The
fundamental region of a latticeV(Λc) is defined as the set
{x : x mod Λc = x}.

DefineR0 as the rate of the lattice codebook, i.e.,

R0 =
1

N
log2 |Λ ∩ V (Λc) | (3)

where|A| is the cardinality of the setA. The signal transmitted
by each node is given byXN

i =
(

tNi + dN
i

)

mod Λc , i = 1, 2,
wheretNi ∈ Λ∩V (Λc), anddN

i , i = 1, 2 are two fixed vectors
in V (Λc) and are known by the relay node.tN1 is computed
from the confidential message.tN2 is independent fromtN1 , and
is chosen fromΛ∩V (Λc) according to a uniform distribution.
Hence,XN

2 = tN2 +dN
2 mod Λc serves as the jamming signal

to confuse the untrusted relay node.
The relay node will then decodetN1 + tN2 mod Λc and

transmittN1 +tN2 +dN
3 mod Λc during phase two, wheredN

3 is
a fixed vector inV (Λc) and is known by node2. Node2 then
decodeŝtN = tN1 + tN2 mod Λc from the signal it received
during phase two. An estimate oftN1 , denoted bŷtN1 , is then
computed from̂tN − tN2 mod Λc.

With this coding scheme, the Gaussian two-hop link is
equivalent to the lattice input wiretap channel shown in Fig-
ure 2. Reference [15] proves that, whenR0 < 1

2 log2(
1
2 + P ),

the probabilityPr(t̂N1 6= tN1 ) decreases exponentially with
respect toN . Reference [13] proves the eavesdropper can get
at most 1 bit of information from its observation; see also [16].
Hence the achievable secrecy rate is [13]:

Re = [R0 − 1]+ (4)

where[x]+ equalsx if x ≥ 0 or 0 otherwise.
Remark 1: We emphasize the coding scheme [13] isnon-

linear. To achieve (4), the codewords are generated in an i.i.d.
fashion from the setΛ ∩ V (Λc). Hence each codeword is
composed of a sequence of lattice points. These codewords
are then randomly binned into several bins, such that each bin
by itself is a codebook with a rate of1 bit per channel use.
The encoder at node1 first chooses a bin according toW ,
then randomly chooses a codeword to transmit from that bin
according to a uniform distribution. This is needed in order
to confuse the eavesdropper. However, it also introduces a
nonlinear mapping between the codewords and the message
set.

IV. B YZANTINE DETECTION

For Byzantine detection, we use the algebraic manipulation
detection (AMD) code [17]. An AMD codeword is composed
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of three parts:{s, x, h}, wheres is thed×1 vector composed
of elements fromGF(qr) and represents the message. The
componentx is called the random seed and is also from
GF(qr). h is the hash tag and is computed according to
the hash rule:h = xd+2 +

∑d
i=1 six

i, where si is the ith
component ofs and the addition and multiplication is defined
overGF(qr). Suppose node2 receivess′, x′, h′, wheres′ 6= s.
Let ∆x = x′ − x. ∆h = h′ − h. Then [17] has the following
result:

Theorem 1: [17, Theorem 2] Assume at least one ofs′ −
s, ∆x, ∆h is not zero. If the distribution ofx conditioned on
{∆x, ∆h, s′, s} is uniform over the fieldGF(qr), q being a
prime, andd+2 is not divisible byq, then the probability that
the hash rule holds for{s′, x′, h′} is bounded byd+1

qr .
Remark 2: As shown in [10, Section III.B], transmitting an

AMD tuple {s, x, h} using a randomly generated wiretap code,
whose decoder is nonlinear, will render∆x correlated with
x. Hence conditioned on{∆x, ∆h, s′, s}, x is not uniformly
distributed and Theorem 1 can not be used.

V. M AIN RESULTS

As eluded in Remark 1 and 2, a new coding scheme is
needed to properly combine Byzantine detection and secrecy
sharing scheme for the Gaussian model. In [10], we cir-
cumvented this problem by transforming the channel into a
Type II wiretap channel via the repetition code. In this work,
we describe a different coding scheme to transmitx and h,
which leads to faster decrease in the probability of undetected
Byzantine attack with a cost of arbitrarily small loss in the
strong secrecy rate.

A. Extracting Strong Secrecy from a Lattice Point

1) When Λc = qΛ for a prime q: In this case, the set
(Λ+dN )∩V (Λc) is isomorphic to a finite field, as shown by
Lemma 1. The proof is omitted due to space limitation, please
see [18].

Lemma 1: When Λc = qΛ for a prime q and Λ has full
rank, (Λ + dN )∩V (Λc) , for the modulus-Λc plus operation,
is isomorphic to the group of a finite fieldGF(qN ).
The reason that we consider this case is that the resulting
coding scheme has a linear decoder and hence can be used to
transmitx andh. This is shown by the following theorem:

Theorem 2: For an integerr, such that

0 ≤ r ≤ N

[

l −
1 + ε

log2 q

]+

(5)

whereε > 0 is a constant that can be arbitrarily small, there
exists a linear mappingg from GF(q)N to GF(q)r such that

1) g has full row rankr.
2) DefineȲ N

r =
∑2

i=1((t
N
i + dN

i ) mod Λc), which is the
signal component in the observation of the eavesdropper
in Figure 2. WhentNi , i = 1, 2 are uniformly distributed
over (Λ + dN

i ) ∩ V (Λc) and are independent of each
other, we have

I
(

g
(

tN1
)

; Ȳ N
r

)

≤ 2e−βN (6)

for a certain constantβ > 0.

Before proving the theorem, we need several supporting
results: First, therepresentation theorem from [13] is useful:

Theorem 3: [13, Theorem 1] [16, Corollary 1] For any
u1, u2, such thatui ∈ V (Λc) , i = 1, 2,

∑2
k=1 uk is uniquely

determined by{T,
∑2

k=1 uk mod Λc}, whereT is an integer
such that1 ≤ T ≤ 2N .
Based on Theorem 3,̄Y N

r can be represented by{(∑2
i=1(t

N
i +

dN
i )) mod Λc, T }. SincedN

i , i = 1, 2 are known by all nodes,
this means̄Y N

r can be represented by{(tN1 +tN2 ) mod Λc, T }.
We also need the following result: LetG be taken from

a set of linear mappings fromGF(q)N to GF(q)r according
to a uniform distribution. HenceG can be represented as a
matrix overGF(q) with r rows andN columns. ForG, we
have the following lemma. The proof is omitted due to space
limitation, see [18].

Lemma 2: The probability thatG has full row rank is
greater than1 − qr−N .

Finally, we need the results from [12]: For a discrete random
variable X , let H2(X) denote the Rényi entropy.H(X)
denotes the Shannon entropy. The notion of “universal hash
function” is as defined in [12].

Lemma 3: [12] The set of linear mappings is a class of
universal hash function.

Theorem 4: [12, Corollary 4] Let A, B be two random
variables. LetA be the alphabet setA is defined on. LetG
be chosen according to a uniform distribution from a class of
universal hash function fromA to GF(q)r . For two random
variablesA, B, if for a constant c,H2(A|B = b) > c, then

H(G(A)|G, B = b) > r log2 q − 2r log
2

q−c/ln 2 (7)

Now, with the supporting results at hand, we provide the
proof for Theorem 2:

Proof: Define a ⊕ b as a + b mod Λc. Then for the
distribution for tNi , i = 1, 2 stated in Theorem 2,tN1 ⊕ tN2
is independent fromtN1 . Therefore we have:

H2

(

tN1 |tN1 ⊕ tN2 = tN
)

= H2

(

tN1
)

= N log2 q (8)

Let T be the integer defined in Theorem 3 and|T | be the
cardinality of the set of possible values forT . Then according
to [14, Theorem 5.2] [19, Lemma 3], for a given integera, 1 ≤
a ≤ 2N andtN ∈ Λ∩V(Λc), with probability1− 2−(s/2−1):

H2

(

tN1 |tN1 ⊕ tN2 = tN , T = a
)

(9)

≥ H2

(

tN1 |tN1 ⊕ tN2 = tN
)

− log2 |T | − s (10)

= N (log2 q − 1) − s (11)

Note that the adding group ofGF(qN ) is isomorphic to
GF(q)N . Hence we can writetN1 ∈ GF(q)N . Let G be
taken from a set of linear mappings fromGF(q)N to GF(q)r

according to a uniform distribution. Then according to Lemma
3, G is a universal hash function. According to Theorem 4,
from (11) we have:

H
(

G
(

tN1
)

|G, tN1 ⊕ tN2 = tN , T = a
)

(12)
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≥ r log2 q − 2r log
2

q−c

ln 2
(13)

wherec = N(log2 q − 1) − s.
Since (11) holds with probability1−2−(s/2−1), (13) means

H
(

G
(

tN1
)

|G, tN1 ⊕ tN2 , T
)

(14)

≥
(

1 − 2−(s/2−1)
)

(

r log2 q − 2r log
2

q−c

ln 2

)

(15)

Chooses = εN , where0 < ε < log2 q − 1. Chooser such
that for δ > 0:

r log2 q < N (log2 q − 1) − s − Nδ = N (log2 q − 1 − ε − δ)
(16)

which yields (5). For thisr ands, from (15), we observe that
there existsβ > 0, such that

I
(

G
(

tN1
)

; tN1 ⊕ tN2 , T |G
)

≤ e−βN (17)

We next use the fact that for sufficiently largeN , most G
will have full row rank as shown in Lemma 2. Therefore,
with a uniform distribution fortNi , i = 1, 2, tN1 and tN2 being
independent, there must exists aG = g, such that

1) g has full rank.
2) I

(

G
(

tN1
)

; tN1 ⊕ tN2 , T |G = g
)

≤ 2e−βN

Hence we have proved Theorem 2.
2) The General Case: When (Λ, Λc) does not have the

self-similar relationship as described in Section V-A1, wecan
still extract strong secrecy from a lattice point using the same
method, except that the resulting coding scheme is not linear.
Let ⌊x⌋ be the operation that roundsx to the nearest integer
less than or equal tox. Define N0

∆
= ⌊log2 |Λ ∩ V (Λc) |⌋.

Recall thatN is the dimension of latticeΛ, andR0 is defined
in (3). Hence we haveN0 ≥ NR0 − 1. Choose the subsetK
of the codebook(Λ + dN

1 ) ∩ V (Λc) that yields the minimal
average decoding error probability with the lattice decoder and
has size|K| = 2N0 . Definev as the one-to-one mapping from
K to GF(2N0). Then we have the following theorem:

Theorem 5: For an integerr0, such that

0 ≤ r0 ≤ N [R0 − 1 − ε]+ (18)

for a constantε > 0, there exists a linear mappingg from
GF(2)N0 to GF(2)r0 such that

1) g has full row rankr0.
2) When tN1 is uniformly distributed overK, tN2 is uni-

formly distributed over(Λ+dN
2 )∩V (Λc), tN1 , tN2 are in-

dependent of each other, we haveI
(

g
(

v(tN1 )
)

; Ȳ N
r

)

≤
2e−βN for a certainβ > 0.

The proof is similar to Theorem 2 and therefore omitted.
Theorem 5 can be used to construct an encoder with rate

arbitrarily close to[R0 − 1]+, as shown below:

Let g′ be an(N0 − r0) × N0 matrix such that

[

g′

g

]

is

invertible. DefineS andS′ such that
[

g′

(N0−r0)×N0

gr0×N0

]

v(tN1 ) =

[

S′
(N0−r0)×1

Sr0×1

]

(19)

ThenS = g(v(tN1 )). DefineA as the inverse of

[

g′

g

]

, then

the encoder is given by:

tN1 = v−1A

[

S′
(N0−r0)×1

Sr0×1

]

(20)

whereS ∈ GF(2r0) be the input to the encoder. We assumeS

is uniformly distributed overGF(2r0). tN1 ∈ Λ∩V(Λc) be its
output.S′ represents the randomness in the encoding scheme.
We observe that, if{S′

(N0−r0)×1,Sr0×1} is uniformly dis-
tributed overGF(2)N0 and (20) is used as the encoder,tN1
is also uniformly distributed over the setK. SinceG = g is
chosen whentN1 has a uniform distribution overK, this means
that when (20) is used as an encoder, the secrecy constraint
in Theorem 5 still holds.

B. Transmitting the AMD tuple

We now describe how to use the coding scheme in Section
V-A to transmit an AMD tuple. Note that the distribution
of hash tagh is in general not uniform. Hence, we can
not directly use the linear coding scheme in Section V-A
to transmit h, which needs an uniform input distribution.
However, this problem can be solved by introducing another
random seedk from GF(qr), which can be generated via
the linear coding scheme in Section V-A. From Section V-A,
k is uniformly distributed overGF(qr). Hence h can be
transmitted by usingk as a one-time pad [1].

The transmission is hence divided into 4 stages:
1) x ∈ GF(qr) is extracted from anN dimensional lattice

code as shown in Section V-A1.
2) k ∈ GF(qr) is extracted from anN dimensional lattice

code as shown in Section V-A1. Letk̂ be the estimate
of it computed by node2. Let P1 be the average power
per channel use of theN dimensional lattice code.

3) u = h ⊕ k is transmitted via the relay to node2 using
an r-dimensional lattice code atlog2 q bits per channel
use. Node2 does not transmit during this stage sinceh
is already protected by the one-time padk. Let û be the
estimate of it computed by node2. Let P2 be the power
per channel use of ther dimensional lattice code.

4) s is transmitted via the encoder described in Section
V-A2. Let ŝ be the estimate ofs computed by node2,
which corresponds tos′ in Theorem 1.

Note that bothP1 and P2 are only a function of the rate
of their respective lattice code. HenceP1 and P2 are only a
function of q. Then we have the following lemma:

Lemma 4:

I (x; ∆x, ∆h, ŝ, s) < 4 exp(−βN) (21)

whereβ is a positive number defined in Theorem 2.
The proof of Lemma 4 is based on the strong secrecy offered
by Theorem 2 and Theorem 5 and is omitted here due to
space limitation. We next link Lemma 4 and Theorem 1 with
Pinsker’s inequality which leads to ourmain result:

Theorem 6: For the Gaussian two-hop link, for a rate
smaller but arbitrarily close toRe given by (4), and a total
number of channel usesNT = O(N):
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1) When the relay is honest, the confidential mes-
sage W can be transmitted at this rate such that
all the three terms Pr(W 6= Ŵ ), I(W ; Y n

r )

and Pr
(

Ŵ is not accepted by Node 2|W = Ŵ
)

de-
crease exponentially fast withN .

2) When the relay is dishonest,Pr(A wins) decreases
exponentially fast withN .

Proof Outline: Here, we only outline the proof for part
2), due to space limitations. For the complete proof, see [18].
The proof technique used is similar to the one used in [10],
where Lemma 4 corresponds to [10, Lemma 1]. As in [10],
we use “HRH” for “hash rule holds” when fors 6= s′,
xd+2 +

∑d
i=1 six

i = x′d+2 +
∑d

i=1 s′ix
′i + ∆h. This means

the messages′, x′, h′ will be accepted by node2. Hence the
probability that the adversary wins is given by:

Pr (A wins)

=
∑

x,∆x

∆h,s,s′

Pr (HRH|x, ∆h, ∆x, s, s′)
Pr (x|∆h, ∆x, s, s′) Pr (∆h, ∆x, s, s′)

(22)

DefineQ(A wins) as the term (22) withPr (x|∆h, ∆x, s, s′)
replaced byPr(x). Then as shown in [10, Lemma 2], Lemma
4 leads to the following result due to Pinsker’s inequality:

|Pr (A wins) − Q (A wins) | ≤
√

(8 ln 2) exp(−βN) (23)

From Theorem 1,Q (A wins) is bounded byd+1
qr . Hence

Pr (A wins) ≤
√

(8 ln 2) exp(−βN) +
d + 1

qr
(24)

Each{s} conveysdr log2 q bits of information, wherer is
defined in Theorem 2. Hence the total number of channel uses
NT is given by

NT = 2N + r +

⌈

dr log2 q

NRe

⌉

N (25)

sinceN channel uses are needed to transmitx or k, and r
channel uses are needed to transmitk ⊕ h. The third term
in (25) is the number of channel uses needed to transmits,
where⌈x⌉ is the operation that roundsx to the nearest integer
greater than or equal tox.

The overall rateRT is given byRT = dr log
2

q
NT

. The average
power per channel usePT is given by

PT =
P12N + P2r + P

(

dr log
2

q
Re

)

NT
(26)

RT and PT can be made arbitrarily close toRe and P
respectively by choosing a sufficient larged. OnceRT andPT

is fixed,d is fixed. On the other hand, as shown by (25) and (5),
for a fixedd, NT increases linearly with respect toN . Now,
chooser as in (5) such thatr increases linearly with respect to
N . Then, from (24), we observe that the probability that the
adversary wins decreases exponentially fast withN . Hence,
we have the bound onPr(A wins) stated in the theorem.

VI. CONCLUSION

In this work, we proved that for the Gaussian two-hop model
where the relay is both an eavesdropper and a Byzantine
attacker, the probability that a Byzantine attack goes unde-
tected can decrease exponentially fast with respect to the
total number of channel uses. In this process, we showed
how to provide strong secrecy via a novel combination of
Nested Lattice Codes and privacy amplification. Furthermore,
we showed that the secrecy rate loss caused by the redundancy
introduced for Byzantine detection can be made arbitrarily
small.
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