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Abstract—We consider a three node network in which a pair data incurs at the relay node must be limited, rendering it
of nodes with stochastic arrivals communicate with each otter  jmpossible for the relay to code over long blocks.
with the help of an intermediate relay. The bi-directional nature To address the first problem, a natural solution is to allow

of the traffic, in this setting, poses a new energy delay tradeff. - . . .
Namely, the relay node may choose to cache packets from onelhe relay to cache the traffic in one direction and transmit

direction and send it only after packets from the other diredion ~ Only after traffic from the other direction arrives, and eayp!
arrive, using an XOR network coding scheme. Doing so would network coding [4]. Doing this is advantageous, since combi
save energy, but would also incur some delay for the packet. ing two (or more) transmissions into one will allow the relay
In this work, we analyze this trade-off when the relay node 5 save energy. However, we immediately see that doing this
queues packets from each direction and uses a first-come-firs . . - .
serve policy. We show that under an even traffic load where will increase th_e_ delay of the trafflc_: smcg we_ must wait for
one would hope for the most energy savings, to achieve thethe packets arriving from the “more idle” direction. Theme,
minimum energy expenditure promised by the XOR network there is a trade-off between energy consumption at the relay
coding scheme, the average delay has to go te. and the end-to-end communication delay.
Energy-delay trade-off has been considered previouslg for
Keywords: Two-way relay, queuing, energy-delay trade-offnymber of different wireless communication scenariosnro
the physical layer perspective, reference [11] considees t
I. INTRODUCTION average energy consumption when channel coding may be
The two-way relay network considered in this work consistdone over a limited number of independent channel fading
of two nodes who wish to communicate with each other viasiates for a multiple access channel. Reference [12] eaglor
relay node. Significant recent effort has been dedicatehliso tthis for a relay network. From a medium access layer per-
model, in particular, to understanding its informatioedhetic spective as well, it is widely accepted to “wait” for good
performance. The capacity region under two-phase/meitipchannel states and save energy at the cost of delay. This
phase protocols and decode-and-forward relaying is predertrade-off is considered in [13] and the lower bound of energy
in [1], [2]. Reference [2] also computes these for Gaussadh f consumption when delay goes is given and shown to
ing channels. Achievable rates for the two-way relay nelwobe tight. This result is extended to a multi-user scenario in
are given in [3]. Practical relay coding schemes are prappogd4]. We note that both results are restricted to single hop
in [4], [5] and power/rate optimization problems are présdn communication. The energy delay trade-off therein is altesu
in [6]. The model is extended to multiple relay nodes, and tlad the concave relationship between the transmission power
capacity scaling law when the relay sum power is fixed arahd the service rate. By comparison, the energy delay trade-
number of relays goes to infinity is considered in [7]. off in two-way relay network considered here results from
There are two implicit assumptions behind all these workthe lack of coordination of traffic demands at the two source
(i) Traffic arriving at the two source nodes are modeled awdes.
deterministic flows with constant rates. (i) To obtain the In this work, we investigate the energy delay trade-off in
information theoretic achievable rates, the code wordtkenga bi-directional relay network when the relay node uses a
is assumed to be infinity. While these assumptions are widéisst-come-first-serve policy. The details of the system aiod
used and are essential to simplify the analysis, there ataice and the relevant assumptions are presented in Section Il. In
scenarios under which they may not hold. A likely scenario Bection Ill, we analyze the stationary behavior of the gseue
that the packets can arrive at the transmitters in a stdchastt the relay node. The average packet delay and average
fashion. Hence, one can no longer guarantee that at a certiiergy consumption are related via the queue capacityat rel
time instant, the relay would receive data from both dimwi node. Our analysis shows that, in the case where we have a
In this case, a relevant issue is that of the characterizatio symmetric traffic load coming in from both directions, where
the stability region [8]-[10] under assumption (ii). In difth, one would expect to harvest the energy savings of the XOR
commonly envisioned applications such as voice and videombining the most, to achieve the minimum energy, the end-
are delay sensitive. Therefore, the delay that the receiviedend delay goes to infinity. This is equivalent to saying th
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the relay node
hs un relay. In the next section, we will explore the relationship
@ ® @ the average delay with the average transmission power of the
Broadcast relay. .
_ Remark 1: We assume that the traffic generated from the
Fig. 1. System Model two ends are independent. This assumption may not hold in

a scenario where the traffic of node 2 is triggered by the
response from node 1. The assumption on the other hand is

queues become unstable and leads to the conclusion that . : .
. . . . . appropriate when the two end nodes are simply routers in an
network coding protocol must be used in conjunction wit .
ad hoc network forwarding data to each other.

other protocols in order to ensure the stability of the gqseue
Remark 2: We assume the queues at the relay node have

1. SYSTEM MODEL AND ASSUMPTIONS finite capacity. This is a seemingly different starting picis
We consider a packet-based communication svstem ompared to previous work that assumes infinite buffer size
P M ’ fﬁ]—[lO]. The connection between these works will become

picted in Figure 1. The channel is assumed to be static, and I D arent when we let the capacity of the queue. i.e.. thebuff
channel state information is assumed to be globally knowp? pactty q R

We assume the packets arrive at node 1 and node 2 frglr%e’ go toco in order to minimize the energy consumption.
two independent Poisson processes with parametensd 1

respectively. The added redundancy and the energy of a packe

are chosen in such a way that each packet can be decoded I1l. ENERGY DELAY TRADE-OFF

reliably at the relay node, even if packets arrive at theyrela

node at the same time. Under this assumption, the traffic fl ) . —

at the relay node from node 1 and node 2 are also Pois?éynQueumg Model and Sationary Distribution

processes with the same parameters. Based on the transmission policy at the relay described in
At the relay, the decoded traffic flows from node 1 and noqge previous section, we remark that at most one queue at the
2 are stored in two queues, with buffer capadity and L>  yejay node can be non-empty. Therefore, the state of queues
respectively. The policy employed by the relay to process thy ihe relay node can be characterized with a single number
packets from the queues is described below. S € [—Ls, L1]. Since the future state is independent from its

1) When a packet arrives, if the queue holding the traffigast given the current stat,is a continuous time finite state
from the opposite direction is not empty, the relayiarkov chain.

sends out the coded version of the binary sum of this pocal that the traffic flows arriving at the relay node are
packet and the packet in the queue from the 0ppOS{g, ingependent Poisson processes with parametensd

direction immediately. For the XOR network coding (Geenectively. Therefore, for a given time interval, we have
work, we assume each packet contains same numbelﬁpé

. i . . transition probabilities:

information bits. Again, we assume the redundancy and

the energy of each packet are chosen such that they can

be successfully decoded at both node 1 and node 2. £ (S (t+At) = a+1|S(t) = a) = At + 0 (At),

2) When a packet arrives, if the queue holding the traffic a€[-La Ly —1] (1)
from the opposite direction is empty, then the relay P(S(t+ At) =a—1|S(t) = a) = pAt + o (At)
stores the packet in the queue that contains packets
for the arrival direction. If this queue is full, the relay
sends out the oldest packet in the queue immediately
and makes room to store this latest packet. Again, \Jé'ne resulting continuous time Markov chain is shown in Fig-
assume the redundancy and energy of each packet @f@ 2. We note that Figure 2 is tantamount to/gM /1 /(L1 +

chosen such that it can be successfully decoded at fts+ 1) system [15]. Therefore, they have the same stationary
intended destination. distribution, given by (3) below, where = \/p.

)

a e [7.[/2 + 1,L1] (2)

In both cases, we assume the packet size is small enough
such that the transmission delay is negligible. In otherdspr ] (1—wu'tr2 w1
the transmissions can be modeled as points on the time axis. P(S=i)=q 1oufrrrer ®3)
Therefore, the average delay experienced by the packetdsequ

the average amount of time they spend in the queue at the

TitLat1’ u=1

i=—Lo.I,
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B. Average Power Remark 4: Minimal energy consumption is achieved when

The average power expended by the relay node is definfeti™ L2 90€s t0cc. If Ly + Ly — oo, we observe

as: E[P] — (A — p)ep + jica (13)
E[P]= lim F { }
At—0 C. Average Delay
= lim Z =) P(S(t+At) =4|S(t) = )Qj Let us focus on the delay experienced by a packet sent
A0 4 j At from node 1 to node 2. The case of the other direction can be

(4) addressed in a similar fashion. Suppose that the packeesrri

t 7. Then the distribution of the deldy is given by
Here ¢;; is the energy cost associated with state transmon

1 — j. From the model described in the previous section, we P(T<t) ZP(T <HS(r)=i)P(S(r)=1i) (14)
know thate;; is decided by the coding scheme used within
each packet and the channel conditions.
Let =, be the energy cost to successfully multi-cast thIIgote that there are only two possible ways for the packet to
XOR-ed packet to both node 1 and node:s2.is the energy eave the queue.
cost to successfully send the packet from the relay to nodel) Enough packets from the opposite direction arrive so
2. Similarly, . is the energy cost to send the packet from  that it gets served with XOR-ed with a packet from the
relay to node 1. Howe,, ¢y, . are computed is not relevant other queue.
to our discussion. In practice, they may be approximated by2) Too many packets from node 1 arrive after this packet
the following equations: so that it needs to be transmitted by itself.
R Therefore each ternP (T' < t|S (r) =4) in the summation
&~ M (2 ' 1) /ha ®)  can be computed as:
e~ Ny (272 —1) /hg (6)

. max{es.el) @ PESUSM=0)=Pm®2i+1SF)=i) 15

+P(ng(t) <i+1,n(t) > LIS (1) =1)
where Ny, N, are the variance of the additive Gaussian noise,
seen by nodel and node2. h4,hs are the channel gains
from the relay node to nodé and to node2 respectively
(see Figure 1)R; is the rate used from nodgi = 1, 2.

wheren;(t) is the number of packets received from nade
during time (7, ¢ + 7].
The first term in (15) is given by:

For the state diagram in Figure 2, since there are only finite i (Mt)k
number of states, we may manipulate (4) by interchanging the P (n2 (t) > i+ 1]S (1) =i) =1 Te_“t (16)
summation and the limit, as shown below: k=0
i P(S(t)=4)P(S(t+At)=j|S = i)g @) The second term in (15) can be computed as:
11m i
At—0 4= At ! P(ny(t) <i+1,n(t) > Li|S(r) =)
=3 — 18 =1 =P(na(t) <i+1)P(n1(t) > L
N gy B0 =) P(S(t+ AL = IS z)gij © ('2() )P ( 1()_ 1) an
o Al () "
e (-
= Y P(S=i)P(SEt+At)=j|S=i)e; (10) k=0 n=0
\z‘ JI<1 Note that, with the Poisson flows, the residual time [15] the
packet has to wait to “see” a packet from the opposite dveacti
= ZP i) peq + P (S = L1) A&y is an exponential random variable with paramété.
With these preparations, we are now ready to compiifg.
+ ZP i) Aeq + P (S = —Lo) pec (11) E[T] = / t%P(T <t)dt (18)
0
Substituting (3) into (11), fow # 1, we obtain: = Z/ t%P (T < t|S=1i)dtP (S =1i) (19)
wLli Lot 1 i 70
E[P] = A A 1M€a T Lt 1)\8a Each term of the summation in (19) can be expressed as:
(u—1)ubrtlz u—1 * d ,
wlitLatl _ )‘Eb T BT M (12) /(; tEP(T <SS =1i)dt (20)
Remark 3: From (12), we readily see that the average - _ /OO d (1—P(T <t|S=1)dt (21)
power consumption by the relay node depends only on the 0 dt
traffic load from the source nodes and the total storage @gpac / *~ .
> = 1-P(T<tlS=1)dt 22
at the relay,L; + L». It does not depend on the service order. 0 (T < ) (22)
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We notice thatl — P (T < t|S = ) is the sum of terms of the will increase with L.
form ct“e~"". Therefore the integral can be computed using ;

i (Li+1)—1 ke w
the following equation, where is a non-negative integer. Z Z ! ( A ) 1z ( k4w )u’
o0 i—0 w=0 k=0 Atu) A+mr T\ w
/ e Mdp = A"t gl (23) (28)
0 (L1+1) 4 L, A k Mw k4w .
. | > 3 25 (535) g (o)
Using this result, along with (17), (16), (22) becomes: i=1 w=0k=0 H 29)

(< (1) A"\ T ,
PSS ) e g0e oy w1y,
- Lo Atp) A4p)tt\w

w=0 k=0

S L) (5 e o (30)

— i A+ Li i Li—1 k
w=0 k=0 L . A ut k+w '\ ;
: =52 () g ()
Where( w* W) = Lull supstituting (25) and (3) back (31)

to (19), we obtain the average delay from node 1 to nodetfe minimum delayl’ under the average power constraint is
as (26) foru # 1. The delay seen by traffic from node 2 tayefined as (32) below. We are interestediras a function of

node 1 is similar, as shown in (27). P, which will yield the optimal energy delay trade-off curve
achievable under this relay policy.
B [T T= Lmi{l max {E12 [T], Exn [T]}

(iilel(Aiu)k( u“’ml(’;+w>ui> o st.E[P]> P (32)

i=0 w=0 k=0 A+ p) . . .
CLotl Lo It follows from the previous discussion that the power
u —u (26) constraint can be translated to a lower boundon+ L.
From the monotonic properties dE12[T] and Es[T] we
have just argued, we know that the equivalent constraint on
Eoy [T Ly + L, must be binding. Thereforé, + L, is fixed. Under
Ly i Lo—1 k w this condition, we have shown above thag; (7] is a strictly
= <Z Z Z ( i ) A — ( ktw )ui) increasing function of.;, and F», [T is a strictly decreasing
par e S SACA RV VA O S function of L;. Also, it is obvious to see that whebh, = 0,
uletl g L2 E[T] = 0 and whenLy = 0, E91[T] = 0. Therefore, the
wLitLe+1 — 1 @7) optimal solution can only be of the following form and can
be easily found via a bisection method:
L, is either Ly, or Ly, + 1. L, is chosen such
that E12 T Lla > E21 T Lla ,E12 T Ll,a+1 <
D. Energy Delay Trade-off By [T] (IELL(%—fi)? 7] (L1.0) 71 )
Notice thatT can be reduced by employing time sharing
tweenlL; = L1, andL; = Ly ,+ 1 while keepingL; + Lo
fixed. The resulting energy delay trade-off curve is given in

uL1+L2+1 —1

w

An immediate thought following the analysis above is thBe
selection ofL; and L, to minimize traffic delay under a relay

power constraint. Before doing that, we prove a monotonﬁgure 3 fore, — ey — . = 1. The horizontal dotted lines
a — — Cc — &4

property of the average delay, which will be useful later. depict the average relay power consumption wher- Ly —
We know from (12) that there is a bijection between thg, for different A, 1. We observe that wheh and: are close
average power and total storage capadity+ L. AlSO, if {5 each other, a wider trade-off between energy and delay can

Ly + L, increases, the average power consumption decreasggs.achieved. When the traffic load becomes less even, the
Therefore, we only need to examine the behavior of thehievable trade-off range becomes smaller.

average delay (26) (27) under fixéd + Lo. If L1+ Lo is fixed

and L, increases, from (27), we readily see tha [77] will _

decrease. What is less obvious is tis[T] will increase, as E- The Symmetric Case A = u

shown below. Supposk; increases by 1. Then , as shown in In Figure 3, we observe that when= p, to achieve the
(31), the first term in (26) will increase by at leastold. Since lower bound on average power, the average delay will go to
L, decreases by 1, the remaining part in (26) will decreaseat We next prove this observation formally via the following
least byu fold. Therefore, their produck:»[1"] will increase. lemma.

By a similar reasoning, it can be shown thatlif is fixed, Lemma 11 P—pue, ~ O(L™Y), T ~ O(L) with Ly = Ly =
then E15[T] will increase withL;. If L, is fixed, thenEy [T] L
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16 Next, let us examine® — ue,. Substituting (3) into (11), we

obtain:
15} ]
po( Lrtle _— (ep +€c)
L1+ Lo+1 L1+ Lo+1
al | (43)
: P e plevtec—ea)  plen+ec—eq)
M L ¥ Lo+1  2L+1
Ry 1.3}F _ _ 1 _ _
A=1.2p=0.9 From (43) and the upper bound fat, we observe that ifl’

increases at a rate a@b(L), the average poweP will not

2.2F N | decrease faster thad L-1).
A=1.1p=1.0 A=p=1.05 ( ) -
Lipon Remark 6: As shown by Lemma 1, for the symmetric traffic
load \ = u, the average delay to achieve the minimum energy
1 L L L L | | — OQ.
0 1 2 s _ 4 5 6 7 Remark 7: If each packet must be paired along with a

T packet from the opposite direction for transmission, thus
achieving minimal energy, then first-come-first-serve @oli
does achieve the minimal sum delBy, [T+ E [T]. This can

be shown as follows: Consider two sets of packets, B;)

Proof: First we examine the average deldy We notice and (42, B2) paired as such to be transmitted. Suppase
that the solution of (32) yieldg, = L, A I Therefore. it arrived beforeAs, but B, arrived afterB,, in other words,

suffices to derive an upper bound and lower bound of (2B)S packets are not paired according to first-come-firsteser
t'is then easy to verify that pairing these packets.4s, B:)
when L — co. ) . -
and (As, By) instead will not incur a greater sum delay for

Fig. 3. Energy Delay Trade-off Curve whdn, + Lo — oo

& XZ: Lt (L) ( k+w ) these four packets.
T — i=0w=0 k=0 ’ w (33) On the other hand, due to the symmetry of the system, we
(A +p) (L1 + Lo +1)

have E13[T] = E21[T]. This means aghieving minimal sum
delay is equivalent to min max deld§. Therefore we find
Ly ktw [ k4w that first-come-first-serve policy is indeed the optimalipol

5) This means to achieve minimal energy consumptiBnill
go to co regardless of what service policy is in use.

i=0 w>0,k>0 w

wtk<i+tLi—1

Ts A+ p) (L1 + Lo+ 1) (34) Remark 8: Our assumptions in section Il dictates that the
Ly LT system operates at a rate that belongs to the achievable rate
= Z (i+ 1) (35) regionC with the coding scheme used. Therefore, it is rather
i=0 A+ p) (L1 + L2 +1) surprising to see the queues become unstable, since treere ar
B 3(L+1) I (36) many known rate allocation policies [8]-[10] which staidi

2\ +p) (2L + 1) queues for all rate points insidé. However, a closer look
~0(L) (37) shows none of these policies use network coding as the only
coding scheme. Reference [8] uses the superposition coding
scheme for the broadcast phase. In [9], the stability prdof o
> (%)’”w < ktw > the opportunistic network coding scheduling algorithmel
on the fact that a multi-hopping scheme is used along with
(38) network coding scheme. The policy in [10] is also a hybrid
scheme; network coding is used along with direct transissi
Ly . . . . .
S (i+1) so that thg resulting stablllty. region has a nonempty |ntgr|
_ i=0 (39) The stability of the queues is henceforth guaranteed via the
A+ p) (L1 + Ly + 1) CMDB policy [10].
(I4+Li+1)(L1+1) An insight obtained is that a deterministic network coding

~

=
T
=
=
J’_
b‘

N

+
=

) A+ p) (L1 + Ly + 1) (40) sche_me must be used along with othgr coding scht_emes. This
(L+2)(L+1) hybrid approach was considered previously to obtain a targe
= m (41) achievable rate region of the underlying coding scheme [9],
o) ! (42) [10]. However, it is easy to see for a symmetric channel, i.e.

when the relay is in the middle of the two source nodes, this
Where (35) and (39) follow from the binomial expansio@Pproach will not increase the maximal rate or the sum rate.

formula. Nevertheless, we show here that a hybrid approach is still
Remark 5: The lower bound (42) implies tha&f — oo as Nnecessary. A multi-hopping scheme must be considered in a
I — 0. network coding protocol in order to stabilize the queues.
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IV. CONCLUSION

In this paper, we have investigated the energy-delay trade-
off in a two-way relay network when the relay node uses a
first-come-first-serve policy and aims to harvest the energy
savings by employing XOR combining of the data arriving
from the sources. The trade-off is a result of the stochastic
nature of the traffic from the source nodes. We have proved
for the case with an even traffic load from both directions,
to fully achieve the energy saving promised by XOR network
coding scheme, the average delay will gosto

The energy-delay trade-off curve here is derived under a
specific policy used at the relay node. In that sense it is an
achievability result. When a different policy is used, datiént
curve may result. It is of interest to derive an lower bound fo
this energy-delay trade-off curve as future work, alonghwit
the optimal strategy that will achieve this lower bound.
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