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Abstract—We consider a three node network in which a pair
of nodes with stochastic arrivals communicate with each other
with the help of an intermediate relay. The bi-directional nature
of the traffic, in this setting, poses a new energy delay trade-off.
Namely, the relay node may choose to cache packets from one
direction and send it only after packets from the other direction
arrive, using an XOR network coding scheme. Doing so would
save energy, but would also incur some delay for the packet.
In this work, we analyze this trade-off when the relay node
queues packets from each direction and uses a first-come-first-
serve policy. We show that under an even traffic load where
one would hope for the most energy savings, to achieve the
minimum energy expenditure promised by the XOR network
coding scheme, the average delay has to go to∞.

Keywords: Two-way relay, queuing, energy-delay trade-off

I. I NTRODUCTION

The two-way relay network considered in this work consists
of two nodes who wish to communicate with each other via a
relay node. Significant recent effort has been dedicated to this
model, in particular, to understanding its information-theoretic
performance. The capacity region under two-phase/multiple-
phase protocols and decode-and-forward relaying is presented
in [1], [2]. Reference [2] also computes these for Gaussian fad-
ing channels. Achievable rates for the two-way relay network
are given in [3]. Practical relay coding schemes are proposed
in [4], [5] and power/rate optimization problems are presented
in [6]. The model is extended to multiple relay nodes, and the
capacity scaling law when the relay sum power is fixed and
number of relays goes to infinity is considered in [7].

There are two implicit assumptions behind all these works:
(i) Traffic arriving at the two source nodes are modeled as
deterministic flows with constant rates. (ii) To obtain the
information theoretic achievable rates, the code word length
is assumed to be infinity. While these assumptions are widely
used and are essential to simplify the analysis, there are certain
scenarios under which they may not hold. A likely scenario is
that the packets can arrive at the transmitters in a stochastic
fashion. Hence, one can no longer guarantee that at a certain
time instant, the relay would receive data from both directions.
In this case, a relevant issue is that of the characterization of
the stability region [8]–[10] under assumption (ii). In addition,
commonly envisioned applications such as voice and video
are delay sensitive. Therefore, the delay that the received

data incurs at the relay node must be limited, rendering it
impossible for the relay to code over long blocks.

To address the first problem, a natural solution is to allow
the relay to cache the traffic in one direction and transmit
only after traffic from the other direction arrives, and employ
network coding [4]. Doing this is advantageous, since combin-
ing two (or more) transmissions into one will allow the relay
to save energy. However, we immediately see that doing this
will increase the delay of the traffic since we must wait for
the packets arriving from the “more idle” direction. Therefore,
there is a trade-off between energy consumption at the relay
and the end-to-end communication delay.

Energy-delay trade-off has been considered previously fora
number of different wireless communication scenarios. From
the physical layer perspective, reference [11] considers the
average energy consumption when channel coding may be
done over a limited number of independent channel fading
states for a multiple access channel. Reference [12] explores
this for a relay network. From a medium access layer per-
spective as well, it is widely accepted to “wait” for good
channel states and save energy at the cost of delay. This
trade-off is considered in [13] and the lower bound of energy
consumption when delay goes∞ is given and shown to
be tight. This result is extended to a multi-user scenario in
[14]. We note that both results are restricted to single hop
communication. The energy delay trade-off therein is a result
of the concave relationship between the transmission power
and the service rate. By comparison, the energy delay trade-
off in two-way relay network considered here results from
the lack of coordination of traffic demands at the two source
nodes.

In this work, we investigate the energy delay trade-off in
a bi-directional relay network when the relay node uses a
first-come-first-serve policy. The details of the system model
and the relevant assumptions are presented in Section II. In
Section III, we analyze the stationary behavior of the queues
at the relay node. The average packet delay and average
energy consumption are related via the queue capacity at relay
node. Our analysis shows that, in the case where we have a
symmetric traffic load coming in from both directions, where
one would expect to harvest the energy savings of the XOR
combining the most, to achieve the minimum energy, the end-
to-end delay goes to infinity. This is equivalent to saying the
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Fig. 1. System Model

queues become unstable and leads to the conclusion that the
network coding protocol must be used in conjunction with
other protocols in order to ensure the stability of the queues.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a packet-based communication system, de-
picted in Figure 1. The channel is assumed to be static, and the
channel state information is assumed to be globally known.
We assume the packets arrive at node 1 and node 2 from
two independent Poisson processes with parametersλ and µ
respectively. The added redundancy and the energy of a packet
are chosen in such a way that each packet can be decoded
reliably at the relay node, even if packets arrive at the relay
node at the same time. Under this assumption, the traffic flow
at the relay node from node 1 and node 2 are also Poisson
processes with the same parameters.

At the relay, the decoded traffic flows from node 1 and node
2 are stored in two queues, with buffer capacityL1 and L2

respectively. The policy employed by the relay to process the
packets from the queues is described below.

1) When a packet arrives, if the queue holding the traffic
from the opposite direction is not empty, the relay
sends out the coded version of the binary sum of this
packet and the packet in the queue from the opposite
direction immediately. For the XOR network coding to
work, we assume each packet contains same number of
information bits. Again, we assume the redundancy and
the energy of each packet are chosen such that they can
be successfully decoded at both node 1 and node 2.

2) When a packet arrives, if the queue holding the traffic
from the opposite direction is empty, then the relay
stores the packet in the queue that contains packets
for the arrival direction. If this queue is full, the relay
sends out the oldest packet in the queue immediately
and makes room to store this latest packet. Again, we
assume the redundancy and energy of each packet are
chosen such that it can be successfully decoded at its
intended destination.

In both cases, we assume the packet size is small enough
such that the transmission delay is negligible. In other words,
the transmissions can be modeled as points on the time axis.
Therefore, the average delay experienced by the packets equals
the average amount of time they spend in the queue at the

1−L2 −1 0 L1

λ

µ µ µ µ µ µ

λ λ λ λ λ

Fig. 2. State Transition Diagram

relay. In the next section, we will explore the relationshipof
the average delay with the average transmission power of the
relay.

Remark 1: We assume that the traffic generated from the
two ends are independent. This assumption may not hold in
a scenario where the traffic of node 2 is triggered by the
response from node 1. The assumption on the other hand is
appropriate when the two end nodes are simply routers in an
ad hoc network forwarding data to each other.

Remark 2: We assume the queues at the relay node have
finite capacity. This is a seemingly different starting point as
compared to previous work that assumes infinite buffer size
[8]–[10]. The connection between these works will become
apparent when we let the capacity of the queue, i.e., the buffer
size, go to∞ in order to minimize the energy consumption.

III. E NERGY DELAY TRADE-OFF

A. Queuing Model and Stationary Distribution

Based on the transmission policy at the relay described in
the previous section, we remark that at most one queue at the
relay node can be non-empty. Therefore, the state of queues
at the relay node can be characterized with a single number
S ∈ [−L2, L1]. Since the future state is independent from its
past given the current state,S is a continuous time finite state
Markov chain.

Recall that the traffic flows arriving at the relay node are
two independent Poisson processes with parametersλ and µ
respectively. Therefore, for a given time interval∆t, we have
the transition probabilities:

P (S (t + ∆t) = a + 1|S (t) = a) = λ∆t + o (∆t) ,

a ∈ [−L2, L1 − 1] (1)

P (S (t + ∆t) = a − 1|S (t) = a) = µ∆t + o (∆t) ,

a ∈ [−L2 + 1, L1] (2)

The resulting continuous time Markov chain is shown in Fig-
ure 2. We note that Figure 2 is tantamount to aM/M/1/(L1+
L2 +1) system [15]. Therefore, they have the same stationary
distribution, given by (3) below, whereu = λ/µ.

P (S = i) =

{

(1−u)ui+L2

1−u(L1+L2+1) , u 6= 1
1

L1+L2+1 , u = 1
(3)

i = −L2...L1
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B. Average Power

The average power expended by the relay node is defined
as:

E [P ] = lim
∆t→0

E

[

∆ε

∆t

]

= lim
∆t→0

∑

i,j

P (S (t) = i)P (S (t + ∆t) = j|S(t) = i)

∆t
εij

(4)

Here εij is the energy cost associated with state transition
i → j. From the model described in the previous section, we
know that εij is decided by the coding scheme used within
each packet and the channel conditions.

Let εa be the energy cost to successfully multi-cast the
XOR-ed packet to both node 1 and node 2.εb is the energy
cost to successfully send the packet from the relay to node
2. Similarly, εc is the energy cost to send the packet from
relay to node 1. Howεa, εb, εc are computed is not relevant
to our discussion. In practice, they may be approximated by
the following equations:

εb ∼ N1

(

2R1 − 1
)

/h4 (5)

εc ∼ N2

(

2R2 − 1
)

/h3 (6)

εa = max {εb, εc} (7)

whereN1, N2 are the variance of the additive Gaussian noise
seen by node1 and node2. h4, h3 are the channel gains
from the relay node to node1 and to node2 respectively
(see Figure 1).Ri is the rate used from nodei, i = 1, 2.

For the state diagram in Figure 2, since there are only finite
number of states, we may manipulate (4) by interchanging the
summation and the limit, as shown below:

lim
∆t→0

∑

i,j

P (S (t) = i)P (S (t + ∆t) = j|S = i)

∆t
εij (8)

=
∑

i,j

lim
∆t→0

P (S (t) = i)P (S (t + ∆t) = j|S = i)

∆t
εij (9)

=
∑

|i−j|≤1

P (S = i) P (S (t + ∆t) = j|S = i) εij (10)

=

L1
∑

i=1

P (S = i)µεa + P (S = L1)λεb

+

L2
∑

i=1

P (S = −i)λεa + P (S = −L2) µεc (11)

Substituting (3) into (11), foru 6= 1, we obtain:

E [P ] =
uL1+L2+1

uL1+L2+1 − 1
µεa −

1

uL1+L2+1 − 1
λεa

+
(u − 1)uL1+L2

uL1+L2+1 − 1
λεb +

u − 1

uL1+L2+1 − 1
µεc (12)

Remark 3: From (12), we readily see that the average
power consumption by the relay node depends only on the
traffic load from the source nodes and the total storage capacity
at the relay,L1 +L2. It does not depend on the service order.

Remark 4: Minimal energy consumption is achieved when
L1 + L2 goes to∞. If L1 + L2 → ∞, we observe

E[P ] → (λ − µ)εb + µεa (13)

C. Average Delay

Let us focus on the delay experienced by a packet sent
from node 1 to node 2. The case of the other direction can be
addressed in a similar fashion. Suppose that the packet arrives
at τ . Then the distribution of the delayT is given by

P (T ≤ t) =
∑

i

P (T ≤ t|S (τ) = i)P (S (τ) = i) (14)

Note that there are only two possible ways for the packet to
leave the queue.

1) Enough packets from the opposite direction arrive so
that it gets served with XOR-ed with a packet from the
other queue.

2) Too many packets from node 1 arrive after this packet
so that it needs to be transmitted by itself.

Therefore each termP (T ≤ t|S (τ) = i) in the summation
can be computed as:

P (T ≤ t|S (τ) = i) = P (n2 (t) ≥ i + 1|S (τ) = i) (15)

+P (n2 (t) < i + 1, n1 (t) ≥ L|S (τ) = i)

whereni(t) is the number of packets received from nodei
during time(τ, t + τ ].

The first term in (15) is given by:

P (n2 (t) ≥ i + 1|S (τ) = i) = 1 −

i
∑

k=0

(µt)
k

k!
e−µt (16)

The second term in (15) can be computed as:

P (n2 (t) < i + 1, n1 (t) ≥ L1|S (τ) = i)

=P (n2 (t) < i + 1)P (n1 (t) ≥ L1)

=

(

i
∑

k=0

(µt)
k

k!
e−µt

)(

1 −

L1−1
∑

n=0

(λt)
n

n!
e−λt

) (17)

Note that, with the Poisson flows, the residual time [15] the
packet has to wait to “see” a packet from the opposite direction
is an exponential random variable with parameter1/µ.

With these preparations, we are now ready to computeE[T ].

E [T ] =

∫ ∞

0

t
d

dt
P (T < t) dt (18)

=
∑

i

∫ ∞

0

t
d

dt
P (T < t|S = i) dtP (S = i) (19)

Each term of the summation in (19) can be expressed as:
∫ ∞

0

t
d

dt
P (T < t|S = i) dt (20)

= −

∫ ∞

0

t
d

dt
(1 − P (T < t|S = i)) dt (21)

=

∫ ∞

0

1 − P (T < t|S = i) dt (22)
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We notice that1−P (T < t|S = i) is the sum of terms of the
form ctae−bt. Therefore the integral can be computed using
the following equation, wherea is a non-negative integer.

∫ ∞

0

xae−λxdx = λ−(a+1)a! (23)

Using this result, along with (17), (16), (22) becomes:

∫ ∞

0

(

i
∑

w=0

L1−1
∑

k=0

(µt)
w

w!

(λt)
k

k!

)

e−(λ+µ)tdt (24)

=
i
∑

w=0

L1−1
∑

k=0

(

λ

λ + µ

)k
µw

(λ + µ)
w+1

(

k + w
w

)

(25)

where

(

k + w
w

)

= (k+w)!
k!w! . Substituting (25) and (3) back

to (19), we obtain the average delay from node 1 to node 2
as (26) foru 6= 1. The delay seen by traffic from node 2 to
node 1 is similar, as shown in (27).

E12 [T ]

=

(

L1
∑

i=0

i
∑

w=0

L1−1
∑

k=0

(

λ

λ + µ

)k
µw

(λ + µ)
w+1

(

k + w
w

)

ui

)

uL2+1 − uL2

uL1+L2+1 − 1
(26)

E21 [T ]

=

(

L2
∑

i=0

i
∑

w=0

L2−1
∑

k=0

(

µ

λ + µ

)k
λw

(λ + µ)w+1

(

k + w
w

)

u−i

)

uL2+1 − uL2

uL1+L2+1 − 1
(27)

D. Energy Delay Trade-off

An immediate thought following the analysis above is the
selection ofL1 andL2 to minimize traffic delay under a relay
power constraint. Before doing that, we prove a monotonic
property of the average delay, which will be useful later.

We know from (12) that there is a bijection between the
average power and total storage capacityL1 + L2. Also, if
L1 +L2 increases, the average power consumption decreases.
Therefore, we only need to examine the behavior of the
average delay (26) (27) under fixedL1+L2. If L1+L2 is fixed
andL1 increases, from (27), we readily see thatE21[T ] will
decrease. What is less obvious is thatE12[T ] will increase, as
shown below. SupposeL1 increases by 1. Then , as shown in
(31), the first term in (26) will increase by at leastu fold. Since
L2 decreases by 1, the remaining part in (26) will decrease at
least byu fold. Therefore, their productE12[T ] will increase.
By a similar reasoning, it can be shown that ifL2 is fixed,
thenE12[T ] will increase withL1. If L1 is fixed, thenE21[T ]

will increase withL2.

(L1+1)
∑

i=0

i
∑

w=0

(L1+1)−1
∑

k=0

(

λ

λ + µ

)k
µw

(λ + µ)w+1

(

k + w
w

)

ui

(28)

>

(L1+1)
∑

i=1

i
∑

w=0

L1
∑

k=0

(

λ

λ + µ

)k
µw

(λ + µ)
w+1

(

k + w
w

)

ui

(29)

>

(L1+1)
∑

i=1

i−1
∑

w=0

L1−1
∑

k=0

(

λ

λ + µ

)k
µw

(λ + µ)
w+1

(

k + w
w

)

ui

(30)

=u

L1
∑

i=0

i
∑

w=0

L1−1
∑

k=0

(

λ

λ + µ

)k
µw

(λ + µ)
w+1

(

k + w
w

)

ui

(31)

The minimum delayT̄ under the average power constraint is
defined as (32) below. We are interested inT̄ as a function of
P̄ , which will yield the optimal energy delay trade-off curve
achievable under this relay policy.

T̄ = min
L1,L2

max {E12 [T ] , E21 [T ]}

s.t. E [P ] ≥ P̄
(32)

It follows from the previous discussion that the power
constraint can be translated to a lower bound onL1 + L2.
From the monotonic properties ofE12[T ] and E21[T ] we
have just argued, we know that the equivalent constraint on
L1 + L2 must be binding. ThereforeL1 + L2 is fixed. Under
this condition, we have shown above thatE12[T ] is a strictly
increasing function ofL1, andE21[T ] is a strictly decreasing
function of L1. Also, it is obvious to see that whenL1 = 0,
E12[T ] = 0 and whenL2 = 0, E21[T ] = 0. Therefore, the
optimal solution can only be of the following form and can
be easily found via a bisection method:

L1 is either L1,a or L1,a + 1. L1,a is chosen such
that E12 [T ] (L1,a) ≥ E21 [T ] (L1,a) , E12 [T ] (L1,a + 1) ≤
E21 [T ] (L1,a + 1).

Notice thatT̄ can be reduced by employing time sharing
betweenL1 = L1,a andL1 = L1,a +1 while keepingL1 +L2

fixed. The resulting energy delay trade-off curve is given in
Figure 3 forεa = εb = εc = 1. The horizontal dotted lines
depict the average relay power consumption whenL1 +L2 →
∞ for differentλ, µ. We observe that whenλ andµ are close
to each other, a wider trade-off between energy and delay can
be achieved. When the traffic load becomes less even, the
achievable trade-off range becomes smaller.

E. The Symmetric Case λ = µ

In Figure 3, we observe that whenλ = µ, to achieve the
lower bound on average power, the average delay will go to
∞. We next prove this observation formally via the following
lemma.

Lemma 1: P̄−µεa ∼ O(L−1), T̄ ∼ O(L) with L1 = L2 =
L
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Fig. 3. Energy Delay Trade-off Curve whenL1 + L2 → ∞

Proof: First we examine the average delayT̄ . We notice
that the solution of (32) yieldsL1 = L2

∆
= L. Therefore, it

suffices to derive an upper bound and lower bound of (26)
whenL → ∞.

T̄ =

L1
∑

i=0

i
∑

w=0

L1−1
∑

k=0

(

1
2

)k+w

(

k + w
w

)

(λ + µ) (L1 + L2 + 1)
(33)

T̄ ≤

L1
∑

i=0

∑

w≥0,k≥0
w+k≤i+L1−1

(

1
2

)k+w

(

k + w
w

)

(λ + µ) (L1 + L2 + 1)
(34)

=

L1
∑

i=0

(i + L1)

(λ + µ) (L1 + L2 + 1)
(35)

=
3 (L + 1)

2 (λ + µ) (2L + 1)
L (36)

∼ O (L) (37)

T̄ ≥

L1
∑

i=0

∑

w≥0,k≥0
w+k≤i

(

1
2

)k+w

(

k + w
w

)

(λ + µ) (L1 + L2 + 1)
(38)

=

L1
∑

i=0

(i + 1)

(λ + µ) (L1 + L2 + 1)
(39)

=
(1 + L1 + 1) (L1 + 1)

2 (λ + µ) (L1 + L2 + 1)
(40)

=
(L + 2) (L + 1)

2 (λ + µ) (2L + 1)
(41)

∼ O (L) (42)

Where (35) and (39) follow from the binomial expansion
formula.

Remark 5: The lower bound (42) implies that̄T → ∞ as
L → ∞.

Next, let us examinēP − µεa. Substituting (3) into (11), we
obtain:

P̄ =

(

L1 + L2

L1 + L2 + 1

)

µεa +
µ (εb + εc)

L1 + L2 + 1

P̄ − µεa =
µ (εb + εc − εa)

L1 + L2 + 1
=

µ (εb + εc − εa)

2L + 1

(43)

From (43) and the upper bound for̄T , we observe that if̄T
increases at a rate ofO(L), the average power̄P will not
decrease faster thanO(L−1).

Remark 6: As shown by Lemma 1, for the symmetric traffic
loadλ = µ, the average delay to achieve the minimum energy
→ ∞.

Remark 7: If each packet must be paired along with a
packet from the opposite direction for transmission, thus
achieving minimal energy, then first-come-first-serve policy
does achieve the minimal sum delayE12[T ]+E21[T ]. This can
be shown as follows: Consider two sets of packets(A1, B1)
and (A2, B2) paired as such to be transmitted. SupposeA1

arrived beforeA2, but B1 arrived afterB2, in other words,
the packets are not paired according to first-come-first-serve.
It is then easy to verify that pairing these packets as(A1, B2)
and (A2, B1) instead will not incur a greater sum delay for
these four packets.

On the other hand, due to the symmetry of the system, we
haveE12[T ] = E21[T ]. This means achieving minimal sum
delay is equivalent to min max delaȳT . Therefore we find
that first-come-first-serve policy is indeed the optimal policy.
This means to achieve minimal energy consumption,T̄ will
go to∞ regardless of what service policy is in use.

Remark 8: Our assumptions in section II dictates that the
system operates at a rate that belongs to the achievable rate
regionC with the coding scheme used. Therefore, it is rather
surprising to see the queues become unstable, since there are
many known rate allocation policies [8]–[10] which stabilize
queues for all rate points insideC. However, a closer look
shows none of these policies use network coding as the only
coding scheme. Reference [8] uses the superposition coding
scheme for the broadcast phase. In [9], the stability proof of
the opportunistic network coding scheduling algorithm relies
on the fact that a multi-hopping scheme is used along with
network coding scheme. The policy in [10] is also a hybrid
scheme; network coding is used along with direct transmission
so that the resulting stability region has a nonempty interior.
The stability of the queues is henceforth guaranteed via the
CMDB policy [10].

An insight obtained is that a deterministic network coding
scheme must be used along with other coding schemes. This
hybrid approach was considered previously to obtain a larger
achievable rate region of the underlying coding scheme [9],
[10]. However, it is easy to see for a symmetric channel, i.e.,
when the relay is in the middle of the two source nodes, this
approach will not increase the maximal rate or the sum rate.
Nevertheless, we show here that a hybrid approach is still
necessary. A multi-hopping scheme must be considered in a
network coding protocol in order to stabilize the queues.
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IV. CONCLUSION

In this paper, we have investigated the energy-delay trade-
off in a two-way relay network when the relay node uses a
first-come-first-serve policy and aims to harvest the energy
savings by employing XOR combining of the data arriving
from the sources. The trade-off is a result of the stochastic
nature of the traffic from the source nodes. We have proved
for the case with an even traffic load from both directions,
to fully achieve the energy saving promised by XOR network
coding scheme, the average delay will go to∞.

The energy-delay trade-off curve here is derived under a
specific policy used at the relay node. In that sense it is an
achievability result. When a different policy is used, a different
curve may result. It is of interest to derive an lower bound for
this energy-delay trade-off curve as future work, along with
the optimal strategy that will achieve this lower bound.

REFERENCES

[1] T. J. Oechtering, I. Bjelakovic, C. Schnurr, and H. Boche. Broadcast
Capacity Region of Two-Phase Bidirectional Relaying, 2007. submitted
to IEEE Transactions on Information Theory.

[2] S. J. Kim, P. Mitran, and V. Tarokh. Performance Bounds for Bi-
Directional Coded Cooperation Protocols.International Conference on
Distributed Computing Systems Workshops, 2007.

[3] B. Rankov and A. Wittneben. Achievable Rate Regions for the Two-way
Relay Channel.IEEE International Symposium on Information Theory,
2006.

[4] S. Zhang, S. C. Liew, and P. Lam. Physical Layer Network Coding,
2007. available online at http://arxiv.org/abs/0704.2475.

[5] P. Popovski and Y. Hiroyuki. Physical Network Coding in Two-
Way Wireless Relay Channels.IEEE International Conference on
Communications, 2007.

[6] H. Ingmar, K. Marc, E. Celal, J. Zhao, A. Wittneben, and G.Bauch.
MIMO Two-Way Relaying with Transmit CSI at the Relay.IEEE Signal
Processing Advances in Wireless Communications, 2007.

[7] R. Vaze and R. W. Heath. Capacity Scaling for MIMO Two-Way
Relaying, 2007. submitted to IEEE Transactions on Information Theory.

[8] T.J. Oechtering and H. Boche. Stability Region of an Efficient Bi-
Directional Regenerative Half-duplex Relaying Protocol.IEEE Infor-
mation Theory Workshop, 2006.

[9] C.H. Liu and X. Feng. Network Coding for Two-Way Relaying: Rate
Region, Sum Rate and Opportunistic Scheduling.IEEE International
Conference on Communications, 2008.

[10] E.N. Ciftcioglu, A. Yener, and R. A. Berry. Stability ofBi-Directional
Cooperative Relay Networks.IEEE Information Theory Workshop, 2008.

[11] S. Hanly and D. Tse. Multi-Access Fading Channels: PartII: Delay Lim-
ited Capacities.IEEE Trasactions on Information Theory, 44(7):2816–
2831, 1998.

[12] D. Gunduz and E. Erkip. Opportunistic Cooperation by Dynamic
Resource Allocation.IEEE Transactions on Wireless Communication,
6(4):1446–1454, 2007.

[13] R. A. Berry and R. G. Gallager. Communication over Fading Channels
with Delay Constraints. IEEE Transactions on Information Theory,
48(5):1135–1149, 2002.

[14] M.J. Neely. Optimal Energy and Delay Tradeoffs for Multi-user Wireless
Downlink. IEEE Transactions on Information Theory, 53(9):3095–3113,
2007.

[15] L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley-Interscience,
1975.

[16] L. Tassiulas and A. Ephremides. Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput
in Multihop Radio Networks. IEEE Trans. on Automatic Control,
37(12):1936–1948, 1992.

870


