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Abstract—We consider the secrecy rate of a relay network
where an eavesdropper is co-located with the relay node. This
exemplifies a scenario where the relay node is not malicious by
nature, but is located in an “untrusted region”, and hence is
potentially compromised. Given that the aim now is to keep the
relay node completely oblivious to the information sent from the
source to the destination, an interesting question is whether the
relay node should be deployed at all. We investigate this question
for two types of relay networks with orthogonal components.
For the first model, we find the equivocation capacity region
and prove the relay node should not be deployed. For the
second model, we present an achievable secrecy rate based
on compress-and-forward, and conclude that the relay node is
potentially useful as it can, without being able to decode the
source data, facilitate secret communication between the source
and the destination that would not be possible without the relay.

I. INTRODUCTION

As the radio channel continues to become the primary
communication medium of choice, the challenges associated
with wireless communication become more important to over-
come for designers and researchers alike. Among the most
prevalent of these challenges is to provide secure information
transfer. A fundamental approach to this problem is founded
in information theory, where limits of reliable communication
can be determined while keeping the information secret from
the eavesdropping node(s). The secrecy measure is defined as
the entropy rate of the transmitted message conditioned on the
signals received by the eavesdropper. Wyner in [1] defined the
notion secrecy capacity and the equivocation capacity region,
i.e., the region defined by the reliable transmission rates and
secrecy measures, and found the secrecy capacity of a point-
to-point discrete memoryless channel where an eavesdropper
(wire-tapper) gets a degraded copy of the received signal. A
significant research effort followed this work, most of which
are recent work that concentrate on more complicated system
models inspired by wireless communication scenarios; see [2]
and references therein.
In contrast to what is desired in information theoretic

secrecy, cooperative communication [3] encourages sharing
information. Cooperation, which emerged as a new paradigm
that is particularly useful and necessary for wireless networks,
enables nodes help each other by relaying messages. Intu-
itively, one might expect a trade-off between providing se-
crecy and employing cooperative communication techniques.

In particular, one might easily envision a scenario where
sources may wish to be helped by relays in order to better
reach their destinations, but may also wish that the relaying
nodes stay oblivious to the information they are sending. The
simplest such scenario, first proposed by Oohama [4], is a
classical three-node relay network where the relay node is
also the eavesdropper from whom the information is to be
kept secret. In addition, several references have considered
the relay channel where the eavesdropper is an external node
[5]–[7]. In reference [4], an achievable rate is given based on
partial decode and forward [8]. It was shown that a non-zero
secrecy rate is not possible for the degraded relay network [9].
In this work, we revisit the model in [4] where the relay is

also the eavesdropper and ask the following question: With the
eavesdropper knowing everything the relay knows, should the
relay node be deployed at all? The question arises naturally
since the current state-of-the-art provides a non-zero secrecy
rate for the relay network by simply not using the relay-to-
destination link.
We investigate this question for two types of relay networks

with orthogonal components proposed in [10] and [11] respec-
tively. The system models are described in Section II. In Sec-
tion III, we find the equivocation rate region for the first model
and show that the relay node is not useful in achieving non-
zero secrecy rate and consequently should not be deployed. In
Section IV, we consider the second model, provide a non-zero
secrecy rate based on compress-and-forward, and show that
this rate may not be achievable without the relay-destination
link. Thus, for this model, we conclude that the relay node
is actually useful, while being completely oblivious to the
information transfered from the source to the destination.

II. SYSTEM MODEL AND THE EQUIVOCATION REGION

The two models of the relay network with orthogonal com-
ponents are depicted in Figures 1 and 2 respectively. In model
1, the relay and the source communicate with the destination
via a multiple access channel, with its input being XD, Xr

and output being Y . The source and the relay communicate
via a channel orthogonal to the channel used by the source
and the relay to transmit to the destination. The input and the
output of this channel are denoted by XR and Yr respectively.
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Fig. 1. Relay Channel with Orthogonal Components: Model 1
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Fig. 2. Relay Channel with Orthogonal Components: Model 2

Thus, the overall channel description is:

p (Yr, Y |XR, XD, Xr) = p (Y |XD, Xr) p (Yr|XR, Xr) (1)

The capacity of this network without the secrecy constraint
was found in [10].
As shown in Figure 2, for Model 2, the source commu-

nicates with the relay and the destination via a broadcast
channel, and the relay communicates with the destination via
a separate (orthogonal) link. Thus, we have:

p (YD, YR, Yr|X, Xr) = p (Yr, YD|X) p (YR|Xr) (2)

This network is dual to Model 1 in structure. However, its
capacity remains an open problem except for some special
cases given in [12].
For both models, we assume that there is an eavesdropper

at the relay node, with perfect knowledge of the signal Yr

and Xr. The message sent by the source to the destination
is W , which is transmitted over n channel uses. The message
decoded by the destination is Ŵ . The equivocation rate region
is defined by all rate pairs (R1, Re) described by:

R1 = lim
n→∞

1

n
log |W |

Re = lim
n→∞

1

n
H (W |Xn

r , Y n
r ) = lim

n→∞
1

n
H (W |Y n

r )

s.t. lim
n→∞

1

n
Pr

(
W �= Ŵ

)
= 0

Here |W | is the cardinality of the message set W . Xn
r and

Y n
r are the signals transmitted and received by the relay over

n channel uses respectively.W → Y n
r → Xn

r forms a Markov
chain because the processing done at the relay is independent
from the transmitted message W , given the received signal at
the relay.

III. EQUIVOCATION CAPACITY REGION OF MODEL 1

Theorem 1: The equivocation region is given by

⋃
p(Xr)
p(XD |Xr)
p(XR|Xr)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(R1, Re) :

0 ≤ R1 ≤ min

⎧⎨
⎩

I (XD, Xr; Y ) ,
I (XR; Yr|Xr)
+I (XD; Y |Xr)

⎫⎬
⎭

0 ≤ Re ≤ min{I (Y ; XD|Xr) , R1}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

Proof: The converse for R1 is given in [10] using
the cut set bound. The converse for Re follows from the
observation: H (W |Xn

r , Y n
r ) ≤ H (W |Xn

r ). Therefore, we
consider the same network in which the wiretapper only knows
the transmitted signal Xn

r of the relay, but not its received
signal Y n

r . Next we combine the relay node with the source
node and the model becomes a wiretap channel as in [1] with
XD, Xr as input, and Xr is known by the relay node. Since
any communication scheme feasible for the old network is also
feasible for the new network, Re for the new network cannot
be smaller than Re for the old network. Finally, the following
well-known outer bound (4) [13, Equation (57)] [14, section
V, lemma 1] is used to bound Re, where Y is the received
signal by the destination, Ye is the received signal by the
eavesdropper. Substituting Xr for Ye and XD, Xr for X , we
get the desired result.

Re ≤ I (X ; Y |Ye) = I (XDXr; Y |Xr) = I (XD; Y |Xr) (4)

Achievability follows from the partial decode and forward
scheme in [4, Theorem 1]. Reference [4] states the rate region
(5) below is achievable for a general relay network with
conditional probability p(Y1, Y |X1, X2), whereX1,X2 are the
signals transmitted by the source and the relay respectively.
Y1,Y are the signals received by the relay and the destination
respectively. R0 is the rate of information that must be
correctly received by both the relay and the destination. The
auxiliary random variable U decides how much information
the relay could decode.

⋃
p(U,X1,X2)
p(Y1,Y |X1,X2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R0 ≤ min{I (U ; Y1|X2) , I (U, X2; Y )}
R1 + R0 ≤ I (X1; Y |UX2)
+ min{I (U ; Y1|X2) , I (U, X2; Y )}
Re ≤ [I (X1; Y |UX2)− I (X1; Y1|UX2)]

+

0 ≤ Re ≤ R1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5)

In (5), we let R0 = 0, X1 = XD, XR, U = XR, Y1 =
Yr, X2 = Xr, and restrict the union to be over the probability
distributions of the form p(Xr)p(XD|Xr)p(XR|Xr), and we
obtain:

I (X1; Y |UXr)− I (X1; Y1|UXr) (6)
=I (XRXD; Y |XRXr)− I (XRXD; Yr|XRXr) (7)
=I (XD; Y |XRXr)− I (XD; Yr|XRXr) (8)
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=H (Y |XRXr)−H (Y |XDXRXr)

− I (XD; Yr|XRXr) (9)
(a)
=H (Y |Xr)−H (Y |XDXr)− I (XD; Yr|XRXr) (10)
=I (XD; Y |Xr)− I (XD; Yr|XRXr) (11)
(b)
=I (XD; Y |Xr) (12)

where step (a) follows from XR → Xr → Y being a Markov
chain [10] and XR → XrXD → Y being a Markov chain.
Step (b) follows from XD → XRXr → Yr being a Markov
chain [10]. Moreover, the bound on R1 can be expressed as:

I (X1; Y |UX2) + min{I (U ; Y1|X2) , I (U, X2; Y )} (13)

=min

{
I (UX1X2; Y ) ,
I (U ; Y1|X2) + I (X1; Y |UX2)

}
(14)

(c)
= min

{
I (X1X2; Y ) ,
I (U ; Y1|X2) + I (X1; Y |UX2)

}
(15)

where step (c) follows from U → X1X2 → Y being a Markov
chain.
Note that (15) is the same as Equation (2) in [10], therefore

from the same argument therein, we obtain:

min

{
I (X1X2; Y ) ,
I (U ; Y1|X2) + I (X1; Y |UX2)

}
(16)

= min

{
I (XD, Xr; Y ) ,
I (XR; Yr|Xr) + I (XD; Y |Xr)

}
(17)

By substituting (17) and (12) into (5), we find that the rate
pair in (3) is achievable.
Remark 1: It is shown in [4, Lemma 3] that the achievable

rate region (5) is convex. Therefore the rate region of (3) is
also convex.
Remark 2: By letting Re = R1, we obtain the secrecy

capacity of the network given by (18).

S = max
p(Xr)p(XD |Xr)

I (Y ; XD|Xr) (18)

= I (Y ; XD|Xr = xr) (19)

It is readily seen that in this case the relay to destination link
is not useful. On the other hand, if Re < R1, from the coding
scheme it can shown the secret information is only mapped to
signal transmitted viaXD, which means the secret information
should not pass through the relay node. These two observations
combined lead to the conclusion that the relay-to-destination
link is indeed not useful in improving the secrecy rate of the
system.
A direct extension of the above result can be readily made

to the Gaussian case. 1 The channel is defined as [10]:

Yr = aXR + Z1, Y = bXr + XD + Z (20)

where Z1 and Z are independent zero mean real Gaussian
random variables with variance N . The transmit power con-

1Proofs follow by replacing entropy with differential entropy whenever
necessary.

straints on the source and the relay are given by:

1

n

n∑
i=1

(
X2

R,i + X2
D,i

) ≤ P,
1

n

n∑
i=1

X2
r,i ≤ γP (21)

Corollary 1: For the Gaussian relay network described
above, the equivocation region is given by (22).

⋃
0≤v,ρ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 ≤ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
(

(v+b2γ+2bρ
√

vγ)P

N

)
,

C
(

a2(1−v)P
N

)
+C

(
v(1−ρ2)P

N

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

0 ≤ Re ≤ min{C
(

v(1−ρ2)P

N

)
, R1}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22)

where C(x) = 1
2 log(1 + x).

Proof: The proof is the same as in
reference [10, Section III]. The three terms:
I(XD, Xr; Y ), I(XR; Yr|Xr), I(XD; Y |Xr) are maximized
simultaneously when Xr, XD, XR are chosen to be zero
mean and jointly Gaussian with the following parameters:
V ar[Xr] = γP, V ar[XR] = (1 − v)P, V ar[XD] =
vP, E[XrXD] = ρP

√
vγ, E[XRXD] = 0.

IV. AN ACHIEVABLE REGION FOR MODEL 2

In this section, we first derive an achievable region for the
general relay network under compress-and-forward scheme,
then specialize it to the second type of relay network.
Theorem 2: For a relay network with conditional distribu-

tion p(Y, Yr|X, Xr), with X , Xr being the input from the
source and the relay respectively, and Yr,Y being the signals
received by the relay and the destination respectively, the
following region of rate pairs (R1, Re) is achievable.

⋃ ⎧⎨
⎩

Re ≤ R1 ≤ I
(
X ; Y Ŷr|Xr

)
0 ≤ Re ≤ [I

(
X ; Y Ŷr|Xr

)
− I (X, Yr|Xr)]

+

⎫⎬
⎭
(23)

where I(Xr; Y ) > I(Ŷr; Yr|Y Xr) and the union is taken over
p(X)p(Xr)p(Y, Yr|X, Xr)p(Ŷr |Yr, Xr).

Proof: The coding scheme uses the compress-and-
forward scheme in [9, Theorem 6] with the codebook used
by the source node being further binned randomly to several
groups. Suppose there are 2nC groups, each containing 2nB

codewords. Correspondingly, the codeword transmitted as the
kth block is indexed by label bk, ck. Suppose W1(k) is the
message transmitted by the source at the kth block. Let
R1 = log |W1(k)|/n. Then the messages are mapped to the
codebook as follows.
1) If R1 > C, ck is the group index determined from

W1(k). The codewords in group ck are partitioned into
2n(R1−C) subsets. The subset is chosen according to the
unmapped part of W1(k). Then bk is selected from this
chosen subset according to a uniform distribution.
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2) If R1 ≤ C, ck is still determined by W1(k). bk is
randomly chosen from group ck according to a uniform
distribution.

Based on this mapping ,we can lower bound the equivocation
rate as follows.

H (W1 (k) |Y n
r (k) , Xn

r (k)) (24)
=H (W1 (k) , Y n

r (k) |Xn
r (k))−H (Y n

r (k) |Xn
r (k)) (25)

=H (W1 (k) , Y n
r (k) , Xn (k) |Xn

r (k))

−H (Xn (k) |Xn
r (k), W1 (k) , Y n

r (k))

−H (Y n
r (k) |Xn

r (k)) (26)
=H (W1 (k) , Xn (k) |Xn

r (k))

+ H (Y n
r (k) |W1 (k) , Xn

r (k), Xn (k))

−H (Xn (k) |Xn
r (k), W1 (k) , Y n

r (k))

−H (Y n
r (k) |Xn

r (k)) (27)
≥H (Xn (k) |Xn

r (k)) + H (Y n
r (k) |Xn

r (k), Xn (k))

−H (Xn (k) |Xn
r (k), W1 (k) , Y n

r (k))

−H (Y n
r (k) |Xn

r (k)) (28)

We proceed to bound each of the four terms in (28). We use
δn, δ′n, δ′′n, δ′′′n for variables converging to zero when n →∞.
1) H(Xn(k)|Xn

r (k)) = H(Xn(k)) = n(B +
min{C, R1}) + nδn. The first equality comes from the
fact thatXn

r (k) is computed from blocks received before
k and therefore is independent from Xn(k). The second
equality comes from the mapping.

2) H(Y n
r (k)|Xn

r (k), Xn(k)) = nH(Yr|Xr, X) + nδ′n.
This follows from the fact the channel is memoryless
and the codebook is composed of i.i.d sequences.

3) To bound the 3rd term, first we notice ck is decided by
W1(k). We proceed to impose the following condition
on B:

B ≤ I(X ; Yr|Xr) (29)

If this constraint is met, the eavesdropper
can estimate bk from the following set:
{b : Xn(b, ck), Y n

r (k), Xn
r (k) are jointly typical}.

This set should contain only bk with probability
close to 1. From Fano’s inequality, we have
H(Xn(k)|Xn

r (k), W1(k), Y n
r (k)) = nδ′′n.

4) H(Y n
r (k)|Xn

r (k)) = nH(Yr|Xr) + nδ′′′n Again this
follows from the fact the codewords are constructed with
i.i.d sequences and the channel is memoryless.

By substituting these results into (28), we get

H (W1 (k) |Y n
r (k) , Xn

r (k)) (30)
≥n(B + min {C, R1})− nH (Yr|XrX)

+ nH (Yr|Xr) + nεn (31)
=n (B + min {C, R1})− nI (Yr; X |Xr) + nεn (32)

where εn = δn + δ′n − δ′′n + δ′′′n → 0 as n →∞.
If R1 ≤ C, then (32) leads to:

0 ≤ Re ≤ B + R1 − I (X ; Yr|Xr)

0 ≤ R1 ≤ C
(33)

where (B, C) is within the region defined by:{
B + C ≤ I

(
X ; Y, Ŷr|Xr

)
0 ≤ B ≤ I (X ; Yr|Xr) , 0 ≤ C

}
(34)

If C ≤ R1 ≤ B + C, then (6) becomes (35). Again (B, C)
must be within the region defined by (34).

0 ≤ Re ≤ B + C − I (X ; Yr|Xr)

C ≤ R1 ≤ B + C
(35)

Finally, (33) and (35) can be shown to be the region given by:

Re ≤ R1 ≤ I
(
X ; Y, Ŷr|Xr

)
0 ≤ Re ≤ I

(
X ; Y, Ŷr|Xr

)
− I (X ; Yr|Xr)

(36)

where the constraint I(Xr; Y ) > I(Ŷr ; Yr|Y Xr) is due to
compress-and-forward.
Remark 3: Achievable rates using compress-and-forward

scheme under secrecy constraints have been given in refer-
ences [5] and [6]. However, in these models, the wiretapper
and the eavesdropper are not co-located which brings difficulty
to bounding the equivocation rate. The current state-of-art
addresses this problem by either using a suboptimal decoding
scheme which ignores the relay’s self-interference [5, Equation
(49)] or by employing a deterministic encoder at the source
node [6, step (c) Equation (18)] . While these design choices
are useful for the case where the eavesdropper is physically
separated from the relay, they may yield a smaller achievable
rate if applied directly to the case where the relay and the
eavesdropper are co-located.
Corollary 2: For model 2 defined by (2), the achievable rate

region in (23) can be expressed as:

⋃⎧⎨
⎩

Re ≤ R1 ≤ I
(
X ; YDŶr|XrYR

)
0 ≤ Re ≤ [I

(
X ; YDŶr|XrYR

)
− I (X ; Yr)]

+

⎫⎬
⎭
(37)

where I(Xr; YR) > I(Ŷr; Yr|YDYRXr) and the union is taken
over p(X)p(Xr)p(YDYr|X)p(YR|Xr)p(Ŷr|YrXr).

Proof: (37) follows from (23) by letting Y = {YD, YR}
and using the following two Markov chains:

X → Xr → YR (38)

Xr → YR → YD (39)

It follows from (38) and (39) that I(Xr; YRYD) = I(Xr; YR)
and I(X ; YRYDŶr|Xr) = I(X ; YDŶr|XrYR). Also here
I(X ; Yr|Xr) = I(X ; Yr).
Next, we apply Corollary 2 to the Gaussian case, which is

defined as:
YD = X + ZD

Yr = aX + Zr

YR = bXr + ZR

(40)

where ZD, Zr, ZR are independent zero-mean Gaussian ran-
dom variables with unit variance. The transmit power of the
source and the relay are constrained by E[X2

r ] = E[X2] ≤ P .
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Corollary 3: For the Gaussian relay network defined in
(40), the following rate region is achievable.

0 ≤ Re ≤ R1 ≤ 1

2
log2

(
1 + P +

a2P

1 + σ2
Q

)
(41)

Re ≤ 1

2

[
log2

(
1 + P +

a2P

1 + σ2
Q

)
− log2

(
1 + a2P

)]+

(42)

where σ2
Q =

(
a2 + 1

)
P + 1

b2P (P + 1)
(43)

Proof: (41) and (42) follow from letting X ∼
N (0, P ), Xr ∼ N (0, P ), Ŷr = Yr + ZQ, ZQ ∼ N (0, σ2

Q),
and ZQ is independent from all the other variables. The
region (R1, Re) is maximized where σ2

Q is minimum, and
(43) follows from I(Xr; XR) > I(Ŷr; Yr|YDYRYr).
Remark 4: Suppose a > 1. Without the channel between re-

lay and destination, the secrecy capacity is known to be 0 [13].
We also know that a non-zero secrecy rate cannot be achieved
with decode-and-forward.However, if b is large enough, a non-
zero secrecy rate can be achieved with compress-and-forward,
as shown by (42). This is an example where the relay-to-
destination link helps to achieve a non-zero secrecy rate when
the relay and the eavesdropper are co-located.
Remark 5: Like the cooperative jamming/noise forward

scheme in [2] and [5], the relay transmits a signal that is
independent from the message when R1 = Re. However,
instead of being a deaf relay like the scheme shown in [5], here
the relay must listen to the source in order for it to provide
useful side information to the destination.
Remark 6: A trivial upper bound on the secrecy rate is

1
2 log2(1 + P

a2P+1 ). This can be obtained by combining the
relay with the destination or the relay with the source, and
applying the bound in (18). It can also be obtained by
specializing the outer bound of [4, section VI.C Theorem 7].
We observe that by letting b →∞, we will have σQ → 0, and
Re in (43) will approach this outer bound asymptotically.
Remark 7: The amplify and forward scheme can also be

used at the relay. In this case, the relay output is given by:

Xr =

√
P√

a2P + 1
Yr (44)

The relay network is then equivalent to a Gaussian Wire-
tap channel where the legitimate receiver has two antennas.
The achievable secrecy rate is computed from I(X ; YRYD)−
I(X ; Yr) [15] and is given by:

Re ≤ 1

2

[
log (1 + (1 + ξ)P )− log

(
1 + a2P

)]+ (45)

where

ξ =
a2β2b2

1 + β2b2
and

β2 =
P

(a2P + 1)
.

Observe that amplify-and-forward can also achieve a non-zero
secrecy rate given a large enough b. However, comparing it
to (42), we find that the secrecy rate given by amplify-and-
forward is strictly smaller than the secrecy rate achievable by
compress-and-forward.

V. CONCLUSION
In this paper, we have considered two relay channel models

with orthogonal components, where the relay is the eaves-
dropper. For the first model, we have found the capacity-
equivocation region and proved that the relay-destination link
does not help in increasing secrecy rate, and therefore the relay
should not be deployed if perfect secrecy is desired. For the
second model, we have provided an achievable rate based on
compress-and-forward. We have presented an example where
a non-zero secrecy rate is achievable under this scheme, in
which the relay-to-destination link plays a central role. Thus,
we conclude that, for this model, the relay can help the source
and the destination to communicate despite being subjected to
the secrecy constraint.
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