
Joint Power Scheduling and Estimator Design for
Sensor Networks Across Parallel Channels

Lauren M. Huie Xiang He Aylin Yener
Wireless Communications and Networking Laboratory

Electrical Engineering Department
The Pennsylvania State University, University Park, PA 16802
lmh312@psu.edu xxh119@psu.edu yener@ee.psu.edu

Abstract—This paper addresses the joint estimator and
power optimization problem for a sensor network whose
mission is to estimate an unknown parameter. We assume
a two-hop network where each sensor collects observations
from the source that transmits the quantity to be estimated,
then amplifies and forwards its observations to a fusion
center. The fusion center combines the observations using a
Linear Minimum Mean Squared Error (LMMSE) estima-
tor. We study the scenario where multiple parallel channels
are available between the source and each sensor as well
as between the sensors and the fusion center. We find the
global optimal power allocation and estimator design for
this network model. We present two practical scenarios
of interest that utilize spatial and temporal diversity for
which this solution applies, namely, a clustered network
model and a single cluster model with an ergodic fading
channel.

I. INTRODUCTION

Wireless sensor networks pose a number of new design
challenges primarily due to their distributed nature and the
fact that they are energy limited. In this work, we consider
a scenario where a sensor network is deployed to estimate
an unknown scalar parameter. In this problem, a transmission
scheme local at each sensor and a scheme at the fusion center
are sought to minimize the total power subject to a given
distortion requirement. The problem of scalar estimation is the
simplest conceivable estimation problem, yet, it still embodies
the potential to draw interesting insights on the interaction
between the estimation and the communication schemes. In
fact, determining the optimal local scheme at each sensor and
fusion center estimator schemes remain an open problem [1].

A large research effort has been devoted to this problem
and as a result optimal power and estimator designs un-
der several different estimator structures have been found.
Power minimization using the Best Linear Unbiased Estimate
(BLUE) is investigated in [2]–[4]. In [2], the optimum sensor
power schedule is found under analog amplify and forward,
while in [3], a digital approach is used to find the optimal
number of bits to quantize each sensor’s measurement. A
comparison of digital and analog techniques is given in [4]
and shows that the analog approach is more energy efficient
than digital systems without coding and in some cases more
efficient than those with coding. Power minimization under

Linear Minimum Mean Square Error (LMMSE) estimation is
considered in [5]. The optimal power schedule using analog
amplify and forward is given. It is shown that this solution
achieves significant savings in power consumption in a non-
homogeneous network. We note that these previous works
considered the availability of a single channel in each hop.

One might envision that an interesting scenario is the case
when multiple parallel channels exist between the observed
object, the sensors, and the fusion center. Multiple parallel
channels in each hop allow diversity gain in observations
hence improving the accuracy of the estimate. These parallel
channels may be needed when the unknown parameter has to
be reconstructed with a high accuracy (or low distortion) at
the fusion center. The existence of multiple parallel channels
in each hop models a class of meaningful physical scenar-
ios. In particular, these non-interfering parallel channels may
correspond either to a time slot in the temporal domain or
a sensor cluster in the spatial domain. In either case, in
order to satisfy stringent distortion requirements, data from
the parallel channels must be fused and a power scheduling
scheme must be devised. Thus, resource allocation among
the parallel channels to minimize total power under a given
distortion constraint arises as a fundamental problem. The
main result we report in this paper is the solution of this
problem, i.e. we find the globally optimal solution for the
multiple parallel channel power scheduling problem.

The remainder of the paper is organized as follows. We
introduce the system model in Section II and formulate the
optimization problem which is promptly observed to be non-
convex. We then show in Section III that we can find the global
optimum for this non-convex problem by using the solution of
the single channel case [5] as a building block. Specifically,
we prove that the minimum sum power of each channel is
a convex function of the received SNR requirement of that
channel. Using this result, the problem can be reformulated as
a convex programming problem and global optimality claimed.
In Section IV we present two applications of the main result
of our work: cluster based networks and the ergodic fading
channel. The first model exploits spatial diversity resulting
from clusters of sensors and the second model exploits time
diversity resulting from the time varying channel in each hop.
Section V provides the summary of our results.
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Fig. 1. System Model

II. SYSTEM MODEL

The network model given in Figure 1 shows a snapshot of
the jth sub-channel for a network comprised of N sensors.
We assume that X such parallel channels are available. The
subscript j is used to denote variables related to the jth sub-
channel, j = 1, . . . , X . Communication in each sub-channel
consists of two hops. In the first hop, the parameter, which
is a realization of the random variable θ with variance σ2

θ ,
is broadcasted to N sensors. In the second hop all sensors
communicate to the fusion center (FC), which forms an
MMSE estimate of θ. The source-to-sensors and sensors-to-
fusion center channel gains are fixed and given by αij and
gij for i = 1, . . . , N ; j = 1, . . . , X , respectively. The
randomness in the sensors’ observation is modeled as additive
noise, wij . The received signal noise is vj . Both wij and vj are
modeled as i.i.d. Gaussian random variables with zero mean
and variance σ2

w and σ2
v , respectively. The i.i.d. assumption im-

plicitly assumes the observations are independent, conditioned
on the value of the parameter θ. Each sensor has an amplifier
with an adjustable gain, βij . Sensors only have access to their
own (local) measurements.

From Figure 1, the received signal at sensor i from sub-
channel j is

xij =
√

αijPsθ + wij (1)

and the signal received at the fusion center from sub-channel
j is given by

yj = vj +
N∑

i=1

√
gij (βijxij) (2)

= vj +
N∑

i=1

(√
gijαij PsPij

αijPs + σ2
w

θ +

√
gijPij

αijPs + σ2
w

wij

)
(3)

where the amplification factor, βij =
√

Pij

αijPs+σ2
w

for each
sensor is adjusted to yield the transmit power, Pij of sensor
i for sub-channel j. We further simplify notation by defining
q2
ij = γijgij

1+γij
= αijPsgij

αijPs+σ2
w

and γij = αijPs/σ2
w, where γij is

the local received SNR at every sensor. The received signal at

the fusion center becomes,

yj = vj +
N∑

i=1

(
qij

√
Pij θ +

qij

√
Pijwij√

αijPs

)
(4)

based on which the fusion center forms the linear estimate.

θ̂ =
X∑

j=1

ajyj (5)

The end-to-end MSE = E
[(

θ − θ̂
)2
]

can be expressed as

MSE = eT
(
σ2

θQ
T aaT Q + E

[
W̃T aaT W̃

])
e

+ aT σ2
vIa − 2σ2

θa
T Qe + σ2

θ (6)

where we have

q̃j = [q1j · · · qNj ]
T ;

Q =


q̃T

1 0 · · · 0 0 0
0 q̃T

2 0 · · · 0 0
... · · · · · · · · · · · · 0
0 · · · · · · 0 0 q̃T

X

 (7)

w̃j =

[
q1jw1j√
α1jPs

· · · qNjwNj√
αNjPs

]T

;

W̃ =


w̃T

1 0 · · · 0 0 0
0 w̃T

2 0 · · · 0 0
... · · · · · · · · · · · · 0
0 · · · · · · 0 0 w̃T

X

 (8)

e =
[ √

P11 · · · · · · √
P1X · · · √

PNX

]T
(9)

and

a = [a0 a1 ... aN−1]
T ; (10)

E
[
W̃T a aT W̃

]
= E

[
uuT

]
with (11)

u =
[

q11w11a1√
α11Ps

· · · qN1wN1a1√
αN1Ps

· · · qNXwNXaX√
αNXPs

]T

.

(12)

We would like to minimize the total energy used under a
given MSE constraint. Thus, the optimization problem is:

min
e,a

‖e‖2 =
∑N

i=1

∑X
j=1 Pi,j (13)

s.t. MSE ≤ Do (14)

e ≥ 0 (15)

where e is the vector of transmission powers given by equation
(9), a is the set of linear estimator coefficients given by (10),
MSE is given by (6) and Do is the maximum allowable system
MSE. This optimization is performed by the fusion center. We
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point out that this joint optimization problem over e and a is
not a convex program. This can easily be seen from the fact
that each KKT point for the case with X − 1 sub-channels
is also a KKT point for the case with X sub-channels. These
KKT points can be highly suboptimal for the X sub-channel
case, establishing that the problem has to be non-convex in e
and a.

III. OPTIMAL POWER ALLOCATION

We begin by describing the relationship between the re-
ceived SNR at the fusion center and the end-to-end MMSE.
Following (4), we express the received SNR at the fusion
center for sub-channel j as

Γj =

E

(vj+
∑N

i=1
qij

√
Pijwij√

αijPs∑N
i=1 qij

√
Pij

)2
−1

(16)

= (∑N
i=1 qij

√
Pij)2

σ2
vj

+
∑N

i=1

q2
ij

Pijσ2
wij

αijPs

= (∑N
i=1 P̂ij)2

σ2
vj

+
∑N

i=1
1

γij
P̂ 2

ij

(17)

When MMSE estimation is performed at the fusion center,
the resulting maximum SNR and the minimum MSE has the
following relationship [6]:

MSE =
1∑X

j=1 Γj + 1
(18)

Using (18), the MSE constraint MSE ≤ D0 can be rewritten
as a sum received SNR constraint:

∑X
j=1 Γj ≥ Γo, where

Γo = 1
Do

− 1. Therefore, the MSE constraint (14) in the
optimization problem (13)-(15) can be reformulated with the
sum SNR constraint and the following constraint for each sub-
channel obtained from (17).

(Sj)
2 ≥ Γj

(∑N

i=1

1
γij

P̂ 2
ij + σ2

vj

)
j = 1, . . . , X (19)

Sj =
∑N

i=1
P̂ij ; P̂ij ≥ 0 (20)

We recognize that for a fixed Γj , constraints (19) and
(20) characterize a convex set of Sj , P̂ij , where i =
1, . . . , N and j = 1, . . . , X . Therefore, for each sub-channel
with a fixed SNR, the problem is a convex programming
problem [5]. On the other hand, when Γj is no longer a
constant but instead is a part of the optimization problem,
this is no longer the case.

We show next that the multiple parallel channel power
scheduling problem can be solved by examining the relation-
ship between the sum power in the sub-channel j and the
required SNR in that sub-channel Γj . This relationship which
follows from [5] is shown next:

N∑
i=1

(
gijγij

(1+γij)σ2
vj

)
Ptot,j (Γj)

1 +
(

gij

(1+γij)σ2
vj

)
Ptot,j (Γj)

= Γj (21)

The total power in sub-channel j is Ptot,j =
N∑

i=1

Pij and is

written as Ptot,j (Γj) to emphasize the functional relationship
between Γj and Ptot,j .

Taking the derivative of (21) we have:

∂Ptot,j (Γj)
∂Γj

=
1

∑N
i=1

(
gijγij

(1+γij)σ2
vj

)
((

gij

(1+γij)σ2
vj

)
Ptot,j(Γj)+1

)2

≥ 0 (22)

since P ′
tot,j ≥ 0, Ptot,j increases with Γj . Using (22), we find

P ′
tot,j increases with Γj which means P ′′

tot,j ≥ 0. Hence we
have the following observation.

Observation 1 The sum power Ptot,j is a convex function of
received SNR Γj .

From this observation, we can recalibrate the optimization
problem in terms of the total power value expended in each
sub-channel as follows:

min{
Ptot,j

}X

j=1

X∑
j=1

Ptot,j (23)

s.t.
X∑

j=1

Γj ≥ 1
Do

− 1 (24)

N∑
i=1

gijγij

(1+γij)σ2
vj

Ptot,j

1 + gij

(1+γij)σ2
vj

Ptot,j
≥ Γj , Ptot,j ≥ 0 ∀ j (25)

Observe that (23)-(25) is a convex programming problem. The
solution has a waterfilling-like structure as shown by (27) and
(28). Recall that the right hand side of (25) is a monotonically
increasing function of Ptot,j . For a given λo, there is a unique
Ptot,j such that (28) holds. Therefore, the optimal solution
{Ptot,j}X

j=1 is governed by a single Lagrange parameter λ0.

P ′
tot,j|Γj=0,Ptot,j=0

=
1∑N

i=1
gijγij

(1+γij)σ2
vj

(26)

If λo < P ′
tot,j|Γj=0

then Ptot,j = 0 (27)

If λo > P ′
tot,j|Γj=0

then 1
λo

= ∂Ptot,j(Γj)
∂Γj

=
∑N

i=1

gijγij

(1+γij)σ2
vj((

gijγij

(1+γij)σ2
vj

)
Ptot,j+1

)2(28)

From (27) and (28), we can find the received SNR Γj of
each sub-channnel. In essence, by this method, the multiple
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parallel channel power scheduling problem decomposes into a
sequence of single sub-channel optimization problems which
can be solved as shown in [5].

IV. APPLICATIONS

So far we presented a general solution for optimum power
allocation for two-hop sensor networks with parallel channels.
A natural follow-up is to consider practical communication
scenarios for which this solution is applicable. In this section,
we present two such scenarios.

A. Cluster based network

Cooperative beamforming among sensors over the entire
network can be difficult due to synchronization challenges.
A more practical approach is to organize sensors into clusters
and perform cooperative beamforming within each cluster. The
fusion center communicates with each cluster in a TDMA
fashion. This system is depicted in Figure 2. Because each time
the fusion center only talks with one cluster, the clusters equate
to non-interfering sub-channels as described in Figure 1. In
general, the quality of observations from each cluster will
be different. Thus, by considering power allocation among
clusters, the overall performance can be improved [7]. Aiming
specifically for the jointly optimum power allocation and
estimators, we can immediately observe that this problem is
mathematically identical to our parallel channel model. We can
apply the globally optimal solution directly when each cluster
corresponds to a parallel channel.

We examine the performance of the global optimal solution
and compare it to equal power allocation among clusters as
shown in Figure 3. In the case of equal power allocation, each
cluster is allocated power separately using the solution given
by [5]. Each channel is assumed to be Rayleigh flat fading. The
variance σ2 of the Rayleigh distribution is set to be d−2, where
d is the distance between the transmitter and the receiver. The
location of the clusters are generated randomly over a 10×10
field. Sensors are distributed uniformly within a circle centered
on the location of the cluster. The radius of the cluster is 0.5.
There are 5 clusters, each with 5 sensors. We observe a 10%
decrease in minimum achievable MSE using the optimal power
allocation among clusters.
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Fig. 3. Power Allocation

B. Ergodic Block Fading Channel

We consider ergodic block fading in a system similar to
Figure 1, where each link is a block fading channel. Suppose
that the observation time is sufficiently long such that the
channel gains appear to be ergodic within the observation
period. In addition, the noise coherence time introduced by
the sensor amplifier is much shorter as compared with the
coherence time of the channel gains. Thus, each fading state
can be viewed as a sub-channel corrupted by independent
noise. We wish to determine the power allocation for each
fading state.

Before the problem can be addressed, the meaning of opti-
mality must be refined. Since an infinite number of observa-
tions are involved, MSE alone is not a valid constraint because
equal (non-zero) power allocation among fading states would
yield a MSE = 0. For this application, we are more interested
in how MSE will approach 0. Therefore, we impose constraints
on the asymptotic behavior of MSE. The optimization problem
is stated below:

min lim
X→∞

1
X

X∑
j=1

Ptot,j

s.t. lim
X→∞

X MSE ≤ α,
(29)

where α > 0.

Observe that from (18), we have:

lim
X→∞

X MSE = lim
X→∞

X
X∑

j=1

Γj + 1
= lim

X→∞
X

X∑
j=1

Γj

(30)

Substituting (30) into (29) and defining 1/α = α′ we have:

min lim
X→∞

1
X

X∑
j=1

Ptot,j

s.t. lim
X→∞

X∑
j=1

Γj

X ≥ α′
(31)
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Since the channel is ergodic, (31) is equivalent to

min E [Ptot,j ]
s.t. E [Γj ] ≥ α′ (32)

where the expectation is over the channel gains.
If the channel gains are discrete random variables with a

finite support, then (32) can be solved with the same method
we used to solve (23). When that is not the case, care must
be excercised to find the solution.

First, we observe that (32) has a mathematical form similar
to (23). As shown in (27) and (28), the solution of (23) is
governed by a single Lagrangian multiplier λ0. The solution
of (32) has the same property. Once λ0 is fixed, the optimal
Ptot,j and Γj of the sub-channel j can be computed via
(27) and (28). E [Ptot,j ] and E [Γj ] are then approximated by
averaging Ptot,j and Γj over the channel gains. Hence, once
we determine λ0, we can get E

[
P ∗

tot,j

]
and E

[
Γ∗

j

]
, where

the superscript ∗ denotes the optimal solution. In practice, a
lookup table of E

[
P ∗

tot,j

]
and λ0 under different values of

E
[
Γ∗

j

]
can be generated. Because the constraint E [Γj ] ≥ α′

in (32) must be binding, E
[
Γ∗

j

]
is equal to α′. Therefore, the

lookup table can be used to find λ0 under a given α′, which
yields the power power allocation for any given fading state
under (27) and (28).

The approach described above is used to compute the
minimum average power per fading state under a given α′

in Figures 4 and 5. Figure 4 presents a case in which the
channel gains seen by different sensors are set to be the same
realization of Rayleigh random variable. Figure 5 presents the
case in which the channel gains seen by different sensors are
independent Rayleigh random variables. Real-world scenarios
lie between these two extreme cases. The Rayleigh random
variables have unit variance. The variance of all additive white
noise is 0.1. The variance of the unknown parameter is 1. As
seen in the perfectly correlated case (Figure 4), the optimal
solution achieves a greater α′ as compared with equal power
allocation when the average power per fading state is 30. In the
case of independent channel gains (Figure 5), the performances
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Fig. 5. Performance under independent channel gains (4 sensors)

are similar due to spatial diversity. From this experiment, we
observe that, depending on the physical reality of the system,
optimal power allocation may signifcantly outperform equal
power allocation which validates it as a design choice. On the
other hand, there may be scenarios where the optimal solution
provides modest gains over equal power allocation, in which
case equal power allocation may be preferred for its ease of
implementation.

V. CONCLUSION

In this work, we have presented the globally optimum power
allocation and estimator design for the sensor network based
scalar estimation problem with multiple parallel channels
between the observed object, the sensors, and the fusion center.
The sensors use an amplify and forward scheme. This problem
cannot be solved by simply combining the constraints of all
sub-channels as the resulting problem is non-convex. Instead,
we examine the optimal solution of each sub-channel and
make use of the fact that the minimum sum power spent on
each sub-channel is a convex function of the received SNR of
that channel.
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