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Abstract—In this paper, we consider end-to-end secure com-
munication in a large wireless network, where the locations
of eavesdroppers are uncertain. Our framework attempts to
bridge the gap between physical layer security under uncertain
channel state information of the eavesdropper and network level
connectivity under security constraints, by modeling location
uncertainty directly at the network level as correlated node and
link failures in a secrecy graph. Bounds on the percolation
threshold are obtained for square and triangular lattices, and
bounds on mean degree are obtained for Poisson secrecy graphs.
Both analytic and simulation results show the dramatic effect
of uncertainty in location of eavesdroppers on connectivity in a
secrecy graph.

I. INTRODUCTION

In the recent years, there has been growing interest in
employing information theoretic methods to characterize the
secrecy capacity of wireless networks. In a seminal paper
[1], Wyner introduced the wire-tap channel and formalized an
information theoretic setting for communicating a confidential
message to the intended receiver while keeping the eavesdrop-
per completely ignorant of the confidential message. Csiszar
and Korner [2] generalized this formulation to a broadcast
channel, where the transmitter has a common message for
both the users along with a confidential message for one
of them. This framework has been successfully applied to
networks with one hop communication, such as broadcast, e.g.,
[3], multiple access, e.g., [4], and two-hop communication
with relays, e.g., [5]. However, it is not as clear how the
information theoretic techniques can be used to guarantee end-
to-end secrecy in large networks.

Recently, the concept of secrecy graph was introduced
in [6], where physical layer secrecy is captured using an
abstract model, which is integrated with network layer models.
Essentially, link connectivity is determined using information
theoretic secrecy models resulting in a secrecy graph, which is
analyzed for connectivity [6, 7], using tools from percolation
theory. Scaling laws for secrecy capacity in large networks
have also been investigated in [8, 9]. In [8], a random network
was considered where the legitimate nodes and eavesdroppers
are placed in a square region of area n according to indepen-
dent Poisson point processes (PPPs). It was shown that secrecy
requirement does not lead to a loss in throughput, in terms
of scaling, if the intensity of eavesdroppers is O((log n)−2)
while the intensity of the legitimate nodes is 1. In [9], a similar
result was shown for mobile ad-hoc networks (MANETs) with

n legitimate nodes and a delay constraint of D, if the number
of eavesdroppers scales as o(

√
nD).

In references [6–9] the channel gains of all the eavesdrop-
pers are assumed to be known. However, this assumption is
unrealistic, especially for a passive eavesdropper, since it may
not be possible to ascertain even the presence of such an
entity. For communication over a single link, a compound
channel model [10] can be used if the eavesdropper’s channel
is uncertain, and noise injection techniques can be used if the
channel is unknown [11]. In contrast, we want to characterize
the effect of uncertainty in location of eavesdroppers on the
network level connectivity, instead of capacity of individual
links.

In this paper, we introduce a secrecy graph model where the
locations of eavesdroppers are uncertain, and the uncertainty
is modeled in terms of node and link failures in a secrecy
graph. We study the percolation thresholds and node degree
distributions under these failures. Thus, our model captures
the uncertainty in eavesdroppers’ locations at the network
level, and provides a realistic model for guaranteeing end-
to-end security. The main challenge is that the failures are
correlated, and hence, the techniques from percolation theory
must be extended to account for these correlations. Numerical
results show that location uncertainty of eavesdroppers has a
dramatic effect on connectivity in a secrecy graph. Though this
is somewhat expected, it is surprising to observe how soon the
effect sets in.

II. MODEL AND FORMULATION

Let Ĝ = (φ, Ê) denote a geometric graph in R
d, where

φ = {xi} ⊂ R
d is the set of locations of legitimate nodes. E is

the set of links over which reliable communication is possible.
ψ = {yi} ⊂ R

d denotes the set of locations of eavesdroppers.
We assume that each eavesdropper is located within a known
finite area and the precise location is uncertain. If the locations
of the nodes come from a stochastic point process, we denote
the corresponding random variables by Φ and Ψ.

We define secrecy graphs (SGs) based on Ĝ and ψ. The
existence of links in the secrecy graphs is determined based
on secrecy capacity of the links. We assume that the wireless
medium introduces only path loss, with exponent α, and
that the noise introduced by the receivers is Additive White
Gaussian Noise (AWGN). If the source transmits a signal with
power Ps to a receiver at distance dR, and the eavesdropper is
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Fig. 1. (a) Failures in square lattice (b) Indices in triangular lattice

located at distance dE , the secrecy capacity is given by [12]

Cs =

(
log

(
1 +

Ps

dα
R

)
− log

(
1 +

Ps

dα
E

))+

, (1)

where the AWGN power is assumed to be 1 for both the
channels. If the destination is closer than the eavesdropper,
i.e., dR < dE , the secrecy capacity is positive and it is zero
otherwise. We will employ two secrecy graphs in this paper -
directed secrecy graph and basic secrecy graph [6]. A directed
edge exists from xi to xj in the directed secrecy graph �G if
‖xi − xj‖ < ‖xi − yk‖ for all yk ∈ ψ. An undirected edge
exists in the basic secrecy graph G if a directed edge exists
from xi to xj and also from xj to xi in �G.

A. Secrecy in Square and Triangular Lattice

We consider square and triangular lattices, shown in Fig.
1(a) and Fig. 1(b), respectively. A legitimate node is present
at each vertex of the lattice, and each node is connected to its
nearest neighbors. We assume that the precise locations of the
eavesdroppers are not known, however, the edges bounding
each eavesdropper’s location are known. For example, assume
that the square S1 in Fig. 1(a) contains an eavesdropper.
In the basic secrecy graph, nodes a, b, c and d will not
have any edges, and thus, these nodes are considered to have
failed. Notice that the node failures are correlated, since all
nodes of a given square fail together. Thus, we can model
the uncertainty in an eavesdropper’s location at the network
level, by employing the physical layer model for secrecy. This
approach can be extended to include scenarios where each
eavesdropper is located within a finite but arbitrary area. For
example, assume that an eavesdropper is present within the
squares S2, S3 or S4 (see Fig. 1(a)). Then all the nodes marked
× fail. A similar model is used for the triangular lattice, where
all the vertices of a triangle fail if an eavesdropper lies within
that triangle. We assume that the probability that a square (or
a triangle) contains an eavesdropper is pE .

B. Secrecy in Poisson graph

We assume that the locations of legitimate nodes follow a
Poisson point process (PPP) Φ with intensity 1. Two nodes are
connected if the distance between them is at most r, resulting
in Gilbert’s disk graph [13]. Each eavesdropper is known to
be located within a circle of radius rE . The radius rE captures
the uncertainty in an eavesdropper’s location. The center of the

circles follow a PPP with intensity λ. We denote the directed
and basic secrecy graphs by �Gλ,r and Gλ,r, respectively.

C. Percolation Threshold

Percolation was introduced by Broadbent and Hammersley
[14], to model the diffusion process in materials. They used
regular lattices to model a material, where each node is
present with probability p. Percolation is said to occur if
an infinite component exists in the corresponding graph. It
was shown that a phase transition exists, i.e., there exists
a critical threshold, below which all components are finite,
almost surely, and above which an infinite component exists,
almost surely. Let us denote the number of nodes in the
component containing the origin by |C|. Then, the percolation
probability is defined as

θ(pE) = P (|C| = ∞). (2)

The percolation threshold is defined as

pc
E = inf{pE : θ(pE) = 0}. (3)

Roughly, pc
E is the smallest value of pE for which an infinite

component does not exist in the secrecy graph. In other words,
for any pE < pc

E , the secrecy graph will have an infinite
component containing the origin almost surely.

III. SQUARE AND TRIANGULAR LATTICES

In this section, we present bounds on the percolation
threshold of square and triangular lattices. We note that exact
solutions for percolation probability exist only for a few
lattices. For example, for a triangular lattice, where each
node occurs with probability p, pc = 1/2. However, the
corresponding percolation threshold for a square lattice is not
known [15]. Notice that in the models considered in this paper,
failures are correlated, and hence, the corresponding problems
of determining the percolation threshold are expected to be
intractable. Therefore, we concentrate our effort in obtaining
tight upper and lower bounds on the percolation threshold. The
following lemma from [16] is useful.

Lemma 1. (Hori and Kitahara [16]): For a triangular lattice
with site probability r and bond probabilities p1, p2 and p3,
the critical probability satisfies

r(p1 + p2 + p3 − p1p2p3) = 1. (4)

We first consider the square lattice, where the probability
that a square region bounded by edges in the lattice contains
an eavesdropper is pE . It is known which squares contain an
eavesdropper, however, the exact locations of the eavesdrop-
pers within the squares are unknown. The following theorem
presents bounds on the critical eavesdropper probability.

Theorem 1. For a square lattice where nodes are located on
the vertices of the lattice and eavesdroppers occur in square
regions of the lattice with probability pE , the percolation
threshold for the basic secrecy graph, denoted by pc

E , satisfies

1

18
≤ pc

E ≤ 3 −√
5

2
. (5)
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Proof: The existence of critical probability follows from
[15]. For the upper bound on the percolation threshold, assume
that no eavesdroppers are present in the squares (2i, 2j) for
all integers i and j, and eavesdroppers are present in the re-
maining squares with probability pE . Removing eavesdroppers
from squares (2i, 2j) can only increase the critical probability,
and thus, results in an upper bound. Now assume that each
square (2i + 1, 2j + 1) is a vertex in a new square lattice
which fails when there is an eavesdropper in that square.
Further, the nodes corresponding to squares (2i + 1, 2i + 1)
and (2i+3, 2i+1) are connected iff there is no eavesdropper
in square (2i+2, 2i+1). Similarly, the nodes corresponding to
squares (2i+1, 2i+1) and (2i+1, 2i+3) are connected iff there
is no eavesdropper in square (2i + 1, 2i + 2). This produces a
new square lattice with the probability of existence of a node
and an edge being 1−pE each. Thus, when the probability pE

is less than one minus the percolation probability of the square
lattice with equally likely bond and site probability, there exists
an infinite connected component with probability 1. Since the
percolation probability of a square lattice is greater than that
of a triangular lattice, the required critical probability can be
upper bounded by one minus the percolation probability of a
triangular lattice with equally likely bond and site probability,
using Lemma 1. This gives the upper bound in the statement
of the theorem.

For the lower bound, consider each square as a node of a
triangular lattice which fails when it or any of the neighboring
squares contain an eavesdropper. Note that we are over-
counting all the eavesdroppers resulting in a lower bound
for critical percolation probability. This results in a triangular
model with site probability 1 − 9pE and bond probability 1
which yields a lower bound of 1/18 on pc

E .
Note that, for the square lattice, the probability of a node

failure is related to pE as

pfail = pE(2(1 − pE)(2 − pE + p2
E) + p3

E). (6)

However, the node failures are correlated, and hence, existing
results on percolation thresholds cannot be used directly.

Now, consider the placement of nodes on the vertices of the
triangular lattice and eavesdroppers inside triangular regions
of the lattice. Suppose that a triangular region contains an
eavesdropper with probability pE . The critical eavesdropper
probability can be bounded as in the following theorem.

Theorem 2. For a triangular lattice where nodes are located
on the vertices of the lattice and eavesdroppers occur in
triangular regions of the lattice with probability pE , the
percolation threshold for the basic secrecy graph, denoted by
pc

E , satisfies
1/26 ≤ pc

E ≤ 0.2582. (7)

Proof: The existence of the critical probability follows
from [15]. For the upper bound, assume that there are no
eavesdroppers in the triangles (3i+1, 3j +1), (3i+1, 3j +2),
(3i + 2, 3j + 1), (3i + 2, 3j + 2) for all integers i and j and
the eavesdroppers are present in the remaining triangles with
probability pE (the indexing of triangles is shown in Fig. 1(b)).

Now assume that each triangle (3i, 3j) is a vertex of a new
square lattice which fails when there is an eavesdropper in
that triangle. Further, nodes corresponding to triangles (3i, 3i)
and (3i + 3, 3i) are connected iff there is no eavesdropper in
any of the triangles (3i + 1, 3i) and (3i + 2, 3i). Similarly,
nodes corresponding to triangles (3i, 3i) and (3i, 3i + 3) are
connected iff there is no eavesdropper in any of the triangles
(3i, 3i+1) and (3i, 3i+2). This produces a new square lattice
with the probability of existence of a vertex and an edge being
1−pE and (1−pE)2 respectively. Thus, when the probability
pE is less than one minus the percolation probability of this
square lattice, there exists an infinite connected component
with probability 1. Since the percolation probability of a
square lattice is greater than that of a triangular lattice, the
required critical probability can be upper bounded by one
minus the percolation probability of a triangular lattice with
corresponding bond and site probability. This gives the upper
bound as one minus the solution of equation 3x3 − x5 = 1 in
(0, 1) which is less than 0.2582. The lower bound analysis is
similar to the proof in Theorem 1 and is thus omitted.

IV. POISSON SECRECY GRAPH

In this section, we consider a Poisson model where Φ
is a Poisson point process (PPP) of intensity 1 in R

2. The
eavesdroppers are located in known circular regions. The
centers of circular regions are located according to a Poisson
point process Ψ of intensity λ in R

2, which is independent of
Φ. The radius of the circular regions is denoted by rE . For
simplifying the notation, we define A

.
= λπr2

E .
We are interested in computing the mean degree of a node in

the basic secrecy graph. For simplicity, we consider the node
located at the origin, denoted by o. Let N denote the number of
bi-directional links of node o. An analytic computation of N is
difficult because it requires characterization of the intersection
of two regions - a circular region which determines the out-
degree of node o, and a polygonal region which determines
the in-degree of node o. The polygonal region is the interior
of the region formed by the intersection of bisectors of the
line segments joining the origin to an eavesdropper. Let Nout

denote the number of directed links out of node o. Clearly,
N ≤ Nout, and thus, we can obtain an upper bound on
the mean degree. Assume that the eavesdropper closest to the
origin is located at a distance R from the origin. A lower bound
can be obtained by considering the circle C(0, (R − rE)/2),
since the origin has a bi-directional link to all the nodes in
this region. Ñ denotes the number of legitimate nodes in
C(0, (R − rE)/2). Clearly, Ñ ≤ N .

Lemma 2. In the directed secrecy graph �Gλ,∞ with radius
of uncertainty for eavesdropper’s location rE , the probability
that the origin is isolated, i.e., it cannot transmit securely to
any other node is

P (Nout=0)=1 − e−A

1 + λ
+

2πλrEe−
A

1+λ

(1 + λ)3/2
Q

(√
2λA

1 + λ

)
, (8)

Proof: Assume that the eavesdropper closest to the origin
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is located at a distance R from it. Then, the origin can securely
transmit to any node within the circle of radius R − rE ,
centered at the origin. Averaging the probability of having
no legitimate nodes in that circle over R results in (8).

Lemma 3. In the basic secrecy graph Gλ,∞ with radius of
uncertainty for eavesdropper’s location rE , the probability
that the origin is isolated, i.e., it does not have a secure
bi-directional link to any other node, is lower-bounded by
P (Nout = 0) and is upper-bounded by P (Ñ = 0), given by,

P (Ñ=0)=1− e−A

1 + 4λ
+

2πλrEe−
A

1+4λ

(1/4 + λ)3/2
Q

(√
2λA

1/4 + λ

)
. (9)

Proof: The proof is similar to that of Lemma 2, but nodes
in C(0, (R − rE)/2) are considered.

Note that for the directed secrecy graph,

lim
rE→0

P (Nout =0)=
λ

1 + λ
, lim

rE→∞
P (Nout =0)=1, (10)

which match the results in [6] where rE = 0 was assumed.
Similarly, for the upper bound,

lim
rE→0

P (Ñ = 0) =
λ

1/4 + λ
, lim

rE→∞
P (Ñ = 0) = 1. (11)

Thus, in both the cases, none of the nodes have any links,
almost surely, if the locations of the eavesdroppers are not
known at all. For rE = 0, we obtain the probability of isolation
of a node when locations of all the eavesdroppers are known
precisely. Further, as the eavesdroppers’ intensity λ goes to
infinity,

lim
λ→∞

P (Nout = 0) = 1, lim
λ→∞

P (N = 0) = 1, (12)

meaning that none of the nodes have any links, almost surely.

Lemma 4. The distributions of the number of out-going links
at the origin Nout and the number of bi-directional links to
nodes in the circle C(0, (R − rE)/2) Ñ are given by,

P (Nout = n) =
2πn+1λ

n!
e−

A
1+λ

2n∑
k=0

(
2n

k

) (−λrE

1 + λ

)2n−k

(Fk+1(π(1 + λ)) +
rE

1 + λ
Fk(π(1 + λ)), n ≥ 1, (13)

Fk(α) =

⎧⎨
⎩

(−1)k/2 ∂k/2

∂αk/2

√
π
αQ(

√
2α λ

1+λrE), k even

(−1)(k−1)/2 ∂(k−1)/2

∂α(k−1)/2
e
−α(λrE

1+λ )
2

2α , k odd
(14)

P (Ñ = n) =
2πn+1λ

4nn!
e−

A
1+4λ

2n∑
k=0

(
2n

k

) ( −λrE

1/4 + λ

)2n−k

(F̃k+1(π(
1

4
+ λ)) +

rE

1 + 4λ
F̃k(π(

1

4
+ λ)), n ≥ 1, (15)

F̃k(α) =

⎧⎨
⎩

(−1)k/2 ∂k/2

∂αk/2

√
π
αQ(

√
2α λ

1/4+λrE), k even

(−1)(k−1)/2 ∂(k−1)/2

∂α(k−1)/2
e
−α( λrE

1/4+λ )
2

2α , k odd
(16)
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Fig. 2. Percolation threshold for square lattice

and (8), (9).

Proof: The upper bound is obtained by considering legiti-
mate nodes in the circle C(0, R−rE), while C(0, (R−rE)/2)
is considered for the lower bound.

The main result of this section is summarized next.

Theorem 3. The mean degree of a node in the basic Poisson
secrecy graph with secure bi-directional links is bounded as,

E[Ñ ] ≤ E[N ] ≤ E[Nout], (17)

where the distributions of Ñ and Nout are given by (9),(15)
and (8), (13), respectively.

Proof: The regions corresponding to Ñ and Nout were
chosen so that Ñ ≤ N ≤ Nout. By taking expectation, we
obtain (17).

V. NUMERICAL RESULTS

We now present numerical results on percolation thresholds
of lattice secrecy graphs and mean degree in Poisson secrecy
graphs.

A. Percolation threshold

We estimated the percolation probability θ(pE) for L × L
square lattice through Monte-Carlo simulations. Eavesdroppers
were placed in the squares randomly and independently, with
the probability of a given square having an eavesdropper being
pE . We estimated the probability that a cluster wraps around
the periodic boundary conditions. Cluster wrapping can be de-
fined in several ways; we considered the probability of cluster
wrapping in the horizontal and vertical directions, denoted by
R

(h)
L (pE) and R

(v)
L (pE), respectively [17]. 105 random lattices

were generated for each estimate. Fig. 2 shows the variation
of percolation probability with pE , for L = 50, 100, 200.
Notice that in Fig. 2, the percolation probability transitions
from a large value (close to 1), to a small value (close to 0).
This transition is a typical behavior of percolation probability,
and the region of transition becomes narrower as the size of
simulated network increases. The percolation threshold can be
estimated as the point of intersection of the three curves. Thus,
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Fig. 3. Percolation threshold versus area

for the square lattice with each eavesdropper located within a
square, the percolation threshold is pc

E ≈ 0.163. For pE = pc
E ,

we obtain pfail ≈ 0.5 (using (6)) for correlated node failures,
whereas for independent node failures, the critical threshold
is pfail ≈ 0.41. Although, a larger proportion of node failures
can be tolerated (pfail) in the correlated failure scenario, only
16.3% eavesdroppers can be tolerated in that case.

B. Effect of uncertainty in location

We now show the effect of the uncertainty in the location of
eavesdroppers on the percolation threshold. An eavesdropper
may be located anywhere within certain NS squares. NS

captures the amount of uncertainty in an eavesdropper’s lo-
cation. Fig. 3 shows the variation of percolation probability
with pE for L = 100 and NS = 1, 2, 4, 9. As expected,
the threshold probability reduces as NS increases, where the
decrease quantifies the effect of uncertainty in location on
percolation threshold of secrecy graphs.

Note that in the lattice model, the uncertainty in an eaves-
dropper’s location was represented in terms of the number
of squares, resulting in limited resolution. We now present
numerical results in the Poisson model, where the radius rE

can take any non-negative real value. Fig. 4 shows the variation
of the upper and lower bounds on the mean degree of the
origin in the basic secrecy graph. λ was chosen as 0.1, for
which percolation occurs at rE = 0 [6]. Notice that both the
upper and lower bounds decrease by a more than a factor of
1/2 as rE goes from 0 to 1. The gap between the upper and
lower bounds reduces with increasing rE .

VI. CONCLUSION

We have introduced a new model for secrecy graphs where
uncertainty in location of eavesdroppers can be modeled as
correlated node and link failures. Our framework captures
the uncertainty at the network level, allowing the analysis of
end-to-end connectivity under uncertainty in eavesdroppers’
locations. Bounds on the percolation thresholds of square and
triangular lattices were presented. For the Poisson secrecy
graph, bounds on the mean node degree were presented.
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Fig. 4. Mean degree in basic secrecy graph

Numerical results showed that uncertainty in location of eaves-
droppers effects connectivity in a secrecy graph dramatically.
In our future work, we will investigate methods to mitigate
the effect of location uncertainty of eavesdroppers, using the
framework developed in this paper.
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