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Abstract—For bi-directional communication, the most general
form of encoders should consider the signals received in the
past as inputs. However, in practice, it would also be highly
desirable if feedback could be ignored for encoding purposes
since this would lead to a simple system design. In this work, we
investigate the question of whether and how much loss in secrecy
rate would be incurred, if such an approach were taken. To do so,
we investigate the role of feedback in secrecy for two three-node
two-way channel models. First, we show that feedback is indeed
useful for a class of full-duplex two-way wire-tap channels. In
this case, when feedback is ignored, the channel is equivalent to
a Gaussian degraded relay channel with confidential messages to
the relay. The usefulness of feedback is demonstrated by deriving
an upper bound for this channel when feedback is ignored, and
then proving that, when feedback is used, a secrecy rate higher
than this upper bound is achievable. Secondly, we consider the
half-duplex Gaussian two-way relay channel where there is an
eavesdropper co-located with the relay node, and find that the
impact of feedback is less pronounced compared to the previous
scenario. Specifically, the loss in secrecy rate, when ignoring the
feedback, is quantified to be less than 0.5 bit per channel use
when the power of the relay goes to infinity. We also show that
this rate region is achievable under a simple time sharing scheme
with cooperative jamming, which, with its simplicity and near-
optimum performance, is a viable alternative to an encoder using
feedback.

I. INTRODUCTION

Most communication links are bi-directional. In secure com-
munication, the benefit of having a secure reverse link were
previously shown in several cases. In [1], Shannon showed a
secure reverse link can be be used to send a key termed one-
time pad to increase the secrecy capacity of the forward link.
The same idea was extended to prove achievability results for
the wire-tap channel with rate limited feedback link in [2] and
[3]. References [4], [5] provided a scheme for channels with
binary symmetric links.

One common feature shared by the channel models of all
these works is that the feedback link is orthogonal to the for-
ward link. In most wireless systems, this is achieved via shar-
ing in time or frequency. On second thought however, it could
be overly optimistic to assume that the eavesdropper only
monitors time slots or frequency bands corresponding to the
traffic in one direction and completely ignores the other. Also,
separating these two flows artificially, might inadvertently give
the eavesdropper an advantage, as compared to superimposing
them together. Alternatively, when flow separation is not done,

introducing artificial noise into the system via cooperative
jamming has been shown to improve secrecy rates in the two-
way communication against an external eavesdropper [6]. Yet
in reference [6], feedback is ignored for encoding purposes.

In light of these works, it is important to consider “cooper-
ative jamming” and feedback together when the fundamental
information theoretic limit of bi-directional communication
is of interest. In this work, we focus on two models where
both techniques are potentially useful: (i) a class of Gaussian
full-duplex two-way wire-tap channels, (ii) the Gaussian half-
duplex two-way relay channel with an untrusted relay.

For the first model, if the feedback is ignored at one
node, the model becomes the relay channel with confidential
message to the relay [7]. We focus on the case where the relay
channel is physically degraded and derive a computable upper
bound. This upper bound, derived when feedback is ignored,
is then shown to be smaller than the achievable rate when
feedback is used. Hence, we prove that ignoring feedback is
strictly suboptimal for this channel.

For the second model, we prove that if the power of the relay
goes to ∞, then the loss of ignoring the feedback is bounded
by 0.5 bit per channel use. Interestingly, a simple TDMA
scheme with cooperative jamming yields the achievable rate,
contrary to the case without any eavesdropper, where compute
and forward is shown to be a superior scheme [8].

We emphasize that the key to the approach we used in
deriving the outer bounds in this work is to recognize cooper-
ative jamming as a special form of feedback, except that the
feedback functionality exists physically in the channel rather
than the node.

Finally, the notation C(x) = 1

2
log2(1+x) is used through-

out this work.

II. PRELIMINARY RESULTS

In this section, we list some results that are used extensively
in the sequel. Proofs are given in [9] and are omitted here due
to the space limitation.

A. A 1

2
Bit Result

Lemma 1:

f(x, y) =
1

2
log2

(
(1 + x)(1 + y)

1 + x + y

)
(1)
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g(x, y) = min{C(x), C(y)} (2)

Then 0 ≤ g(x, y) − f(x, y) ≤ 0.5.

B. A Noiseless Wire-Tap Channel with Noisy Feedback

Eavesdropper

1 2W
Ŵ

X1

X1

N

Xf

Yf

P

X1

Fig. 1. The theoretical channel model with feedback

Consider a noiseless wire-tap channel with noisy feedback,
shown in Figure 1. In this model, which is of theoretical
interest, node 1 wants to sent a secret message W to node
2. The forward link is noiseless. Hence the eavesdropper has
perfect knowledge of the signal sent by the transmitter. The
backward link is a noisy channel defined as Yf = Xf + N ,
where N is a zero mean Gaussian noise with unit variance.

The average power constraint of node 2 is P . Node 1 is not
power constrained.

The stochastic encoding function at node 1 is defined as

X1,i = hi(X
i−1

1 , Y i
f , W ) (3)

Node 2 uses a stochastic feedback function defined as

Xf,i = gi(X
i−1

f , X i−1

1 ) (4)

We assume node 2 talks first while node 1 listens. Next,
node 1 talks and node 2 listens. Therefore, node 1 always has
one more sample available when it computes its transmission
signal X1,i, which leads to Y i

f on the right hand side of (3)
instead of Y i−1

f .
Since the eavesdropper receives Xn

1 , the secrecy constraint
of this model is defined as

lim
n→∞

1

n
H (W |Xn

1 ) = lim
n→∞

1

n
H (W ) (5)

The destination knows Xn
1 and Xn

f . From Fano’s inequality,
reliable transmission dictates:

H
(
W |Xn

f , Xn
1

)
< nε (6)

where ε > 0, lim
n→∞

ε = 0.
The source node knows Y n

f and Xn
1 . From (6), it can be

shown the following lemma holds [9]:
Lemma 2: Equation (6) implies H

(
W |Y n

f , Xn
1

)
< nε

Remark 1: Lemma 2 says for any coding scheme that
reliably transmits message W , it also conforms to the secret
key generation protocol defined in [4], because both nodes
can determine W almost surely from the signals available to
them. Suppose a secret key rate is achievable, then, because
of the existence of infinite rate public forward channel in this
model, the key can be used to transmit secret message over
the forward channel with arbitrarily small number of channel
uses. Therefore, for this channel, the upper bound for the

secret key capacity given by [4] is also an upper bound for
the secrecy capacity. The channel defined by the probability
distribution p(Y, Z|X) in [4] corresponds to p(Yf |Xf ). The
forward link here corresponds to the public discussion link in
[4]. The upper bound for the secrecy rate follows immediately
from the upper bound for the secrecy key capacity in [4] as
I(Xf , Yf ) = C(P ). This is stated as the following theorem:
Theorem 1: The secrecy capacity of the model in Figure 1

is bounded by C(P ).

III. FEEDBACK IN FULL DUPLEX TWO-WAY WIRE-TAP
CHANNEL
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Ŵ

N3

N1

Xr

Yr

N2

Z

Y

Fig. 2. The degraded two-way wire-tap channel

The two way wire-tap channel we consider is shown in
Figure 2. The forward link can be expressed as:

Yr = X + N1 (7)

The backward link is defined as:

Y = Xr + N3 (8)

The signal received by the eavesdropper is:

Z = X + Xr + N1 + N2 (9)

where N1, N2, N3 are independent zero mean Gaussian ran-
dom variables. E[N2

1 ] = 1. E[N2
i ] = σ2

i , i = 2, 3.
Unlike the channel model in section II-B, we assume node

1 and node 2 transmit simultaneously at each time slot, so
that node 2 can jam the eavesdropper and protect the secret
message transmitted by node 1. The average transmission
power constraints of node 1 and node 2 are P and Pr

respectively.

A. Upper bound of Secrecy Rate when Feedback is Ignored

When the feedback Y is ignored by the source node, the
channel is the same as a physically degraded Gaussian relay
channel, where node 2 corresponds to the relay node, the
eavesdropper corresponds the destination. The secret message
W is transmitted from node 1 to node 2 rather than to the
destination, hence we have a relay channel with confidential
messages to the relay.

When feedback is ignored at node 1, the stochastic encoding
function at node 1 is simply:

Xi = ti
(
X i−1, W

)
(10)
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The stochastic relaying function at node 2 is: Xr,i =
fi

(
X i−1

r , Y i−1
r

)
. The secrecy rate for this case can be upper

bounded by the following theorem:
Theorem 2: The secrecy rate of the channel in Figure 3 is

bounded by min{C(P ), C(P̄r)}, where P̄r = Pr + σ2
2 .

Proof: The first term C(P ) follows by removing the

Eavesdropper

1 2

Z

YrX
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W
Ŵ
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Fig. 3. The model with cooperative jamming

eavesdropper. In order to obtain the second term, we consider
the network in Figure 3. In this new model, N2 is removed
but the power constraint of node 2 is increased from Pr to
P̄r = Pr + σ2

r . It is easy to see that the secrecy capacity of
this model is greater or equal to the secrecy capacity of the
degraded Gaussian channel.

We next prove that under the same power constraint, the
secrecy capacity of the model in Figure 1 must be greater
or equal to the secrecy capacity of the channel model in
Figure 3. The theorem then follows from Theorem 1. In the
remaining part of this proof, we call Figure 1 the feedback
model, and Figure 3 the jamming model. We prove that any
signaling scheme in the jamming model can be simulated by
the feedback model.

First, we choose the feedback function gi in the feedback
model as Xf,i = fi(X

i−1

f , X i−1

1 − X i−1

f ). The encoding
function in the feedback model hi is chosen to be:

X1,i = Yf,i + ti
(
X i−1, W

)
(11)

where X i−1 is governed by (10).
It can be verified that, for any i > 1, if X i−1

f = X i−1
r , then

Xf,i = Xr,i. Using this result, from (11) we have

X1,i = Xf,i + Ni + ti
(
X i−1, W

)
(12)

= Xr,i + N1,i + ti
(
X i−1, W

)
= Zi (13)

Therefore the signals received by the eavesdropper in these
two models are identical.

The destination in the feedback model knows Xf,i. There-
fore, it can compute ti

(
X i−1, W

)
+ Ni from X1,i − Xf,i

which is the signal received by node 2 in jamming model. This,
along with the fact Xr,i = Xf,i, tells us that the destination
in the feedback model can compute any signals known by the
destination in the jamming model. This means, if W can be
reliably received in the jamming model, it can also be reliably
received in the feedback model. Hence we have the theorem.

Remark 2: If node 2 transmits i.i.d. Gaussian noise to jam
the eavesdropper, then a secrecy rate of C(P ) − C(P/P̄r)
is achievable. From Lemma 1, we see the gap between this

achievable rate and the upper bound given by Theorem 2 is
less than 0.5 bit per channel.
Remark 3: The relay channel with confidential message to

the relay can be viewed as a special case of the model studied
in [7], where the secrecy rate to use 2 is 0. An upper bound
for the general discrete memoryless relay channel was derived
therein. In Theorem 2 we provided a computable upper bound
for the degraded Gaussian case.

B. Achievable Secrecy Rate when Feedback is Used

We next provide an achievable secrecy rate when the
feedback at node 1 is used for encoding purpose.
Theorem 3: The following secrecy rate is achievable.

0 ≤ Re ≤
1

2
[C(P )−

[C(
P

Pr + σ2
2

) − [C(
Pr

σ2
3

) − C(
Pr

P + σ2
2

)]+]+]+ (14)

The complete proof is given in [9]. Briefly, the achievable
scheme is as follows. The communication is divided into two
phases. During the first phase, node 2 sends a key K to node 1.
The rate of the key is chosen to be [C(Pr

σ2

3

) − C( Pr

P+σ2

2

)]+. At
the same time, node 1 performs cooperative jamming. During
the second phase, node 1 encrypts its data W with this key K ,
and sends the result back to node 2. At the same time, node
2 does cooperative jamming.
Remark 4: It is easy to see that for certain channel pa-

rameters, the achievable rate given by Theorem 3 can be
greater than the upper bound given by Theorem 2. This shows
the necessity of using feedback in encoder design at node
1. Consider, for example, the case C(P̄r) < 0.5C(P ). The
upper bound then becomes C(P̄r). We know that, there must
exist a σ2

3 small enough to drive the achievable rate in (14)
to 0.5C(P ), which is larger than the upper bound. That is to
say, if the channel condition from node 2 to node 1 is good,
the signal received by node 1 should not be ignored.

IV. FEEDBACK IN HALF DUPLEX TWO-WAY RELAY
CHANNEL WITH AN UNTRUSTED RELAY

1 1

Relay

2 2

Relay

             MAC              Broadcast

N

1 1

X1 X2

Yr

h 1
Xr

N1 N2

Y1
Y2

Fig. 4. Gaussian two-way half-duplex relay channel with untrusted relay

The Gaussian half-duplex two-way relay channel is shown
in Figure 4. At any time slot, the channel either behaves as a
MAC channel, shown on the left, or as a broadcast channel,
shown on the right. After normalizing the channel gains, the
MAC channel can be expressed as: Yr = X1 + X2 + N The
broadcast channel can be expressed as: Y1 = hXr +N1, Y2 =
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Xr +N2, where h is the channel gain. h �= 0, and N , N1, N2

are zero mean Gaussian random variables with unit variance.
Like in Section III, we assume node 1 and node 2 transmit

simultaneously during the MAC phase. We use Xj,i, j = 1, 2
to denote the set of signals transmitted by node j during the ith
time i ≥ 1 that the channel is under MAC mode. The notation
X i

j denotes the set of signals: {Xj,k, k = 1...i}. Similarly Xr,i

denotes the set of signals transmitted by the relay node during
the ith time i ≥ 1 that the channel is under broadcast mode.
Y1,i, Y2,i, Yr,i are sets of received signals defined in the same
fashion.

The channel switches between MAC and broadcast mode
according to a globally known schedule. We assume the
schedule is independent from the stochastic encoders, the
message, or the channel noise. The first mode is MAC. 1

Suppose the MAC mode is activated n̄ times, lasting n
channel uses. The broadcast mode is activated m̄ times, lasting
m channel uses. Overall, n+m time slots are used. The time
sharing factor α is then computed as α = n

m+n . ᾱ = 1 − α.
After normalization, the average power constraints of node

1, 2 over the MAC mode are P1 = P̄1/α, P2 = P̄2/α
respectively. The average power constraint of the relay over
the broadcast mode is Pr = P̄r/ᾱ.

Let W1 be the secret message from node 1 to node 2. Let
W2 be the secret message from node 2 to node 1.

For the ith MAC mode, the stochastic encoding functions
at node 1 f1,i are defined as: X1,i = f1,i(Y

i−1

1 , W1, X
i−1

1 )
Similarly, the stochastic encoding functions at node 2 f2,i

are defined as: X2,i = f2,i(Y
i−1

2 , W2, X
i−1

2 ). If the ith
MAC mode involves multiple channel uses, then the functions
f1,i, f2,i are vector valued.

Without loss of generality, the stochastic relay functions at
node 3 {gi, Ci} are defined as: Xr,i = gi(Y

i−1
r , X i−1

r , Ci),
where gi is a deterministic function. {Ci} is a sequence of
random variables which models the stochastic mapping.

The secrecy constraint is expressed as

lim
m,n→∞

1

m + n
H(W1, W2|Y

n̄
r , Xm̄

r )

= lim
m,n→∞

1

m + n
H(W1, W2) (15)

The secrecy rate R1, R2 is defined as

Rj = lim
m,n→∞

1

n + m
H(Wj), j = 1, 2 (16)

when Wj can be transmitted reliably. The secrecy capacity
region is defined as all achievable rate pairs (R1, R2) that
satisfy (15).

In order to bound the secrecy rate region of this channel, we
consider the channel in Figure 5. X1 and X2 have the same
power constraint as the X1, X2 in Figure 4.

First, the public link is activated, which sends out the
stochastic mapping Ci used at the relay. The encoding function

1The case where the first mode is a broadcast mode can be viewed as a
special case of invoking MAC mode first by transmitting nothing during the
first MAC mode. The rate loss caused by the wasted channel uses is negligible
as the number of channel uses goes to ∞.

1 2

3
C

N

N

X1

X2

W Ŵ

C

C

N

Fig. 5. Two way wire-tap channel with public noiseless forward link

at the public forward link is defined as follows: Ci =
qi(C

i−1).
The rest part of the channel is activated next for the same

number of time slots when the original channel is under
MAC mode. After that, the nodes remain silent for the time
slots when the original two-way relay channel model is under
broadcast mode. Doing so ensures the overall number of
channel uses to be the same between these two models. Under
these assumptions, we have the following theorem:
Theorem 4: The secrecy rate region of the channel in

Figure 5 includes the secrecy capacity region of the two way
relay channel in Figure 4.
The proof is given in [9]. The key is to provide the received
signal of the relay and its stochastic mapping to nodes 1, 2 as
genie information.

21

3

Yf

N

C

X

Xf

W1 W2

Ŵ1
Ŵ2

P2

Fig. 6. Two-way model with one-sided secure link

Next, we consider the channel in Figure 6. We assume this
channel is activated in the same way in that it is silent if
the original channel model is in broadcast mode. Under this
assumption, we have the following theorem:
Theorem 5: The secrecy capacity region of the channel in

Figure 6 under a serial protocol where node 2 talks first
includes the secrecy rate region of the channel in Figure 5.

The proof is given in [9]. Like in Theorem 2, the essence of
the proof comes from showing the channel in Figure 6 can
simulate the channel in Figure 5.
Theorem 6: An outer bound for the secrecy capacity region

of the channel in Figure 6 is given by

R1 + R2 ≤ αC (P2) , Ri ≥ 0, i = 1, 2 (17)

Proof:We first prove the following result: For the channel
in Figure 6, any bound on R1 is a bound on R1+R2. We prove
this statement by showing if R1 = r1, R2 = r2 is achievable,
then R1 = r1 + r2 is also achievable.
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Construct a message set {Wa} which has the same cardi-
nality of the message set {W2}. Let part of the secret message
be transmitted via Wa, and the remaining part of the secret
message be transmitted via W1. The role of W2 is serving as
the secret key. Let W2 be taken from the set {W2} under a
uniform distribution. W2 is independent from Wa and W1.

Let ⊕ be the modulus addition defined over {1, ... ‖W2‖}.
Node 1, after decoding W2, transmits W2⊕Wa over the public
channel. Since the public channel is noiseless with continuous
input, it can transmit W2 ⊕Wa with less than n channel uses.
Because node 2 knows W2, it can recover Wa from W2⊕Wa.

The signal available to the eavesdropper now becomes the
output of the wiretap channel Xn, and the output of the public
link Wa ⊕W2. Conditioned on these signals, the equivocation
of W1, Wa can be computed as:

H (W1, Wa|X
n, Wa ⊕ W2) (18)

=H (Wa|X
n, Wa ⊕ W2) + H (W1|X

n, Wa, Wa ⊕ W2)
(19)

=H (Wa|X
n, Wa ⊕ W2) + H (W1|X

n, Wa, W2) (20)
=H (Wa|Wa ⊕ W2) + H (W1|X

n, Wa, W2) (21)
=H (Wa|Wa ⊕ W2) + H (W1|X

n, W2) (22)
=H (Wa) + H (W1|X

n, W2) (23)
≥H (Wa) + H (W1) − nε (24)
≥H (W1, Wa) − nε (25)

Equation (21) follows from the fact that Xn is independent
from Wa, W2. Equation (22) follows from the fact that Wa

is independent from Xn,W1,W2. Equation (24) follows from
the fact that collective secrecy implies one message is secure
even if the other message is revealed to the eavesdropper [6].

The argument above shows the rate of W1, Wa is the secrecy
rate R1. Since Wa is chosen from the message set {Wa} under
a uniform distribution, we have R1 = r1 + r2.

From Lemma 1, we know R1 ≤ αC(P2), hence, by the
preceding argument, we have R1 + R2 ≤ αC(P2). This
completes the proof.
Theorem 6 leads to our main result [9]:
Theorem 7: Define region A as

R1 + R2 ≤ α min
{
C

(
P̄1/α

)
, C

(
P̄2/α

)}
(26)

Define region B as

0 ≤ R1 ≤ ᾱC(P̄r/ᾱ), 0 ≤ R2 ≤ ᾱC(h2P̄r/ᾱ) (27)

An outer bound for the secrecy capacity of two way relay
channel is given by ∪0≤α≤1{A ∩ B}.
Remark 5: When P̄r → ∞, and h �= 0, then the region is

maximized when α → 1. The outer bound becomes:

R1 + R2 ≤ min
{
C

(
P̄1

)
, C

(
P̄2

)}
, Ri ≥ 0, i = 1, 2 (28)

A. Comparison with Achievable Rates

In this section, we derive the achievable secrecy rate region.
We begin by deriving the achievable region for R1. The whole
region then follows from time sharing.

Lemma 3:

0 ≤ R1 ≤ max
0≤P ′

1
≤P̄1/α

α

[
C

(
P ′1

(1 + σ2
c )

)
− C

(
P ′1(

1 + P̄2/α
)
)]+

(29)

where σ2
c =

P ′

1
+1

P̄r/ᾱ
The proof is given in [9]. The relay node performs compress-
and-forward while node 2 performs cooperative jamming by
transmitting an i.i.d. Gaussian sequence.
Remark 6: If the power of the relay P̄r → ∞, then

α → 1, the achievable rate converges to C(P̄1) − C( P̄1

1+P̄2

).
The secrecy rate region is obtained with time sharing and it
converges to R1 + R2 ≤ C(P̄1)−C( P̄1

1+P̄2

), Ri ≥ 0, i = 1, 2.
Compared it with the outer bound, using Lemma 1, we notice
the gap between the upper bound and lower bound is less than
0.5 bit per channel use.

V. CONCLUSION

In this work, we have investigated the relationship between
two important techniques to achieve secrecy: cooperative
jamming and feedback. The former is usually regarded as
a “keyless” technique, while the latter is typically used to
send the “secret key”. In this work, we showed that these
two techniques are not so different from each other after
all: Cooperative jamming can be viewed as a special case of
feedback, except that the feedback functionality is performed
by the channel itself. Recognizing this relation enables us to
investigate the necessity of using feedback for encoding in
two models: (i) a class of Gaussian full-duplex two-way wire-
tap channel, where use of feedback is found to be indeed
beneficial; (ii) the Gaussian half-duplex two-way relay channel
with untrusted relay, where feedback can be safely ignored, if
the power of the relay is abundant.
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