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Abstract—This paper addresses optimal spectrum sensing in  In this paper, we study energy-based cooperative spectrum
cognitive radio networks considering its system level costhat sensing in which local statistics are forwarded to the fasio
accounts for the local processing cost of sensing (sampldlection center using amplify and forward (AF) over parallel access

and energy calculation at each secondary user) as well as the h Is. We aim t inimize the alobal bability of
transmission cost (forwarding energy statistic from secodary channels. Vve aim to minimize the global error probability 0

users to fusion center). The optimization problem solves fothe ~ this cooperative spectrum sensing scheme given that ttte cos
appropriate number of samples to be collected and amplifier associated with local processing (sample collection ardgyn

gains at each secondary user to minimize the global error calculation) and transmission (forwarding energy statigi
probability subject to a total cost constraint. In particular, he fyture center) is constrained. The goal of the mininizat

closed-form expressions for optimal solutions are derivecand . ¢ lect th iat b f | d lf
a generalized water-filling algorithm is proposed when numier 'S '0 S€l€Cl Ihe approprialé number of samples and ampliier

of samples or amplifier gains are fixed and additional constrnts ~ 9ains for each secondary user. To this end, we 1) derive
are imposed. Furthermore, when jointly designing the numbeof  closed-form expressions for optimal solutions; and 2) psap

samples and amplifier gains, optimal solution indicates theonly g generalized water-filling algorithm when number of sample

one secondary user needs to be active, I.e., collecting sae® o amplifier gains are fixed and additional constraints are

for local energy calculation and transmitting energy statstic to . . ..

fusion center. imposed. Furthermore, when jointly designing the number of

samples and amplifier gains, we demonstrate that only one

secondary user needs be active, i.e., collecting samples fo

local energy calculation and transmitting energy statisi
Cognitive radio [1] is a key technology to exploit underthe fusion center. That is, in this case, having one secgndar

utilized spectrum and enhance spectrum efficiency. In cogser perform spectrum sensing is sufficient to achieve @btim

nitive radio networks, secondaryrflicensedl users monitor performance.

local communication conditions and opportunistically esx

unoccupied spectrum when/where the primdigeqised user

is inactive. To enable this dynamic spectrum access, séc-Local Energy Statistic

ondary users must continuously monitor local spectrum andror secondary uset (1 < i < N), the hypothesis test for

detect spectrum holes [1]. This technique, callggbctrum the energy of the received signal in a given spectrum band is
sensing requires secondary users reliably detect the signals

from primary users in order to avoid harmful interference. { Ho: i = (1/ki) Zg% |4 ()| 1)

However, due to the detrimental nature of the wireless chlann Hi @ = (1/ki) 251y [his(k) + na(k)[%,

a secondary user may not be able to reliably differentiajghere 1, is the number of samples(k) is the transmitted

between a spectrum hole and a weak primary signal if dignal from the primary user and (k) is the noise received by

conducts spectrum sensing on its own. To improve detectigg8condary user. We assume(k) is complex PSK modulated

reliability, multiple users can engage in cooperative 8p@¢  and independent and identically distributed (i.i.d.) witiean

sensing and take advantage of spatial diversity [2][3]. zero and variance2; h; is the channel gain between the
In [4], a logic “OR” fusion rule for hard-decision combin-primary user and secondary usérand is assumed to be

ing was presented to cooperatively detect the primary usgsnstant during the cooperative spectrum sensing periudi; a

Reference [5] introduced an amplify and forward cooperatia,, (k) is i.i.d. circularly symmetric complex Gaussian random

strategy into spectrum sensing and claimed overall agibity variable with mean zero and variane® and is independent

be substantially improved by exploiting spatial diversiyn  of s(k). We define the local received SNR at the secondary

optimal linear detector for cooperative spectrum sensiag Wyser; as~; = 0§|]}i|2/0721_

proposed in [2], where the received signals at the fusiotecen \When «; is large, z; can be approximated as Gaussian

were assigned different weights for global fusion and a e&nvrandom variable [2], i.e.,

optimization was formulated to find the linear weights. I, [6 5 4

detection problems are formulated that account for comstra { Ho o @i~ Nioy, C’n/“;) 4 (2)

on expected cost due to transmission and measurement. Here Moz~ N((L+yi)0n, (1+20i)on/ki).

we will take a more inclusive approach and account for vaioln this paper, we assume the local received SNRFs known

factors that contribute to the cost incurred by spectrursisgn at the secondary user For instance, in IEEE 802.22, this

|. INTRODUCTION

Il. SYSTEM MODEL



value could be obtained through estimation of pilot signals Sincev; < 1 andx; > 1, then,v;/k; ~ 0 and we have

periodically transmitted from TV stations [7].

3o ~ X;. Thus, the optimal LRT can be approximated as

B. Amplify and Forward Transmission Strategy T(y) = (H'Y)ngly 7%1 T, (7
During the cooperation period, the secondary user tragsmit Mo

its local energy statistic to the fusion center using AF owherer = (H~)'S ' H(1 + 0.5y)02. It is easy to see that
parallel access channels (PAC). The received signal at the error probability is given as

fusion center is shown in Fig. 1, i.e.,

®)

whereg; is the amplifier gain for the secondary usen; is
is the channel gain between secondary usand the fusion
center andv; is i.i.d. Gaussian noise, i.ey; ~ N(0,02)
and is independent of;. We assume thak; is known at

Yi = gihivi + 4,

the fusion center (e.g., via channel estimation) and resnain

constant during the sensing period.

We can then rewrite (3) in a matrix form as
y=Hz + v, (4)

whereH = diag{g1h1, g2h2,- - , gnANT-
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Fig. 1. Cooperative spectrum sensing in cognitive radiovagks.

Given this system model, we see that
& = E{af} = [L+1/mi +m (i +2(1+ 1/k4)) il o,

wheremy = P(Hy) andm; = P(H;) are the probabilities that
spectrum is idle and occupied, respectively.

In the cognitive radio networks, the received primary user

power measured by the secondary user can be very small

i.e.,v; < 1. Additionally, the number of samples can be large,
i.e.,x; > 1. Then, we can approximate the transmitted power

for the secondary userasP; = &;g? ~ g2(1 + 2m17v;)os.

C. Optimal Fusion Rule

Under hypothesig{, andH;, the received signaj has a
Gaussian distribution, i.e.,

Ho: y~N (Hlo2, %)
Hl Ly NN(H(].—F"}’)O'?L, 21),

wherel = [1,1,---,1]T, g = HH ¢! /k; + 02T and X, =

H(I+2T)H'o! /k; + 021, here,I' = diag{y1,72," - ,IN}-
Without loss of generality, we assume that= 7; = 0.5.

Then, optimal likelihood ratio test (LRT) is given as:

p(y|H1)

log 2 7

p(y|Ho)

(®)

Hi

2

Ho

0. (6)

a3

Vg

whereQ(z) is the complementary distribution function of the
standard Gaussian, i.€)(z) = —4= [.% exp(—t?/2)dt; and

N
f(n’g)2292|h|2+,‘€5'27
i=1 J1 B

Pe (8)

g2kivE |hil?

wheres? = o2 /0.

It is also easy to see that the asymptotic error probability
expressions when the number of samples or amplifier gains
approach infinity are given by

1/2
(ﬁ (ZL 91‘271'2|hi|2) ) , 9)

(3

D. System Level Cost for Cooperative Spectrum Sensing

In this paper, we consider system level cost for cooperative
spectrum sensing in cognitive radio networks. The systesl le
cost consists of three parts: local processing cost, tresgon
cost, reporting and broadcasting cost.

o Local processing cost includes the receiver RF scanning
and local energy calculation. For simplicity, we assume
that the local processing coSt,(-) for secondary user
is a linear function of the number of samples, i.e.,

P.(koo)= lim P.=Q

Ki—00
and

def

. 1/2
Pula) i P = 0 (3(Sen2) ). a0

respectively.

[8] Cpi(Ki) = coki,

wherecy is the local processing cost per sample.
Transmission cost is the transmit power required from
a secondary user to transmit the local calculated energy
to the fusion center. Here, we assume that this cost for
secondary user is given as

Cii(g:) = Pi = & g7

For optimal system design, the fusion center needs to
know the local received SNR for each secondary user.

In practice, this means that secondary users will report
their local received SNRs to the fusion center. The fusion

center then determines the resource allocated to each
secondary user, and broadcasts this to all secondary
users. In this paper, we assume that total reporting and
broadcasting cost,;, is fixed, and thus do not consider

it in the optimization problem.



The total cost during the cooperative spectrum sensing isLet us definea; = g772|h;|*/52 and b, = §2|h;|*/52.

%

given as Then, the optimization problem in (13) is equivalent to
c = yN ¢ No¢C ~aib;
(k.g) = > =1 Cpi(ki) + 32— Crilgs) min Z L
_ N 2 K — fi; + b;
= Yin1 (CO”% =+ 5igi) . i=1
st. 1"k < kiot, K = 0. (24)

[1I. M INIMIZATION OF ERRORPROBABILITY . . Lo .
It is straightforward to see that optimization problem id)1

In this section, we aim to minimize the error probability fofS convex. The Karush-Kuhn-Tucker (KKT) conditions can be
the system model in Fig. 1 subject to a total cost constrai§iven as

Specifically, we determine the appropriate number of sasnple abi Ny = 0 (15)
and amplifier gains for each secondary user and consider the (ritb:)* :
following two scenarios for this optimization problem: MLk — ko) = 0 (16)

1) Scenario A: First, we consider the total cost constraint. uik; = 0. (17)
Hence, the optimization problem is formulated as:  \yhere \, > 0 andw; > 0 are Lagrangian multipliers.
First we assume thaf, > 0 andu; = 0, then from (15), we

r,ﬂ“;l Pe(k,g) see thatw; = [/aibi/ Ao — b;] *, where[z]" = max{0, z}.

st. C(k,g)<C Plugging this into (16), we have/\, = Enfg’isi, where
0 i i

k>0, g=0, (11) Sp = {i|k; > 0}. Then, we need to determine the sef

- to obtain the closed-form solution fot. To do this, let us
where0 = [0,0,---,0]" andC is the total cost thresh- definea; = +/b;/a;. Without loss of generality, we assume
old. a; < as < --- < ay and can show that (please see [9] for

2) Scenario B:In some applications, local sample collecdetails)
tion for each secondary user may be scheduled in a . . .
) i . . > >
fixed time slot. In other words, the number of samples isSy = {1, isl flis) <1, flis +1) 2 1}, F(N) — !
) {1,--- ,N}, otherwise
upper bounded by a maximum valdg ... Furthermore, (18)

the transmission power for each secondary user may be @ Y b,

where f (i) Thus, the optimal number of

required to be below a predefined power lirfiit, .. Ftoty oy b
By incorporating these additional individual constraint§amples can be obtained as
imposed on each secondary user, we can model the P hal? b
optimization problem as L (opY _ {a—z (Vb — 1)} , 1€ S (19)
D, .
O, 1 ¢ So,
min P.(k,g)

~2 2 ~2

P i |hi| " +Kiotdy, .

wherey = ZS‘;S Iég;‘hir’; and[-]* denotes the integer op-
iesy 017

st Cimg) <C eration. It is worth noting that this operation should guea
02K = fimaxl 1"k = k. A simple strategy for the integer operation can be
970, &7 < Prax. (12) given as
f_ { [kil i< |is/2]

] = |ki], otherwise

K,g

To better understand the optimal resource allocation for
cooperative spectrum sensing, we consider the followinggth
cases for this optimization problem: 1) whenis fixed; 2)
whenk is fixed; and 3) whenx andg are unknown.

where [-] and |-| denote the ceiling and floor operations,
respectively.

Remark We note that the optimal number of samples for
each secondary user follows a water-filling strategy, wéh
A. Case I: Whery is Fixed larger a;, the chance for the secondary user to be inactive is
higher. Note thaty; = 1/+;. Hence, when the local received
thus we need to minimize the error probability by choosin NR is low, the secondary user tends not to collect the sample

appropriate number of samples. Let us define the total numf@f l0cal energy calculation. » bootimal solutions f
| Sampes. L
of samples aso = [(C — SN, €32),/co). For comparison, we consider two suboptimal solutions for

mthis optimization problem as follows:

In this case, we assume fixed amplifier gains, ige= g;

1) Scenario A:In this scenario, the optimization proble

in (11) reduces to . A sime!% solution is to choose equal number of samples,
l.e., HPJ' = Lfitot/NJ .
max  F(k,g) » Using Cauchy-Schwarz inequality, we see that¢g,)

in (10) can be minimized wher; = c¢y?, wherec is a

.
St 1k < ko, k= 0. (13) constant. Based on this, we propose a suboptimal solution



2 f . .
for the number of samplé,si.e.,ns;'b) = {ZN% skot| . B Case ll: Whens is Fixed
In this case;is = N and secondary userlsflonlly need to In this case, we assume fixed number of samples,x.ex,
know the norm square of observation channel gains #o Let us define global transmission power constrairfPgs=

calculate the number of samples. C—col"k andz; = g?.
Let us denote the asymptotic error probabiliies when 1) Scenario A:Here we follow a similar derivation to that
§i — oo for these three solutions of number of samples & Section Ill-Al. Let us defines; = ';f,fg_ Without loss of
P (g..), P (g ) and B (4., ), respectively. Then, we generality, assumg; < > < --- < fy. l|'hel’1, define a set

note that T, from (18) with £ (i) = fice %;Zlfj fm/lh’!. The optimal
- ] Prot+63 351 Ri&i/lh;]

Lemma Ill.1. Whenas > «; and ay — «; is finite, amplifier gains can be obtained as

P(equ) o) > P(sub) o) > P(opt) ) o 1/2
e (goo) = P .(g. )._ e (g ). | (opt) _ [féﬁ(”&'?‘n—l)] CieT, (24)
Due to space limitations, we omit the proof. For detailed  Ip.i ‘ 7'0 i¢T

proof, please refer to [9]. ’ o
2) Scenario B:In this scenario, the optimization problem,heore, — Zicz R/ |hi|*+Prot/ 57

in (12) becomes K 2 sezy FivVEi/Ihi] . . .

Remark Again we see that the optimal amplifier gains
max F(k,g) follow a water-filling strategy, i.e., with large?;, the chance

for the secondary user to be inactive is higher. Furthermore
we note that3; o« 1/(~;|h;|). Hence, when the local received
With the additional constraint, updated KKT conditions are SNR is low or the fusion channel quality is poor, the secondar
user tends not to transmit the local calculated energy to the
fusion center.

Vi(Ki — Fmax) = 0, (22)  For comparison, we consider two suboptimal solutions for

wherev; > 0 are Lagrangian multipliers. First we assumdiS optimization problem as follows: o
that \p > 0 andu; = v; = 0, then from (21), we see that * A simple solution is to choose equal transmission power

st. 1Tk < ko, 0 < K = Kmaxl. (20)

%—i—ui—vi—)\o =0 (21)

ki = /a;b;/Xo — b;. Thus, based on the value gf\,, we for each secondary user, i.g\y{"’ = \/Prot/(NE;).
can determine the optimal solution ef as o Furthermore, similar to Section IlI-Al, we propose a
) suboptimal solution for amplifier gains based on (9) using
0, it v/ Ao > y/ai/bi the Cauchy-Schwarz inequality, i.e.,
Ri = Rmax if 0< \% )\0 <v aibi/(’{max + bl) 1/2
vaibi /Ao — b;, otherwise (sub Vihil? /€
pi” = \ S maTE et )
Let us define two disjoint sets for secondary usersSas= o
{i|ki = Fmax} and Sy = {i|0 < ki < Kmax}. Plugging x; Let us denote the asymptotic error probabilities wirgr—
into (16), we have oo for these three solutions of amplifier gains g8"(.),
P () and B (x,.), respectively. Similar to Lemma
[Stlmax + (1/v20) Dies, Vaibi = ics, bi = o, 1.1, we note that
which implies thaty/ X, = Lics, Vaibi . Lemma lll.2. When 82 > f; and 2 — (3, is finite,

R |S1lRmax 2 ses, b (equ (sub) (opt)
In order to determineS;, S, and /Ao and thus obtain e (Fee) = PP (Koo) = PP (Keo).

the closed-form solution fok;, we propose here a two-stage 2) Scenario B:Let us define two sets af, = {i|z; =
generalized water-filling algorithm as follows: Pmax/&} and Iy = {i|0 < z; < Pmax/& . Then, similar
1) In the first stage, we aim to determine the &gt To to Section IlI-A2, we propose a two-stage generalized water
do this, let us definey; = % Without loss of filling algorithm as follows:

104

generality, we assumé; < as < --- < an. Then, 1) In the first stage, we azim to determine the BetlLet us
similar to Scenario AS; can be obtained by (18) with define; = Duaxlhil +0.R:8 \wjithout loss of generality.
(please see [9] for details) L el Ve - _— '
we assumed; < s < --- < fBn. Then, similar to
];(Z.) _ m:—igmeigamljmb i< L}:xm J, (23) Section 1lI-A2,7Z; can be obtained by (18) with
~ mesi f(l) o 5i5uzmefi R EmYm [ [P | i< L Prot J
whereS; = {m|a,, < a&;, i < m < N}. After §; is T Pot—Pmaxt02 3 ez, Rmém/Thml?? 7 = L Pmax D
determined, we have; = kmax, Vi € S1. = 5. :
' ’ . whereZ; = {m < Bi, 1 < m < N}. After 7 is
2) In the second stage, we follow a procedure similar to i = Amlfm < f; = N} !

determined, we have; = Py /&, Vi € 14.

In the second stage, we follow a procedure similar to
Scenario A to obtairf, andz; for i ¢ Z;. The solution

is given in (24), except thaP,,; and N are replaced by

11t is worth mentioning that a similar discussion can be foimdL0]. Prot — |Z1|Pmax @nd N— |Z;|, respectively.

Scenario A to obtairb, andx; for i ¢ S;. The solution )
is given in (19), except thaty: and N are replaced by
Ktot — |S1|kmax and N— |S;|, respectively.



C. Case lll: Wherk and g are Unknown multiuser diversity where base station picks the user wétst b

1) Scenario A:ln this case, let us defing = 52/(+2|hi|?) channel to achieve maximum sum rate capacity [12]. In this
andg; = 1/~2. To simplify our analysis, whem; = z; = 0, CaS€, fusion center will select the secondary user with pest
we assumex;z;/(piri + giz;) = 0. In practice, this assump- ©© perform Ioc_al spectrum sensing and data _forwardln_g.
tion can be alleviated by adding a sufficiently small constan FOr comparison, we propose three suboptimal solutions for
in the denominator. Then, the optimization problem becom¥S optimization problem as shown in Table I.

N TABLE |
RiZi SUBOPTIMAL SOLUTIONS FOR OPTIMIZATION PROBLEM INCASE |11
max 3
mZ T Piki Tt % Number of samples: Amplifier gainsg
_ , B . B
st. ¢’k +£'2<C sub 1 | Given gl obtain k%> (sub) _ ( ¢ )1/2
from (19) 9p,i = \oNg;
k=0, z>0. (25) - (sub3 —=ub2
Sub Il . (sub2 L c J Givenr, ", obtaing *;
. . L 4 | 2Ne ;
It is easy to see that (25) is a convex optimization problem . -0 from (24) —
(please see [9] for details). Thus it can be solved effigientl Equal R = | Sare ) g = (NO%@)

using interior-point methods or other iterative methodg.[To
obtain insight into the closed-form solution, first we irduze 2) Scenario B:Here, the optimization problem becomes
the following lemma.

RiZ;
Lemma I11.3. Optimal solution of x, z) in (25) should satisfy max Z Diki + Qi%i
either 1)x; > 0 andz; > 0, or 2) k; = 0 and z; = 0 for ' =1 Pifii q”i
secondary uset. st cl'k+£"2<C
0 j K j ’imaxlv z i 07 EZZ’L < Pmax- (27)

Due to space limitations, we omit the proof. For detailed =

proof, please refer to [9]. This lemma is not surprising lhesea Again, we see that this is a convex optimization problem

when one secondary user does not collect the energy samplesy can be solved by standard methods. Let us denote the
it will not waste the transmission power to transmit the nqutimaI solution as(li(opt) (opt)) Similarly, we note that
ne

data to the fusion center. On the other hand, when o pi 2 Ipi

secondary user decides not to transmit the data to the fuslg@mma lll.5. Optimal solution of x, z) in (27) should satisfy
center, it is reasonable that this secondary user remaaotive  €ither 1) x; > 0 and z; > 0, or 2) x; = 0 and z; = 0 for
and does not collect the samples for local energy calculaticGecondary usef.

f Us(;ng Lemn:ja_”l-s, tfh€|3| OIO_tlmar|] solution df,g) can be 14 proof is similar to that of Lemma I11.3 and thus omitted.
ound as stated in the Tollowing theorem. With the additional constraints imposed erandz, in general
Theorem 111.4. Conside2r th2e optimization problem in (25)we see that it_is difficult to ob_tain the cI_osed—form solutfon
let us definep; = - \/glﬁul\hhu - and assume; > py > (k, z). By noting that the optimal sc_)lutlon di, z) needs to
v Vit veo ) ; be equal to O or greater than O simultaneously, we propose
.-+ > pn- Then, the optimal solution df, g) is - ; ! ) L
) a heuristic suboptimal algorithm for Scenario B. Specifical
om) _ {&v £lﬁ;flmlc0J’ i=1 first we assignfimax and Puax to the secondary user with
' Ve 0 is1 largestp;. If enough resource is left, we assigRax andPuax
’ 12 ’ to the secondary user with second largesand so on until
{ ( 5,C ) L i=1 (26) Kmax @andPpax cannot be assigned to any one secondary usetr.

Y2

(op) _ TN AN
Ipi = "”&H}”(') Lico i>1 In this case, we merely utilize the optimal solution in (26) t
’ ' allocate(r;, g;) to the secondary user with the next largest
Due to space limitations, we omit the proof. For detailedndx; = 0, g; = 0 to the rest of the secondary users.

proof, we refer the readers to [9]. Given the optimal solutio

of (k,g), we see that the optimal error probability can be IV. SIMULATION RESULTS
obtained a% In the simulations, we assumeN6, 02 = 02 = 1,¢ = 1,
PO — (@ max{ 7ilhil }) ¥ = [-8.86,-15.23,~7.21,-5.09, ~10.00, ~10.97]"(dB),
e 2 FVEH iV [ ) h = [1.56,1.99,0.37, 1.52,0.39, 1.98]T. We define the global

Remark When we jointly design the number of samplegUSi?n SNR assNR = Pt/ 0. N .
and amplifier gains subject to the total cost constrainty onl Fig- 2 and 3 show the error probability versus global fusion

one secondary user needs to be active in the cognitive ragiJR in Case | and total number of samples in Case II, respec-
network, i.e., collecting the samples for local energy ake tively. As expected, we see that the optimal solution presid

tion and transmitting the energy statistic to the fusionteen SUperior performance to suboptimal solutions. From thésplo
It is interesting to note that this optimal strategy is sanito W€ @lso observe that with additional individual constrsiitihe
optimal solution for Scenario B performs worse than that of

2For simplicity, we neglect the rounding effect afthroughout the paper. Scenario A. Furthermore, when the global fusion SNR or total



number of samples increases, we see that the error prdjabil

approaches the asymptotic bound. In particular, in Fig.

P (g0) > P () > PPV (4 ) as discussed in Lemma

1.1 and in Fig. 3, P*% (k) > PEW () > POPY (1) as
mentioned in Lemma Il1.2.
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Fig. 2. Case I: error probability for different solutions«f In the simulation,
we chooseriot 600 and fixed amplifier gaingj; \/Pmt/(Ngi). In
Scenario B, we choosemax = 0.4ktot.
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Fig. 3. Case Il: error probability for different solutions@. In the simulation,
we choosesNnrR = 25dB and fixed number of samples; = |kiot/N]. In
Scenario B, we chooSPmax = 0.4Pot.

In Fig. 4, we plot the error probability versus total cost

constraint in Case Il for different solutions ¢k, g). In this
simulation, we utilize interior-point method to solve thptie
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Fig. 4. Case llI: error probability for different solutions$ (<, g). In Scenario
B, we cho0seimax = 0.2|C/co| and Pmax = 0.2C.

V. CONCLUSIONS

In this paper, we present the optimal design for cooperative
spectrum sensing in cognitive radio networks. In partiGula
we derive closed-form expressions for optimal solutiond an
propose a generalized water-filling algorithm when numifer o
samples or amplifier gains are fixed and additional congtrain
are imposed. Furthermore, when jointly designing the numbe
of samples and amplifier gains, we demonstrate that only one
secondary user needs be active, i.e., collecting samples fo
local energy calculation and transmitting energy statisoi

fusion center.
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