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Abstract—This paper addresses optimal spectrum sensing in
cognitive radio networks considering its system level costthat
accounts for the local processing cost of sensing (sample collection
and energy calculation at each secondary user) as well as the
transmission cost (forwarding energy statistic from secondary
users to fusion center). The optimization problem solves for the
appropriate number of samples to be collected and amplifier
gains at each secondary user to minimize the global error
probability subject to a total cost constraint. In particul ar,
closed-form expressions for optimal solutions are derivedand
a generalized water-filling algorithm is proposed when number
of samples or amplifier gains are fixed and additional constraints
are imposed. Furthermore, when jointly designing the number of
samples and amplifier gains, optimal solution indicates that only
one secondary user needs to be active, i.e., collecting samples
for local energy calculation and transmitting energy statistic to
fusion center.

I. I NTRODUCTION

Cognitive radio [1] is a key technology to exploit under-
utilized spectrum and enhance spectrum efficiency. In cog-
nitive radio networks, secondary (unlicensed) users monitor
local communication conditions and opportunistically access
unoccupied spectrum when/where the primary (licensed) user
is inactive. To enable this dynamic spectrum access, sec-
ondary users must continuously monitor local spectrum and
detect spectrum holes [1]. This technique, calledspectrum
sensing, requires secondary users reliably detect the signals
from primary users in order to avoid harmful interference.
However, due to the detrimental nature of the wireless channel,
a secondary user may not be able to reliably differentiate
between a spectrum hole and a weak primary signal if it
conducts spectrum sensing on its own. To improve detection
reliability, multiple users can engage in cooperative spectrum
sensing and take advantage of spatial diversity [2][3].

In [4], a logic “OR” fusion rule for hard-decision combin-
ing was presented to cooperatively detect the primary user.
Reference [5] introduced an amplify and forward cooperation
strategy into spectrum sensing and claimed overall agilitycan
be substantially improved by exploiting spatial diversity. An
optimal linear detector for cooperative spectrum sensing was
proposed in [2], where the received signals at the fusion center
were assigned different weights for global fusion and a convex
optimization was formulated to find the linear weights. In [6],
detection problems are formulated that account for constraints
on expected cost due to transmission and measurement. Here
we will take a more inclusive approach and account for various
factors that contribute to the cost incurred by spectrum sensing.

In this paper, we study energy-based cooperative spectrum
sensing in which local statistics are forwarded to the fusion
center using amplify and forward (AF) over parallel access
channels. We aim to minimize the global error probability of
this cooperative spectrum sensing scheme given that the cost
associated with local processing (sample collection and energy
calculation) and transmission (forwarding energy statistic to
the future center) is constrained. The goal of the minimization
is to select the appropriate number of samples and amplifier
gains for each secondary user. To this end, we 1) derive
closed-form expressions for optimal solutions; and 2) propose
a generalized water-filling algorithm when number of samples
or amplifier gains are fixed and additional constraints are
imposed. Furthermore, when jointly designing the number of
samples and amplifier gains, we demonstrate that only one
secondary user needs be active, i.e., collecting samples for
local energy calculation and transmitting energy statistic to
the fusion center. That is, in this case, having one secondary
user perform spectrum sensing is sufficient to achieve optimal
performance.

II. SYSTEM MODEL

A. Local Energy Statistic

For secondary useri, (1 ≤ i ≤ N), the hypothesis test for
the energy of the received signal in a given spectrum band is

{ H0 : xi = (1/κi)
∑κi

k=1 |ni(k)|2
H1 : xi = (1/κi)

∑κi

k=1 |h̃is(k) + ni(k)|2, (1)

whereκi is the number of samples,s(k) is the transmitted
signal from the primary user andni(k) is the noise received by
secondary useri. We assumes(k) is complex PSK modulated
and independent and identically distributed (i.i.d.) withmean
zero and varianceσ2

s ; h̃i is the channel gain between the
primary user and secondary useri and is assumed to be
constant during the cooperative spectrum sensing period; and
ni(k) is i.i.d. circularly symmetric complex Gaussian random
variable with mean zero and varianceσ2

n and is independent
of s(k). We define the local received SNR at the secondary
useri asγi = σ2

s |h̃i|2/σ2
n.

When κi is large, xi can be approximated as Gaussian
random variable [2], i.e.,

{

H0 : xi ∼ N (σ2
n, σ4

n/κi)
H1 : xi ∼ N ((1 + γi)σ

2
n, (1 + 2γi)σ

4
n/κi).

(2)

In this paper, we assume the local received SNRγi is known
at the secondary useri. For instance, in IEEE 802.22, this



value could be obtained through estimation of pilot signals
periodically transmitted from TV stations [7].

B. Amplify and Forward Transmission Strategy

During the cooperation period, the secondary user transmits
its local energy statistic to the fusion center using AF on
parallel access channels (PAC). The received signal at the
fusion center is shown in Fig. 1, i.e.,

yi = gihixi + vi, (3)

wheregi is the amplifier gain for the secondary useri, hi is
is the channel gain between secondary useri and the fusion
center andvi is i.i.d. Gaussian noise, i.e.,vi ∼ N (0, σ2

v)
and is independent ofxi. We assume thathi is known at
the fusion center (e.g., via channel estimation) and remains
constant during the sensing period.

We can then rewrite (3) in a matrix form as

y = Hx + v, (4)

whereH = diag{g1h1, g2h2, · · · , gNhN}.
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Fig. 1. Cooperative spectrum sensing in cognitive radio networks.

Given this system model, we see that

ξi
def

= E{x2
i } = [1 + 1/κi + π1 (γi + 2 (1 + 1/κi)) γi] σ

4
n,

whereπ0 = P(H0) andπ1 = P(H1) are the probabilities that
spectrum is idle and occupied, respectively.

In the cognitive radio networks, the received primary user
power measured by the secondary user can be very small [8],
i.e.,γi ≪ 1. Additionally, the number of samples can be large,
i.e., κi ≫ 1. Then, we can approximate the transmitted power
for the secondary useri asPi = ξig

2
i ≃ g2

i (1 + 2π1γi)σ
4
n.

C. Optimal Fusion Rule

Under hypothesisH0 andH1, the received signaly has a
Gaussian distribution, i.e.,

{

H0 : y ∼ N
(

H1σ2
n, Σ0

)

H1 : y ∼ N
(

H(1 + γ)σ2
n, Σ1

)

,
(5)

where1 = [1, 1, · · · , 1]T, Σ0 = HH
†σ4

n/κi + σ2
vI andΣ1 =

H(I + 2Γ)H†σ4
n/κi + σ2

vI, here,Γ = diag{γ1, γ2, · · · , γN}.
Without loss of generality, we assume thatπ0 = π1 = 0.5.

Then, optimal likelihood ratio test (LRT) is given as:

log
p(y|H1)

p(y|H0)

H1

≷
H0

0. (6)

Sinceγi ≪ 1 and κi ≫ 1, then,γi/κi ≈ 0 and we have
Σ0 ≈ Σ1. Thus, the optimal LRT can be approximated as

T (y) = (Hγ)†Σ−1
0 y

H1

≷
H0

τ, (7)

whereτ = (Hγ)†Σ−1
0 H(1 + 0.5γ)σ2

n. It is easy to see that
the error probability is given as

Pe = Q

(

1

2

√

F(κ, g)

)

, (8)

whereQ(x) is the complementary distribution function of the
standard Gaussian, i.e.,Q(x) = 1√

2π

∫ ∞
x exp(−t2/2)dt; and

F(κ, g) =

N
∑

i=1

g2
i κiγ

2
i |hi|2

g2
i |hi|2 + κiσ̃2

v

,

whereσ̃2
v = σ2

v/σ4
n.

It is also easy to see that the asymptotic error probability
expressions when the number of samples or amplifier gains
approach infinity are given by

Pe(κ∞)
def

= lim
κi→∞

Pe =Q

(

1
2σ̃v

(

∑N
i=1 g2

i γ2
i |hi|2

)1/2
)

, (9)

and

Pe(g∞)
def

= lim
gi→∞

Pe = Q

(

1
2

(

∑N
i=1 κiγ

2
i

)1/2
)

, (10)

respectively.

D. System Level Cost for Cooperative Spectrum Sensing

In this paper, we consider system level cost for cooperative
spectrum sensing in cognitive radio networks. The system level
cost consists of three parts: local processing cost, transmission
cost, reporting and broadcasting cost.

• Local processing cost includes the receiver RF scanning
and local energy calculation. For simplicity, we assume
that the local processing costCpi(·) for secondary useri
is a linear function of the number of samples, i.e.,

Cpi(κi) = c0κi,

wherec0 is the local processing cost per sample.
• Transmission cost is the transmit power required from

a secondary user to transmit the local calculated energy
to the fusion center. Here, we assume that this cost for
secondary useri is given as

Cti(gi) = Pi = ξig
2
i .

• For optimal system design, the fusion center needs to
know the local received SNR for each secondary user.
In practice, this means that secondary users will report
their local received SNRs to the fusion center. The fusion
center then determines the resource allocated to each
secondary user, and broadcasts this to all secondary
users. In this paper, we assume that total reporting and
broadcasting costCrb is fixed, and thus do not consider
it in the optimization problem.



The total cost during the cooperative spectrum sensing is
given as

C(κ, g) =
∑N

i=1 Cpi(κi) +
∑N

i=1 Cti(gi)

=
∑N

i=1

(

c0κi + ξig
2
i

)

.

III. M INIMIZATION OF ERROR PROBABILITY

In this section, we aim to minimize the error probability for
the system model in Fig. 1 subject to a total cost constraint.
Specifically, we determine the appropriate number of samples
and amplifier gains for each secondary user and consider the
following two scenarios for this optimization problem:

1) Scenario A: First, we consider the total cost constraint.
Hence, the optimization problem is formulated as:

min
κ,g

Pe(κ, g)

s.t. C(κ, g) ≤ C̄
κ � 0, g � 0, (11)

where0 = [0, 0, · · · , 0]T and C̄ is the total cost thresh-
old.

2) Scenario B: In some applications, local sample collec-
tion for each secondary user may be scheduled in a
fixed time slot. In other words, the number of samples is
upper bounded by a maximum valueκmax. Furthermore,
the transmission power for each secondary user may be
required to be below a predefined power limitPmax.
By incorporating these additional individual constraints
imposed on each secondary user, we can model the
optimization problem as

min
κ,g

Pe(κ, g)

s.t. C(κ, g) ≤ C̄
0 � κ � κmax1

g � 0, ξig
2
i ≤ Pmax. (12)

To better understand the optimal resource allocation for
cooperative spectrum sensing, we consider the following three
cases for this optimization problem: 1) wheng is fixed; 2)
whenκ is fixed; and 3) whenκ andg are unknown.

A. Case I: Wheng is Fixed

In this case, we assume fixed amplifier gains, i.e.,g = g̃;
thus we need to minimize the error probability by choosing
appropriate number of samples. Let us define the total number
of samples asκtot = ⌊(C̄ − ∑N

i=1 ξig̃
2
i )/c0⌋.

1) Scenario A: In this scenario, the optimization problem
in (11) reduces to

max
κ

F(κ, g̃)

s.t. 1Tκ ≤ κtot, κ � 0. (13)

Let us defineai = g̃2
i γ

2
i |hi|2/σ̃2

v and bi = g̃2
i |hi|2/σ̃2

v.
Then, the optimization problem in (13) is equivalent to

min
κ

N
∑

i=1

aibi

κi + bi

s.t. 1Tκ ≤ κtot, κ � 0. (14)

It is straightforward to see that optimization problem in (14)
is convex. The Karush-Kuhn-Tucker (KKT) conditions can be
given as

aibi

(κi+bi)2
+ ui − λ0 = 0 (15)

λ0(1
Tκ − κtot) = 0 (16)

uiκi = 0. (17)

whereλ0 ≥ 0 andui ≥ 0 are Lagrangian multipliers.
First we assume thatλ0 > 0 andui = 0, then from (15), we

see thatκi =
[√

aibi/λ0 − bi

]+
, where [x]+ = max{0, x}.

Plugging this into (16), we have
√

λ0 =
∑

i∈S0

√
aibi

κtot+
∑

i∈S0
bi

, where

S0 = {i|κi > 0}. Then, we need to determine the setS0

to obtain the closed-form solution forκ. To do this, let us
defineαi =

√

bi/ai. Without loss of generality, we assume
α1 ≤ α2 ≤ · · · ≤ αN and can show that (please see [9] for
details)

S0 =

{

{1, · · · , iS |f(iS) < 1, f(iS + 1) ≥ 1}, f(N) ≥ 1
{1, · · · , N}, otherwise,

(18)

where f(i) =
αi

∑ i
j=1

√
ajbj

κtot+
∑

i
j=1

bj
. Thus, the optimal number of

samples can be obtained as

κ
(opt)
p,i =

{

[

g̃2

i |hi|2
σ̃2

v
(γiµ − 1)

]♯

, i ∈ S0

0, i /∈ S0,
(19)

whereµ =
∑

i∈S0
g̃2

i |hi|2+κtotσ̃
2

v
∑

i∈S0
g̃2

i
γi|hi|2 and[·]♯ denotes the integer op-

eration. It is worth noting that this operation should guarantee
1Tκ = κtot. A simple strategy for the integer operation can be
given as

[κi]
♯
=

{

⌈κi⌉ , i ≤ ⌊iS/2⌋
⌊κi⌋ , otherwise,

where ⌈·⌉ and ⌊·⌋ denote the ceiling and floor operations,
respectively.

Remark: We note that the optimal number of samples for
each secondary user follows a water-filling strategy, i.e.,with
largerαi, the chance for the secondary user to be inactive is
higher. Note thatαi = 1/γi. Hence, when the local received
SNR is low, the secondary user tends not to collect the samples
for local energy calculation.

For comparison, we consider two suboptimal solutions for
this optimization problem as follows:

• A simple solution is to choose equal number of samples,
i.e., κ(equ)

p,i = ⌊κtot/N⌋.
• Using Cauchy-Schwarz inequality, we see that Pe(g∞)

in (10) can be minimized whenκi = cγ2
i , wherec is a

constant. Based on this, we propose a suboptimal solution



for the number of samples1, i.e.,κ(sub)
p,i =

[

γ2

i
∑N

i=1
γ2

i

κtot

]♯

.

In this case,iS = N and secondary users only need to
know the norm square of observation channel gains to
calculate the number of samples.

Let us denote the asymptotic error probabilities when
g̃i → ∞ for these three solutions of number of samples as
P(equ)

e (g∞), P(sub)
e (g∞) and P(opt)

e (g∞), respectively. Then, we
note that

Lemma III.1. When α2 > α1 and α2 − α1 is finite,
P(equ)

e (g∞) ≥ P(sub)
e (g∞) ≥ P(opt)

e (g∞).

Due to space limitations, we omit the proof. For detailed
proof, please refer to [9].

2) Scenario B: In this scenario, the optimization problem
in (12) becomes

max
κ

F(κ, g̃)

s.t. 1Tκ ≤ κtot, 0 � κ � κmax1. (20)

With the additional constraint, updated KKT conditions are
aibi

(κi+bi)2
+ ui − vi − λ0 = 0 (21)

vi(κi − κmax) = 0, (22)

where vi ≥ 0 are Lagrangian multipliers. First we assume
that λ0 > 0 and ui = vi = 0, then from (21), we see that
κi =

√

aibi/λ0 − bi. Thus, based on the value of
√

λ0, we
can determine the optimal solution ofκi as

κi =







0, if
√

λ0 >
√

ai/bi

κmax, if 0 <
√

λ0 <
√

aibi/(κmax + bi)
√

aibi/λ0 − bi, otherwise.

Let us define two disjoint sets for secondary users asS1 =
{i|κi = κmax} and S2 = {i|0 < κi < κmax}. Pluggingκi

into (16), we have

|S1|κmax +
(

1/
√

λ0

)
∑

i∈S2

√
aibi −

∑

i∈S2
bi = κtot,

which implies that
√

λ0 =
∑

i∈S2

√
aibi

κtot−|S1|κmax+
∑

i∈S2
bi

.

In order to determineS1, S2 and
√

λ0 and thus obtain
the closed-form solution forκi, we propose here a two-stage
generalized water-filling algorithm as follows:

1) In the first stage, we aim to determine the setS1. To
do this, let us definẽαi = κmax+bi√

aibi
. Without loss of

generality, we assumẽα1 ≤ α̃2 ≤ · · · ≤ α̃N. Then,
similar to Scenario A,S1 can be obtained by (18) with
(please see [9] for details)

f̃(i) =
α̃i

∑

m∈S̃i

√
ambm

κtot−iκmax+
∑

m∈S̃i
bm

, i ≤
⌊

κtot
κmax

⌋

, (23)

where S̃i = {m|αm < α̃i, i < m ≤ N}. After S1 is
determined, we haveκi = κmax, ∀i ∈ S1.

2) In the second stage, we follow a procedure similar to
Scenario A to obtainS2 andκi for i /∈ S1. The solution
is given in (19), except thatκtot and N are replaced by
κtot − |S1|κmax and N− |S1|, respectively.

1It is worth mentioning that a similar discussion can be foundin [10].

B. Case II: Whenκ is Fixed

In this case, we assume fixed number of samples, i.e.,κ =
κ̃. Let us define global transmission power constraint asPtot =
C̄ − c01

Tκ̃ andzi = g2
i .

1) Scenario A:Here we follow a similar derivation to that
in Section III-A1. Let us defineβi = σ̃v

√
ξi

γi|hi| . Without loss of
generality, assumeβ1 ≤ β2 ≤ · · · ≤ βN. Then, define a set

I0 from (18) withf(i) =
βiσ̃v

∑ i
j=1

κ̃j

√
ξjγj/|hj|

Ptot+σ̃2
v

∑

i
j=1

κ̃jξj/|hj |2 . The optimal

amplifier gains can be obtained as

g
(opt)
p,i =

{

[

κ̃iσ̃
2

v

|hi|2
(

γi|hi|√
ξi

η − 1
)]1/2

, i ∈ I0

0, i /∈ I0,
(24)

whereη =
∑

i∈I0
κ̃iξi/|hi|2+Ptot/σ̃2

v
∑

i∈I0
κ̃i

√
ξiγi/|hi| .

Remark: Again we see that the optimal amplifier gains
follow a water-filling strategy, i.e., with largerβi, the chance
for the secondary user to be inactive is higher. Furthermore,
we note thatβi ∝ 1/(γi|hi|). Hence, when the local received
SNR is low or the fusion channel quality is poor, the secondary
user tends not to transmit the local calculated energy to the
fusion center.

For comparison, we consider two suboptimal solutions for
this optimization problem as follows:

• A simple solution is to choose equal transmission power
for each secondary user, i.e.,g

(equ)
p,i =

√

Ptot/(Nξi).
• Furthermore, similar to Section III-A1, we propose a

suboptimal solution for amplifier gains based on (9) using
the Cauchy-Schwarz inequality, i.e.,

g
(sub)
p,i =

(

γ2

i |hi|2/ξ2

i
∑N

i=1
γ2

i
|hi|2/ξi

Ptot

)1/2

.

Let us denote the asymptotic error probabilities whenκ̃i →
∞ for these three solutions of amplifier gains as P(equ)

e (κ∞),
P(sub)

e (κ∞) and P(opt)
e (κ∞), respectively. Similar to Lemma

III.1, we note that

Lemma III.2. When β2 > β1 and β2 − β1 is finite,
P(equ)

e (κ∞) ≥ P(sub)
e (κ∞) ≥ P(opt)

e (κ∞).

2) Scenario B: Let us define two sets asI1 = {i|zi =
Pmax/ξi} and I2 = {i|0 < zi < Pmax/ξi}. Then, similar
to Section III-A2, we propose a two-stage generalized water-
filling algorithm as follows:

1) In the first stage, we aim to determine the setI1. Let us
defineβ̃i =

Pmax|hi|2+σ̃2

v κ̃iξi

σ̃v κ̃iγi|hi|
√

ξi
. Without loss of generality,

we assumeβ̃1 ≤ β̃2 ≤ · · · ≤ β̃N. Then, similar to
Section III-A2,I1 can be obtained by (18) with

f̃(i) =
β̃iσ̃v

∑

m∈Ĩi
κ̃m

√
ξmγm/|hm|

Ptot−iPmax+σ̃2
v

∑

m∈Ĩi
κ̃mξm/|hm|2 , i ≤

⌊ Ptot
Pmax

⌋

,

where Ĩi = {m|βm < β̃i, i < m ≤ N}. After I1 is
determined, we havezi = Pmax/ξi, ∀i ∈ I1.

2) In the second stage, we follow a procedure similar to
Scenario A to obtainI2 andzi for i /∈ I1. The solution
is given in (24), except thatPtot and N are replaced by
Ptot − |I1|Pmax and N− |I1|, respectively.



C. Case III: Whenκ and g are Unknown

1) Scenario A:In this case, let us definepi = σ̃2
v/(γ2

i |hi|2)
and qi = 1/γ2

i . To simplify our analysis, whenκi = zi = 0,
we assumeκizi/(piκi + qizi) = 0. In practice, this assump-
tion can be alleviated by adding a sufficiently small constant
in the denominator. Then, the optimization problem becomes

max
κ,z

N
∑

i=1

κizi

piκi + qizi

s.t. c01Tκ + ξTz ≤ C̄
κ � 0, z � 0. (25)

It is easy to see that (25) is a convex optimization problem
(please see [9] for details). Thus it can be solved efficiently
using interior-point methods or other iterative methods [11]. To
obtain insight into the closed-form solution, first we introduce
the following lemma.

Lemma III.3. Optimal solution of(κ, z) in (25) should satisfy
either 1) κi > 0 and zi > 0, or 2) κi = 0 and zi = 0 for
secondary useri.

Due to space limitations, we omit the proof. For detailed
proof, please refer to [9]. This lemma is not surprising because
when one secondary user does not collect the energy samples,
it will not waste the transmission power to transmit the null
data to the fusion center. On the other hand, when one
secondary user decides not to transmit the data to the fusion
center, it is reasonable that this secondary user remains inactive
and does not collect the samples for local energy calculation.

Using Lemma III.3, the optimal solution of(κ, g) can be
found as stated in the following theorem.

Theorem III.4. Consider the optimization problem in (25),
let us defineρi =

γ2

i |hi|2
(σ̃v

√
ξi+|hi|

√
c0 )2

and assumeρ1 ≥ ρ2 ≥
· · · ≥ ρN. Then, the optimal solution of(κ, g) is

κ
(opt)
p,i =

{ ⌊

|hi|C̄
σ̃v

√
ξic0+|hi|c0

⌋

, i = 1

0, i > 1,

g
(opt)
p,i =

{

(

σ̃v C̄
σ̃vξi+|hi|

√
ξic0

)1/2

, i = 1

0, i > 1.
(26)

Due to space limitations, we omit the proof. For detailed
proof, we refer the readers to [9]. Given the optimal solution
of (κ, g), we see that the optimal error probability can be
obtained as2

P(opt)
e = Q

(√
C̄

2 max
{

γi|hi|
σ̃v

√
ξi+|hi|

√
c0

})

.

Remark: When we jointly design the number of samples
and amplifier gains subject to the total cost constraint, only
one secondary user needs to be active in the cognitive radio
network, i.e., collecting the samples for local energy calcula-
tion and transmitting the energy statistic to the fusion center.
It is interesting to note that this optimal strategy is similar to

2For simplicity, we neglect the rounding effect ofκ throughout the paper.

multiuser diversity where base station picks the user with best
channel to achieve maximum sum rate capacity [12]. In this
case, fusion center will select the secondary user with bestρi

to perform local spectrum sensing and data forwarding.
For comparison, we propose three suboptimal solutions for

this optimization problem as shown in Table I.

TABLE I
SUBOPTIMAL SOLUTIONS FOR OPTIMIZATION PROBLEM INCASE III

Number of samplesκ Amplifier gainsg

Sub I Given g
(sub1)
p,i , obtainκ

(sub1)
p,i g

(sub1)
p,i =

(

C̄

2Nξi

)1/2

from (19)

Sub II κ
(sub2)
p,i =

⌊

C̄

2Nc0

⌋ Given κ
(sub2)
p,i , obtaing

(sub2)
p,i

from (24)

Equal κ
(equ)
p,i =

⌊

C̄

Nc0+1Tξ

⌋

g
(equ)
p,i =

(

C̄

Nc0+1Tξ

)1/2

2) Scenario B:Here, the optimization problem becomes

max
κ,z

N
∑

i=1

κizi

piκi + qizi

s.t. c01Tκ + ξTz ≤ C̄
0 � κ � κmax1, z � 0, ξizi ≤ Pmax. (27)

Again, we see that this is a convex optimization problem
and can be solved by standard methods. Let us denote the
optimal solution as

(

κ
(opt)
p,i , g

(opt)
p,i

)

. Similarly, we note that

Lemma III.5. Optimal solution of(κ, z) in (27) should satisfy
either 1) κi > 0 and zi > 0, or 2) κi = 0 and zi = 0 for
secondary useri.

The proof is similar to that of Lemma III.3 and thus omitted.
With the additional constraints imposed onκ andz, in general
we see that it is difficult to obtain the closed-form solutionfor
(κ, z). By noting that the optimal solution of(κ, z) needs to
be equal to 0 or greater than 0 simultaneously, we propose
a heuristic suboptimal algorithm for Scenario B. Specifically,
first we assignκmax and Pmax to the secondary user with
largestρi. If enough resource is left, we assignκmax andPmax

to the secondary user with second largestρi and so on until
κmax andPmax cannot be assigned to any one secondary user.
In this case, we merely utilize the optimal solution in (26) to
allocate(κi, gi) to the secondary user with the next largestρi

andκi = 0, gi = 0 to the rest of the secondary users.

IV. SIMULATION RESULTS

In the simulations, we assume N= 6, σ2
n = σ2

v = 1, c0 = 1,
γ = [−8.86,−15.23,−7.21,−5.09,−10.00,−10.97]T(dB),
h = [1.56, 1.99, 0.37, 1.52, 0.39, 1.98]T. We define the global
fusion SNR asSNR = Ptot/σ2

v.
Fig. 2 and 3 show the error probability versus global fusion

SNR in Case I and total number of samples in Case II, respec-
tively. As expected, we see that the optimal solution provides
superior performance to suboptimal solutions. From the plots,
we also observe that with additional individual constraints, the
optimal solution for Scenario B performs worse than that of
Scenario A. Furthermore, when the global fusion SNR or total



number of samples increases, we see that the error probability
approaches the asymptotic bound. In particular, in Fig. 2,
P(equ)

e (g∞) ≥ P(sub)
e (g∞) ≥ P(opt)

e (g∞) as discussed in Lemma
III.1 and in Fig. 3, P(equ)

e (κ∞) ≥ P(sub)
e (κ∞) ≥ P(opt)

e (κ∞) as
mentioned in Lemma III.2.
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Fig. 2. Case I: error probability for different solutions ofκ. In the simulation,
we chooseκtot = 600 and fixed amplifier gains̃gi =

√

Ptot/(Nξi). In
Scenario B, we chooseκmax = 0.4κtot.
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Fig. 3. Case II: error probability for different solutions of g. In the simulation,
we chooseSNR = 25dB and fixed number of samples̃κi = ⌊κtot/N⌋. In
Scenario B, we choosePmax = 0.4Ptot.

In Fig. 4, we plot the error probability versus total cost
constraint in Case III for different solutions of(κ, g). In this
simulation, we utilize interior-point method to solve the opti-
mization problem in Scenario B. As expected, we see that the
optimal solution significantly improves the error probability
compared to three suboptimal solutions in Scenario A. Fur-
thermore, we observe that the error performance is degraded
with the additional constraints in Scenario B. Additionally, we
note that our proposed suboptimal algorithm in Scenario B has
negligible performance loss compared to the optimal solution.
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Fig. 4. Case III: error probability for different solutionsof (κ, g). In Scenario
B, we chooseκmax = 0.2⌊C̄/c0⌋ andPmax = 0.2C̄.

V. CONCLUSIONS

In this paper, we present the optimal design for cooperative
spectrum sensing in cognitive radio networks. In particular,
we derive closed-form expressions for optimal solutions and
propose a generalized water-filling algorithm when number of
samples or amplifier gains are fixed and additional constraints
are imposed. Furthermore, when jointly designing the number
of samples and amplifier gains, we demonstrate that only one
secondary user needs be active, i.e., collecting samples for
local energy calculation and transmitting energy statistic to
fusion center.
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