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Abstract—We consider a communication scenario where the
source and the destination can communicate only via a relay
node who is both an eavesdropper and a Byzantine attacker.
Hence for secure communication, two requirements must be met
simultaneously: the transmitted message must be kept secret, and
a Byzantine attack must be detected reliably. Both a discrete
noiseless adder model with the relay receiving thereal sum
of two signals and a Gaussian model are considered. In both
models, the loss in rate due to Byzantine detection can be made
arbitrarily small. For the discrete adder model, we show that
the probability that the adversary wins decreases exponentially
with the number of channel uses. For the Gaussian model, we
show that this probability decreases exponentially with the square
root of the number of channel uses. The rate derived in this
paper is the strong secrecy rate, and the rate loss incurred due
to the untrusted and Byzantine relay is measured with respect
to the achievable secrecy rate when the relay is untrusted but
honest. The result is obtained via a careful combination of the
algebraic manipulation detection (AMD) code, the linear wire-
tap code constructed from low density parity check (LDPC) code,
randomly generated wire-tap code and for the Gaussian model
the lattice code.

I. I NTRODUCTION

Information theoretic secrecy was established by Shannon
[1]. Wyner had used this notion to show that uncertainty in the
channel can facilitate secret communication [2]. This approach
was then extended to more involved channel models, e.g. [3],
[4], leading to a body of literature which provides fundamental
limits under which secret communication can take place in the
presence of a computation-power unlimited eavesdropper.

The impact of information theoretic secrecy on cooperative
communications was investigated in references [5]–[7]. The
cooperative communication schemes in these works rely on
a relay node that is not trusted with confidential messages
but wouldalways employ its designated relaying scheme. An
important insight that is gained from this body of work is that
even if the relay is not trusted, as long as it is honest, recruiting
it to help relay information can be useful in achieving a
higher secrecy rate than just treating the relay node as an
eavesdropper [5].

Naturally, the next step is to consider the case where the
relay node is malicious, or equivalently is a compromised
node. If the relay chooses not to perform its designated relay
function, one possible consequence is to cause a decoding
error at the destination. It is also possible that the decoder
produces a message estimateW ′, such thatW ′ is not the actual

messageW from the source. In this case, the destination will
acceptW ′ as the message from the source. The question is
whether it is possible for the adversary at the relay node to
manipulate the destination into acceptingW ′ without being
detected. The main purpose of this paper is to find a reliable
detection method for thisByzantine attack in the presence of
a computation-power unbounded adversary.

Byzantine attack detection can be viewed as an authen-
tication problem, by treating the counterfeit messageW ′

as a message from a non-legitimate source. An information
theoretic secrecy scheme with an authentication capability was
proposed in [8]. The authors used a wire-tap code providing
strong secrecy from [9]. In this approach, the destination needs
to know the authentication key beforehand.

It is known, on the other hand, that to detect a Byzantine
attack, it is not essential to share keys. In reference [10],the so
called algebraic manipulation detection (AMD) code was used
for encoding the source data which ensures the probability
that the adversary wins can be made arbitrarily small with an
arbitrarily small loss in rate. A limitation of this scheme is that
it has to be used along with a secrecy sharing scheme that is
linear [10]. Many secrecy sharing schemes innoisy channels
use nonlinear coding schemes. This makes the application to
noisy channels challenging at best.

In this work, we consider a two-hop communication system
with a relay node that is not only untrusted but also potentially
malicious. Hence both secrecy and Byzantine detection are
needed. Two models are considered: (1) a discrete adder
model where the relay receives thereal sum of the signals
transmitted by the other two nodes; (2) a Gaussian model
where the transmitted signals are continuous and the received
signals are corrupted by Gaussian noise. In both cases, we
prove that the probability that a Byzantine adversary wins
can be made arbitrarily small at a cost of an arbitrarily small
amount of loss instrong secrecy rate. To prove this result, we
leverage two facts: (i) linear secret sharing schemes existfor
the type II wire-tap channel where the eavesdropper channel
is a binary erasure channel, and (ii) only a small portion of an
AMD codeword needs to be sent over a linear secrecy sharing
scheme. In both models, we take advantage of these facts by
simulating a low rate binary erasure channel. The end resultis
obtained by combining the AMD code [10], the LDPC based
type II wire-tap code [11], the randomly generated wire-tap
code [9], and for the Gaussian case the lattice code [12].
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Fig. 1. The Gaussian two-hop link. Phase 1 is indicated by solid line, and
phase 2 by dashed line. R/E: Relay/Eavesdropper. For the adder model, simply
remove all noise and restrict signals to integers in the range [0, B − 1].

II. SYSTEM MODEL

We consider a two-hop network with two-phase commu-
nications as shown in Figure 1. Node1 wants to send a
confidential messageW to node2 via a relay node that is
untrusted. In [7], we showed that by allowing node2 to
transmit, a two-phase protocol can be developed to provide
secrecy. In this protocol, during the first phase, both nodes1
and 2 transmit. We useXi to denote the signal transmitted
by nodei. In the Gaussian model,Xi is continuous and the
signal received by the relay is denoted byYr = X1+X2+Zr.
In phase two, the relay node transmitsXr. Let Y2 denote the
signal received by node2 during phase two,Y2 = X2 + ZR.
Zr and ZR are independent Gaussian random variables with
zero mean and unit variance. For simplicity, we assume that
each node has an average power constraintP and the channel
gain of each link is unity.

The discrete adder model is very similar to the Gaussian
model. The differences are that nowXi, i = 1, 2 andXr are
integers in the range[0, B − 1], whereB is an integer and
B ≥ 2; the noise terms are removed. Hence, we haveYr =
X1 + X2 andY2 = Xr.

III. R EVIEW OF KNOWN RESULTS

A. AMD Code [10]

Let the input to an AMD encoder be denoted bys. It is
assumed thats is a 1 × d vector. Each component of it is
taken from a finite fieldGF(qm). The output of the encoder
is given by the tuple{s, x, h}, wherex is uniformly distributed
overGF(qm) and is independent froms, andh is computed
according to the hash rule:h = xd+2 +

∑d
i=1

six
i, wheresi

is the ith component ofs and the addition and multiplication
is defined overGF(qm). h is usually called the “hash tag”.
Suppose the node2 receivess′, x′, h′, wheres′ 6= s. Let ∆x =
x′ − x. ∆h = h′ − h. Then [10] has the following result:

Theorem 1: [10, Theorem 2] If the distribution ofx condi-
tioned on{∆x, ∆h, s′, s} is uniform over the fieldGF(qm),
q being a prime, andd + 2 is not divisible byq, then the
probability that the hash rule holds is bounded byd+1

qm .

B. Limits of AMD Code

To motivate the next section, we briefly describe the dif-
ficulty in applying AMD code in our setting. Consider the
discrete adder model. It is immediate that a direct application

to this model is impossible due to the factXn
r is computed

from Y n
r = Xn

1 + Xn
2 , where the component-wise “+” means

real addition rather than modulus addition. HenceY n
r is not

independent fromXn
1 and the condition in Theorem 1 is not

fulfilled.
To solve this problem, we consider using a serial concate-

nation of the wire-tap code and the AMD code. Letf be the
stochastic encoding function of the wire-tap code. ThenY n

r

contains little information from the input to the wire-tap code
encoder, which in this case is an AMD codeword{s, x, h}, if
the wire-tap code is designed according to [9].

Let the input to the decoder of the wire-tap code beX̂n
1 .

Then in the case of the discrete adder model, it is given by

X̂n
1 = Xn

r −Xn
2 mod B (1)

If the relay is honest, then̂Xn
1 should equalXn

1 , which is
mapped tof−1(Xn

1 ). Otherwise, the decoder will receive
f−1(Xn

r −Xn
2 mod B). The difference is hence given by

f−1(Xn
r −Xn

2 mod B)− f−1(Xn
1 ) (2)

Note that (2) corresponds to∆x, and f−1(Xn
1 ) corresponds

to x in Theorem 1, and even though the adversary has little
information aboutf−1(Xn

1 ), in general (2) isnot independent
from f−1(Xn

1 ).
This problem can be alleviated iff−1 is linear. In this case,

(2) is given by

f−1((Xn
r − (Xn

1 + Xn
2 ) mod B) mod B) (3)

Note thatXn
r is computed fromY n

r . (Xn
1 + Xn

2 ) mod B can
also be computed fromY n

r . If Y n
r is almost independent from

the confidential message then (3) is almost independent from
f−1(Xn

1 ). One case wheref−1 is linear is the Type II wire-tap
channel.

C. Type II Wire-tap Channel

In the Type II wire-tap channel model [13], the main channel
is a noiseless binary channel and the eavesdropper channel is
a binary erasure channel with erasure probabilityǫ. It was
shown in [11] that the dual code of a “good” linear code can
be used to construct codes for the Type II wire-tap channel as
follows.

Let H denote the parity check matrix of a linear block code
C. Let the input to the encoder bes, and the output of the
encoder bex. Here each component ofH , x, s is taken from
GF(2). The encoder is defined byx← {x : Hx = s}, which
meansx is randomly chosen from the set{x : Hx = s} under
a uniform distribution. The decoder is simply:

f−1(x) = Hx (4)

To find a goodH , [11] looks at the generation matrixG
of C. Let y be the output of the erasure channel. LetGe be
formed by the columns ofG that corresponds to the erased
positions. DefineF0 as a binary random variable such that
F0 = 1 denote the event thatGe has full column rank. Then
it was shown in [13] [11, Theorem 2] the following result
holds:



Theorem 2: I(s;y|F0 = 1) = 0
Remark 1: Note that this theorem holds even if the encoder

only uses a subset of all possible input sequences.
We next evaluate the probabilityPr(F0 = 0). To make
Pr(F0 = 0) small, [11] proposes to use the parity check matrix
HL of a good LDPC codeCL for binary erasure channel as
G. It can be shown thatPr(F0 = 0) can be bounded via the
decoding error probabilityPe of CL as Pr (F0 = 0) ≤ 2Pe.
In [14, Theorem 6], a lower bound is provided on the error
exponent− 1

L log2 Pe. By evaluating [14, (43)], we find that
the expurgated regular(3, 4) LDPC code ensemble, whose rate
is 1/4, has a positive error exponent on average when the
channel erasure probability is1/2. Hence there must exists a
(3, 4) LDPC code that the decoding error probability decreases
exponentially fast with code length. The corresponding wire-
tap code has rate1/4. Let L be the length of the wire-tap
code. ThenPr(F0 = 0) can be bounded as:

Pr(F0 = 0) < exp(−Lα) (5)

for some positiveα > 0.

D. Simulating a Binary Erasure Channel

In order to leverage the linear wire-tap code from Section
III-C, we have to simulate a binary erasure channel in both the
adder model and the Gaussian model. In the adder model, this
could be done simply by restricting the transmitted signal to
be binary. Doing so leads to a significant rate loss. However,
since only{x, h} needs to be transmitted in this fashion, as
we will see later, the overall rate loss is negligible.

In the Gaussian model, we use everyN channel use to
simulate1 channel use in a binary erasure channel via a simple
repetition code. Note that this leads to the loss of coding gain
and to an arbitrarily small rate. However, since we only use
this scheme to transmit{x, h}, which also has an arbitrarily
small rate, the overall rate loss will be shown to be small as
well in the sequel.

The relaying and the signaling scheme under the repetition
code is described as following: Let1 denote ann-bit vector
of ones. Let0 denote ann-bit vector of zeros. Node1 sends√

P1 as 1 and−
√

P1 as 0. Node2 sends
√

P1 or −
√

P1

with equal probability. LetuN
i be the signal transmitted by

nodei. Define⊕ over {−
√

P1,
√

P1} so that this set forms
a modulus2 groupG(2). DefineI1 as the isomorphism from
{
√

P1,−
√

P1} to G(2).
The relay node receives receivesuN

1 + uN
2 + ZN

r , which
is a vector from the set{−2

√
P1,0, 2

√
P1} corrupted by

Gaussian noise. Note that this is a degraded version ofuN
1 +

uN
2 . Hence if a wire-tap code supports the notion of secrecy as

in Theorem 2, the same result holds here as well due to data
processing inequality. This means that, we can design the wire-
tap code assuming the adversary receivesuN

1 + uN
2 instead.

Note that if uN
1 + uN

2 = 0, then the conditional probability
distribution of the signal transmitted by node1 is the same as
this distribution without the conditioning. Hence anerasure
has occurred.

The relay scheme is composed of the following two steps:

1) It uses a maximum likelihood detector to determine
{−2
√

P1,0, 2
√

P1}.
2) It transmits−

√
P1 if it detects−2

√
P1 or 2

√
P1 . It

transmits
√

P1 if it detects0.

Node 2 uses a maximum likelihood detector to determine
whether the relay transmits−

√
P1 or

√
P1. Let the detection

result beuN
r . It then recovers the binary bit sent by node

1 from I1(u
N
r ) ⊕ I1(u

N
2 ). If the relay is honest and all

decoding operation is successful, it should equalI1(u
N
1 ). Their

difference is given by

I1

(

uN
r

)

⊕ I1

(

uN
1 ⊕ uN

2

)

(6)

Note thatuN
r is computed from the received signal by the

relay nodeY N
r and the noiseZN

R . I1

(

uN
1 ⊕ uN

2

)

can be
computed fromY N

r as well if the detection operation at the
relay is successful. With the repetition code, the detection
error probability decreases exponentially fast withN . As we
have shown in Section III-C, with high probabilityY N

r is
independent from the confidential message{x, h} conveyed
by the linear wire-tap code. Hence, with high probability (6)
is independent from{x, h}.

IV. M AIN RESULTS

The overall achievability scheme can then be summarized
as follows: A string of confidential messagess is first encoded
into an AMD code tuple{s, x, h}, which is transmitted in two
stages:

1) During the first stage,{x, h} is transmitted using the
linear wire-tap code in Section III-C via the simulated
Type II wire-tap channel described in Section III-D.
The transmission is done via the two phase protocol
described in Section II.

2) During the second stage,s is transmitted using a
randomly generated wire-tap code and the two phase
protocol described in Section II. This wire-tap code from
[9] is nonlinear but offers a higher rate.

Let the overall number of channel uses beNT . Let Re

denote the achievablestrong secrecy rate for these two models
when the relay is honest. For the discrete adder model, it can
shown thatRe = H(X1) − I(X1; X1 + X2) which equals
0.5 when B = 2 and is lower bounded bylog2 B − 0.8
in general. For the Gaussian model, it can be shown that
combining lattice code [12] and the wiretap code from [9],
Re =

[

1

2
log2(

1

2
+ P )− 1

]+
. 1

Remark 2: The reason for using lattice codes in the Gaus-
sian model is in effect to avoid the continuous channel outputs
in the Gaussian case. This is needed in order to apply the
result of [9]. Also note that we can not use the approach in
[15] to achieve strong secrecy as [15] requires transmitting a
negligible amount of random bits via anauthenticated public
channel for privacy amplification. In our case, all bits mustbe
transmitted via the relay, which isnot authenticated.

1Due to the half duplex constraints, rates should be multiplied by the time
sharing factor1/2.



Theorem 3: For the discrete adder channel in Section II,
for a rate smaller but arbitrarily close toRe, there existsαi >
0, i = 1, 2 such that

1) When the relay is honest, data can be reliably transmitted
at this rate with the mutual information between the
adversary’s knowledge and the confidential message
decreases at the rate ofO(exp(−α1NT )).

2) The probability that a counterfeit message is accepted
by node2 decreases at the rate ofO(exp(−α2NT ))

Theorem 4: For the Gaussian model in Section II, for a rate
smaller but arbitrarily close toRe: Then there existsαi >
0, i = 3, 4, 5 such that

1) When the relay is honest, data can be transmitted at
the rate such that the mutual information between the
adversary’s knowledge and the confidential message
decreases at the rate ofO(exp(−α3N

1/2

T )). The error
probability decreases at the speed ofO(exp(−α4N

1/2

T ).
2) When the relay is not honest, the probability that a

counterfeit message is accepted by node2 decreases at
the rate ofO(exp(−α5N

1/2

T )).

V. PROOFS OF THEMAIN RESULTS

The following notation is used:Xi(j), i = 1, 2, Xr(j)
denote the signals transmitted by node1, 2 and the relay during
thejth stage,j = 1, 2. Similarly, Yi(j), i = 1, 2, Yr(j) denote
the signals received during thejth stage.

Note that in order to use AMD code, as shown in The-
orem 1, we need to provex is almost independent from
{∆h, ∆x, s, s′}. Define F as a binary random variable such
that F = 1 indicates that (1) the relay node can decode the
binary modulus sum of the signals transmitted by node1 and
2 during stage one and (2) the binary linear wire-tap code
does not leak information. Then for the discrete adder model,
Pr(F = 0) is bounded by (5), since the channel is noiseless.
For the Gaussian model, letγ denote the error exponent of
the detection operation. ThenPr(F = 0) can be bounded as:

Pr(F = 0) ≤ L exp(−Nγ) + exp(−Lα) (7)

whereL is the length of the binary wiretap code described
in Section III-C. The first term in (7) is the union bound on
the probability that any detection operation at the relay or
node 2 is not successful. The second term comes from the
imperfectness of the linear wire-tap code. For both models,
we have the following lemma:

Lemma 1: I (x; ∆h, ∆x, s, s′) ≤ m Pr(F = 0)
Proof Outline:

I (x; ∆h, ∆x, s, s′) ≤ I (x; ∆h, ∆x, s, s′, F ) (8)

=I (x; ∆h, ∆x, s, s′|F ) (9)

=Pr (F = 1) I (x; ∆h, ∆x, s, s′|F = 1)

+ Pr (F = 0) I (x; ∆h, ∆x, s, s′|F = 0) (10)

(9) is due to the fact thatF is solely determined byX2(1)
and the structure of the code. HenceI(x, F ) = 0. The second

term in (10) is upper bounded bym Pr (F = 0). For the first
term, we have:

I (x; ∆h, ∆x, s, s′|F = 1) (11)

=I (x; ∆h, ∆x, s′|F = 1, s) + I (x; s|F = 1) (12)

=I (x; ∆h, ∆x, s′|F = 1, s) (13)

≤I (x; Yr (1) , ∆h, ∆x, s′|F = 1, s) (14)

=I (x; Yr (1) , s′|F = 1, s) (15)

≤I (x; Yr (1) , Y2 (2) , X2 (2) , s′|F = 1, s) (16)

=I (x; Yr (1) , Y2 (2) , X2 (2) |F = 1, s) (17)

(15) is because based on (3) and (6), we observe that,
conditioning onF = 1, {∆x, ∆h} can be computed from
Yr(1) by the relay. (17) is due to the facts′ can be computed
from Y2(2), X2(2) by node2. It can then be shown that (17)
equals0. For details, the reader is referred to [16].
In the following, we use “HRH” for “hash rule holds” when
for s 6= s′, xd+2 +

∑d
i=1

six
i = x′d+2 +

∑d
i=1

s′ix
′i + ∆h.

This means the messages′, x′, h′ will be accepted by node2.
Hence the probability that the adversary wins is given by:

Pr (A wins)

=
∑

x,∆x

∆h,s,s′

Pr (HRH|x, ∆h, ∆x, s, s′)
Pr (x|∆h, ∆x, s, s′) Pr (∆h, ∆x, s, s′)

(18)

DefineQ as the term (18) withPr (x|∆h, ∆x, s, s′) replaced
by Pr(x). Then we have

Lemma 2:

|Pr (A wins)−Q (A wins) | ≤
√

(2 ln 2)m Pr(F = 0)
(19)

Proof: The right hand side of (19) is bounded by:

∑

x,∆x

∆h,s,s′

(

|Pr (x|∆h, ∆x, s, s′) Pr (x)
−Pr (x) Pr (∆h, ∆x, s, s′) |

)

(20)

Then we use Pinsker’s inequality:

I(A; B) ≥ 1

2 ln 2
D2(p (A, B) , p (A) p (B)) (21)

whereD(p(x), q(x)) =
∑

x |p(x)− q(x)|. Let A be x. Let B
be∆h, ∆x, s, s′. Then, applying Lemma 1 leads to Lemma 2.

From Theorem 1,Q (A wins) is bounded byd+1

2m . Hence,
using Lemma 2, we have

Pr (A wins) ≤ d + 1

2m
+

√

(2 ln 2)m Pr(F = 0) (22)

To prove Theorem 3 and Theorem 4, it remains to apply
(22) to the two models we considered, as will be done next.



A. The Discrete Adder Model (Theorem 3)

For the adder model, (22) is given by

Pr (A wins) ≤ d + 1

2m
+
√

m exp(−Lα′) (23)

where α′ is chosen to be within the range0 < α′ < α/2.
Now choose the length of information bits in the linear wire-
tap code as the length ofx and h. This meansL/4 = 2m.
The number of channel uses needed to transmits is slightly
larger than dm

Re
, whereRe is defined in Section IV. Hence

the total number of channel uses needed to transmit{s, x, h}
bits is given by8m+ dm

Re
. This means the overall transmission

rate converges tod/(8 + d/Re), which can be made arbitrarily
close toRe by makingd sufficiently large.

For a given rate and hence fixedd, the total number of
channel uses is proportional tom. From (23), we see that the
probability that the adversary wins decreases exponentially fast
with the total number of channel uses.

Finally, we check the secrecy constraint. The wire-tap code
from [9] offers the following strong notion of secrecy:

I (s; Yr (2)) < exp (−βL′) (24)

whereL′ = md/Re is the length of the wire-tap code. Hence:

I (s; Yr (1) , Yr (2)) ≤ I (s, x, h; Yr (1) , Yr (2)) (25)

≤I (x, h; Yr (1)) + I (s; Yr (2)) (26)

=m exp (−8mα) + exp (−βmd/Re) (27)

(26) is due to the fact that the channel and the signal
transmitted by node2 are both memoryless. (27) follows from
Theorem 2 and (24). Hence for a given rate, the mutual infor-
mation between the confidential message and the observation
of the eavesdropper also decreases exponentially fast withthe
total number of channel uses.

B. The Gaussian Model (Theorem 4)

For the Gaussian model, (22) is given by

d + 1

2m
+

√

(2 ln 2)m (L exp (−Nγ) + exp (−Lα)) (28)

Let N2 denotes the number of channel uses during the second
stage. Then the total number of channel uses isNT = N2 +
LN . Let R′

e is the rate of the randomly generated wire-tap
code per channel use. To match the rate with an AMD tuple
of (d + 2)m bits, We requireR′

e(N2) = dm and L
4

= 2m,
where4 in the denominator comes from the fact we are using
a rate1/4 linear wiretap code. LetNL be the dimension of the
lattice code used in stage two. LetγL is the error exponent of
the lattice code decoder. Then, with the wire-tap code from [9],
it can be shown thatR′

e can be chosen to be any value smaller
than (1 − e−γLNL)Re − e−γLNL − 1/NL [16]. Transmission
below this rate will allow the decoding error probability at
node2 to decrease exponentially fast with respect toN2/NL =
dm/(NLR′

e). The overall rate per channel use is given by

Roverall =
dm

N2 + LN
=

d/N
d/N
R′

e
+ 8

(29)

Whend/N andNL is sufficiently large,Roverall can be made
arbitrarily close toRe. If we fix d/N and letk = d/N , then

the total number of channel uses is given bymN
(

8 + k
R′

e

)

.

Let m = N . Then NT ∼ O(m2). It can be verified by
checking (28) thatPr (A wins) decreases exponentially fast
with respect tom. It remains to check the secrecy constraints:
The L′ in (24) is given byN2/NL = km2/(NLR′

e). Hence

I (s; Yr (1) , Yr (2)) = me−8mα + e
−

βkm2

NLR′

e . Hence if we
chooseNL = m, then it decreases exponentially fast with
respect tom. The decoding error probability of the wire-
tap code used to transmits decreases exponentially fast with
respect toO(dm/(NLR′

e)) = O(m).

VI. CONCLUSION

In this work, we have considered a source-destination pair
that communicates via a relay node. The relay node is an
eavesdropper and a Byzantine attacker. For the adder model,
we showed that the probability that the adversary wins de-
creases exponentially fast with respect to the total numberof
channel usesNT . For the Gaussian two-hop model, we showed
that that the probability that the adversary wins decreases
exponentially fast with respect to

√
NT . For both models, the

loss in rate due to Byzantine detection is arbitrarily small.
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