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Abstract—We consider a communication scenario where the messagéV from the source. In this case, the destination will
source and the destination can communicate only via a relay acceptiV’ as the message from the source. The question is
node who is both an eavesdropper and a Byzantine attacker. \ypether jt is possible for the adversary at the relay node to

Hence for secure communication, two requirements must be nte inulate the destinati int fifi@ without bei
simultaneously: the transmitted message must be kept sedreand manipulate the destination into acceptifig” without being

a Byzantine attack must be detected reliably. Both a discret detected. The main purpose of this paper is to find a reliable
noiseless adder model with the relay receiving thaeal sum detection method for thiByzantine attack in the presence of

of two signals and a Gaussian model are considered. In both a computation-power unbounded adversary.

models, the loss in rate due to Byzantine detection can be mad gy, aniine attack detection can be viewed as an authen-
arbitrarily small. For the discrete adder model, we show tha .2 . )

the probability that the adversary wins decreases exponeitlly tication problem, by treating _the counterfeit me_ssag’é )
with the number of channel uses. For the Gaussian model, we @S @ message from a non-legitimate source. An information
show that this probability decreases exponentially with tle square theoretic secrecy scheme with an authentication capabiés

root of the number of channel uses. The rate derived in this proposed in [8]. The authors used a wire-tap code providing

paper is the strong secrecy rate, and the rate loss incurred due strong secrecy from [9]. In this approach, the destinatieeds
to the untrusted and Byzantine relay is measured with respdc G '

to the achievable secrecy rate when the relay is untrusted hu to kr?ow the authentication key beforehand. )
honest. The result is obtained via a careful combination of e It is known, on the other hand, that to detect a Byzantine

algebraic manipulation detection (AMD) code, the linear wie- attack, it is not essential to share keys. In reference [h@]so
tap code constructed from low density parity check (LDPC) cde, called algebraic manipulation detection (AMD) code wasduse
randomly generated wire-tap code and for the Gaussian model o, encoding the source data which ensures the probability
the lattice code. . . .
that the adversary wins can be made arbitrarily small with an
arbitrarily small loss in rate. A limitation of this schensethat
it has to be used along with a secrecy sharing scheme that is
Information theoretic secrecy was established by Shannigiear [10]. Many secrecy sharing schemesnoisy channels
[1]. Wyner had used this notion to show that uncertainty & thuse nonlinear coding schemes. This makes the application to
channel can facilitate secret communication [2]. This apph noisy channels challenging at best.
was then extended to more involved channel models, e.g. [3]In this work, we consider a two-hop communication system
[4], leading to a body of literature which provides fundaratn with a relay node that is not only untrusted but also poténtia
limits under which secret communication can take placeén timalicious. Hence both secrecy and Byzantine detection are
presence of a computation-power unlimited eavesdropper. needed. Two models are considered: (1) a discrete adder
The impact of information theoretic secrecy on cooperativaodel where the relay receives theal sum of the signals
communications was investigated in references [5]-[7]e Thransmitted by the other two nodes; (2) a Gaussian model
cooperative communication schemes in these works rely where the transmitted signals are continuous and the eteiv
a relay node that is not trusted with confidential messagsignals are corrupted by Gaussian noise. In both cases, we
but wouldalways employ its designated relaying scheme. Aprove that the probability that a Byzantine adversary wins
important insight that is gained from this body of work istthacan be made arbitrarily small at a cost of an arbitrarily $mal
even if the relay is not trusted, as long as it is honest, i&egu  amount of loss irstrong secrecy rate. To prove this result, we
it to help relay information can be useful in achieving #everage two facts: (i) linear secret sharing schemes éist
higher secrecy rate than just treating the relay node as the type Il wire-tap channel where the eavesdropper channel
eavesdropper [5]. is a binary erasure channel, and (ii) only a small portionrof a
Naturally, the next step is to consider the case where tAMD codeword needs to be sent over a linear secrecy sharing
relay node is malicious, or equivalently is a compromisestheme. In both models, we take advantage of these facts by
node. If the relay chooses not to perform its designated relsimulating a low rate binary erasure channel. The end result
function, one possible consequence is to cause a decodibgained by combining the AMD code [10], the LDPC based
error at the destination. It is also possible that the decodgpe Il wire-tap code [11], the randomly generated wire-tap
produces a message estimHfé, such that?”’ is not the actual code [9], and for the Gaussian case the lattice code [12].

I. INTRODUCTION
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¥ Z to this model is impossible due to the fa&t’ is computed
! A\ X . fromY"” = X' + X7, where the component-wise “+” means
W @ = @W real addition rather than modulus addition. HeA¢e is not
Y 2 Yy, independent fromX{* and the condition in Theorem 1 is not
— /@ " fulfilled.
Untrusted ‘ é ! To solve this problem, we consider using a serial concate-
Relay x, T - nation of the wire-tap code and the AMD code. Lfebe the

stochastic encoding function of the wire-tap code. Thé&h
Fig. 1. The Gaussian two-hop link. Phase 1 is indicated byidmie, and - contains little information from the input to the wire-tapde
phase 2 by dashed line. R/E: Relay/Eavesdropper. For ther atotel, simply d hich in thi . d if
remove all noise and restrict signals to integers in theedfgB — 1]. enco .er, which in t IS Ca_-se IS an AMD co eW({[{j:U, h}’ I
the wire-tap code is designed according to [9]. R
Let the input to the decoder of the wire-tap code %g.
Il. SYSTEM MODEL Then in the case of the discrete adder model, it is given by

We consider a two-hop network with two-phase commu- X" = X" — X mod B 1)
nications as shown in Figure 1. Node wants to send a
confidential messag®/” to node2 via a relay node that is T on _ ) .
untrusted. In [7], we showed that by allowing nodeto m_alppeg tofn (XT1). Otherw[se, the ‘?'ec"der W_'” receive
transmit, a two-phase protocol can be developed to proviée (X7 — X3 mod B). The difference is hence given by
secrecy. In this protocol, during the first phase, both nddes f—l(X;I — X2 mod B) — f—l(X{l) (2)
and 2 transmit. We useX; to denote the signal transmitted
by nodei. In the Gaussian modek; is continuous and the
signal received by the relay is denotedWy= X + Xo+ Z,..
In phase two, the relay node transmks. Let Y5> denote the
signal received by nod2 during phase twoYs = X5 + Zg.
Z, and Zg are independent Gaussian random variables with ' /"™ !
zero mean and unit variance. For simplicity, we assume tH&? IS given by
each node has an average power consti@iand the channel FY(X — (X + X5) mod B) mod B) ()
gain of each link is unity.

The discrete adder model is very similar to the GaussiAlPte thatX;' is computed frond’ . (X{' + X3') mod B can
model. The differences are that no¥i, i — 1,2 and X, are also be computed froir,”. If Y™ is almost independent from

integers in the rang), B — 1], where B is an integer and the confidential message the_n (3) is glmost indeper_1dent from
B > 2: the noise terms are removed. Hence, we hEve- f7H(X7). One case wherg~! islinear is the Type Il wire-tap
X1+ Xz andYs = X,. channel.

C. Type Il Wire-tap Channel

I1l. REVIEW OF KNOWN RESULTS
In the Type Il wire-tap channel model [13], the main channel

A. AMD Code [10] is a noiseless binary channel and the eavesdropper channel i

Let the input to an AMD encoder be denoted bylt is a binary erasure channel with erasure probabtityt was
assumed that is a 1 x d vector. Each component of it isshown in [11] that the dual code of a “good” linear code can
taken from a finite fieldGF(¢™). The output of the encoderbe used to construct codes for the Type Il wire-tap channel as
is given by the tupld s, 2, h}, wherez is uniformly distributed follows.
over GF(¢™) and is independent from, andh is computed  Let H denote the parity check matrix of a linear block code
according to the hash rulé: = 242 + "¢ 5,27, wheres; C. Let the input to the encoder be and the output of the
is theith component of and the addition and multiplication encoder bex. Here each component &f, x, s is taken from
is defined ovelGF(¢™). h is usually called the “hash tag”. GF(2). The encoder is defined by— {x : Hx = s}, which
Suppose the nodereceivess’, «’, b/, wheres’ # s. Let A, = meansx is randomly chosen from the sgt : Hx = s} under
2’ —x. Ay, = h' — h. Then [10] has the following result: a uniform distribution. The decoder is simply:

Theorem 1. [10, Theorem 2] If the distribution of condi- 1
tioned on{A,, Ap,s’, s} is uniform over the fieldGF(¢™), F7 ) = Hx “)
g being a prime, and! + 2 is not divisible byg, then the  To find a goodH, [11] looks at the generation matrix

If the relay is honest, thecf({l should equalX7, which is

Note that (2) corresponds t4,, and f~1(X}") corresponds

to = in Theorem 1, and even though the adversary has little
information aboutf ~*(X7'), in general (2) isot independent
from f=1(X7P).

This problem can be alleviated jf~! is linear. In this case,

probability that the hash rule holds is bounded%}. of C. Let y be the output of the erasure channel. (&t be
o formed by the columns of? that corresponds to the erased
B. Limits of AMD Code positions. DefineF,, as a binary random variable such that

To motivate the next section, we briefly describe the diff, = 1 denote the event tha&k,. has full column rank. Then
ficulty in applying AMD code in our setting. Consider that was shown in [13] [11, Theorem 2] the following result
discrete adder model. It is immediate that a direct apptioat holds:
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Theorem 2: I(s;y|Fp =1)=0 1) It uses a maximum likelihood detector to determine
Remark 1: Note that this theorem holds even if the encoder ~ {—2+v/P1,0,2v/P1}.
only uses a subset of all possible input sequerices. 2) It transmits—/P1 if it detects—2v/P1 or 2¢/P1 . It
We next evaluate the probabilitr(Fy = 0). To make transmitsy/P1 if it detects0.

Pr(Fy = 0) small, [11] proposes to use the parity check matrix Node 2 uses a maximum likelihood detector to determine
Hy, of a good LDPC cod&’,, for binary erasure channel asyhether the relay transmitsv/21 or v/P1. Let the detection
G. It can be shown thalPr(Fy = 0) can be bounded via theresylt bew?. It then recovers the binary bit sent by node
decoding error probability’, of C;, asPr(Fy =0) < 2F.. 1 from I, (uY) @ I (ud). If the relay is honest and all

In [14, Theorem 6], a lower bound is provided on the errqfecoding operation is successful, it should eduét’). Their
exponent_% 10g2 Pe- By eValuat'ng [14, (43)], we flnd that dlﬁerence |S g|ven by

the expurgated regul@s, 4) LDPC code ensemble, whose rate

is 1/4, has a positive error exponent on average when the I (Uiv) oL (U{V @uév) (6)
channel erasure probability is’2. Hence there must exists a N . .
(3,4) LDPC code that the decoding error probability decreasBPt€ thatu,” is computed from the received signal by the

N i N N N
exponentially fast with code length. The correspondingawirrela‘y nodey; azgd the nqseZR. L (Q.‘l © uy ) can be
tap code has raté/4. Let L be the length of the wire-tap computed fromY,¥ as well if the detection operation at the

code. TherPr(F, = 0) can be bounded as: relay is sucggssful. With the repetit_ion code, the detactio
error probability decreases exponentially fast with As we
Pr(Fp =0) < exp(—La) (5) have shown in Section IlI-C, with high probability," is

independent from the confidential mess&geh} conveyed
by the linear wire-tap code. Hence, with high probability (6
D. Smulating a Binary Erasure Channel is independent fron{x, h}.

In order to leverage the linear wire-tap code from Section
[1I-C, we have to simulate a binary erasure channel in bath th
adder model and the Gaussian model. In the adder model, thighe overall achievability scheme can then be summarized
could be done simply by restricting the transmitted sigoal &s follows: A string of confidential messagess first encoded
be binary. Doing so leads to a significant rate loss. Howevéo an AMD code tuple(s, z, h}, which is transmitted in two
since only{z, h} needs to be transmitted in this fashion, astages:
we will see later, the overall rate loss is negligible. 1) During the first stage{x,h} is transmitted using the

In the Gaussian model, we use evely channel use to linear wire-tap code in Section IlI-C via the simulated
simulatel channel use in a binary erasure channel via a simple  Type Il wire-tap channel described in Section III-D.
repetition code. Note that this leads to the loss of coding ga The transmission is done via the two phase protocol
and to an arbitrarily small rate. However, since we only use  described in Section II.
this scheme to transmitz, 2}, which also has an arbitrarily  2) During the second stages is transmitted using a
small rate, the overall rate loss will be shown to be small as  randomly generated wire-tap code and the two phase
well in the sequel. protocol described in Section II. This wire-tap code from

The relaying and the signaling scheme under the repetition  [9] is nonlinear but offers a higher rate.
code is described as following: Lat denote am-bit vector
of ones. Let0 denote am-bit vector of zeros. Nodé sends  yenqe the achievabiirong secrecy rate for these two models
VP1 as1 and—/P1 as0. JI\>lode2 sendsv'P1 or —VP1  ypen the relay is honest. For the discrete adder model, it can
with gqual_probab|llty. Letu;' be the signal trgnsmltted BY shown thatR. = H(X;) — I(X1; X; + X») which equals
nodei. Define® over{—\/I_D_l,\/]_Dl} so that this set forms ( 5" \vhen B — 2 and is lower bounded byog, B — 0.8
a modulus2 groupG(2). Definel,; as the isomorphism from i, “general. For the Gaussian model, it can be shown that

{vP1,-VP1}to G(2)'_ , , combining lattice code [12] and the wiretap code from [9],
The relay node receives receive$ + uj’ + Z, which , ~[Llogy(t +P)—1]7.1

i / / e — |3 3 .

'é a vt_actor f_rom ,\tlhe SE(_2h' P.l’O’d2 PE} dcorrupted by Remark 2: The reason for using lattice codes in the Gaus-
aussian noise. Note that this is a degraded versianfof- sian model is in effect to avoid the continuous channel astpu

ud’. Hence if a wire-tap code supports the notion of secrecy ASthe Gaussian case. This is needed in order to apply the

in Theorem 2, the same result holds here as well due to d.?é@ult of [9]. Also note that we can not use the approach in

proces;mg meqqallty.hThlsdmeans that, WE can djsglgn thﬁ WI[15] to achieve strong secrecy as [15] requires transrgitiin
tap code assuming the adversary receiugls+ vy’ instead. negligible amount of random bits via authenticated public

N N " o

l(;l_o:gbthtz_:\t i uflth+ Uz _I ?’ then_t:hs é:ondlgqn?L probability channel for privacy amplification. In our case, all bits mist
istribution ot Ihe sighal transmitied by nodes the Same as .4 smitted via the relay, which isot authenticated.[]

this distribution without the conditioning. Hence arasure

has occurred. ) ) 1Due to the half duplex constraints, rates should be mutiphy the time
The relay scheme is composed of the following two stepsharing factorl /2.

for some positiverr > 0.

IV. MAIN RESULTS

Let the overall number of channel uses bg. Let R,
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Theorem 3: For the discrete adder channel in Section Ikerm in (10) is upper bounded by Pr (F' = 0). For the first
for a rate smaller but arbitrarily close ., there existsy; > term, we have:
0,7 = 1,2 such that

1) When the relay is honest, data can be reliably transmitted I(z;Ap, Ay, s, 8'|F =1) (11)

(

at this rate with the mutual information between the =I(z;An, Ay, S'|F =1,8)+I(z;s|F=1) (12)
adversary’'s knowledge and the confidential message =I(z;An, Ay, 8'|F =1,5) (13)
decreases at the rate Ofexp(—a;1 N7)). <1 ), A SIF=1,5) (14)

2) The probability that a counterfeit message is accepted v Yy m e, s |F =15
by node2 decreases at the rate 6exp(—aaNr)) =I(z;Y, (1),s'|F =1,s) (15)
Theorem 4: For the Gaussian model in Section I, for a rate <I(a3Yr(1),Y2(2), X2 (2),8'[F =1,5) (16)
smaller but arbitrarily close tdi.: Then there existsy; > =I(z;Y, (1),Y2(2),X2(2)|F =1,5) (17)

0,7 = 3,4,5 such that
1) When the relay is honest, data can be transmitted (3P) is because based on (3) and (6), we observe that,
the rate such that the mutual information between ttf@nditioning onF" = 1, {A;, A} can be computed from
adversary’s knowledge and the confidential messade(1) by the relay. (17) is due to the fast can be computed
decreases at the rate 6Kexp(— a3N1/2)) The error from Y3(2), X»(2) by node2. It can then be shown that (17)
probability decreases at the speedfxp(— a4N1/2) equals0. For details, the reader is referred to [16]. [ |
2) When the relay is not honest, the probability that & the foIIowmg we use “HRH” for “hash rule holds” when

counterfeit message is accepted by n@d#ecreases at for s # &', a%T2 + Zl st = 2y Zl L 82"+ Ap.
the rate ofO(exp(—as N 1/2 )). This means the messagez’, i’ will be accepted by node.

Hence the probability that the adversary wins is given by:
V. PROOFS OF THEMAIN RESULTS

) o Pr (A wins)
The following notation is usedX;(j),i = 1,2,X,(j) Pr(HRH|z, Ap, Ay, 5, 8)
denote the signals transmitted by ndde and the relay during = 2= p,. (| An, m,S:s')i)r,(Ah,Am,s,s') (18)
the jth stage,j = 1, 2. Similarly, Y;(j),i = 1,2, Y,(j) denote 2;‘;_’5,

the signals recelved during thi¢h stage.
Note that in order to use AMD code, as shown in TheDefine@ as the term (18) wittPr (z|Ap, A,, s,s’) replaced

orem 1, we need to prove is almost independent fromby Pr(x). Then we have

{An, A, s,s'}. Define F as a binary random variable such | emma 2:

that F/ = 1 indicates that (1) the relay node can decode the

binary modulus sum of the signals transmitted by nbdad | Pr (A wins) — Q (A wins) | < \/(21][1 2)m Pr(F = 0)

2 during stage one and (2) the binary linear wire-tap code (19)

does not leak information. Then for the discrete adder model

Pr(F = 0) is bounded by (5), since the channel is noiseless.

For the Gaussian model, let denote the error exponent of

Proof: The right hand side of (19) is bounded by:

the detection operation. Thdh(F = 0) can be bounded as: | Pr (2 An, Ay, 5, 8) Pr ()
Z ( hy Bxy 9, ; ) (20)
Pr(F =0) < Lexp(—N~) + exp(—La) @) e —Pr(z)Pr(Ap, Ay, s, 8) |
Ap,s,s’

where L is the length of the binary wiretap code described
in Section IlI-C. The first term in (7) is the union bound orThen we use Pinsker’s inequality:
the probability that any detection operation at the relay or

node 2 is not successful. The second term comes from the I(A; B)
imperfectness of the linear wire-tap code. For both models, 7 2In

we have the following lemma: where D(p(z), a(x)) = 3=, [p(x) — a()|. Let A be . Let B

Lemma 1: I (z;An,AL,s,8) <mPr(F =0) ; .
Proof Outline: be Ap, A,,s,s. Then, applying Lemma 1 leads to Lemma 2.

D*(p(A,B).p(A)p(B))  (21)

[ |
I(x; AR, Ay, 8,8) <I(x;AR, AL, 8,8, F) (8) From Theorem 1() (A wins) is bounded by%. Hence,
=I(z; Ay, 5,5'|F) 9) using Lemma 2, we have
=Pr(F=1)I(x;An,A,,s,8|F=1) +1

d
ins) < A1 =
FPr(F = 0) 1 (33 A, Ay, 5. 5'|F = 0) (10) Pr (A wins) om ++/(2In2)mPr(F =0) (22)

(9) is due to the fact that" is solely determined byX»(1) To prove Theorem 3 and Theorem 4, it remains to apply
and the structure of the code. Henlie;, F') = 0. The second (22) to the two models we considered, as will be done next.
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A. The Discrete Adder Model (Theorem 3) Whend/N and Ny, is sufficiently large R,,erqi; CaN be made
For the adder model, (22) is given by arbitrarily close toR.. If we fix d/N and letk = d/N, then
di1 the total number of channel uses is givenhyw (8 + Ri)

Pr (A wins) < Tom + Vmexp(—Ld/) (23) Let m = N. Then Ny ~ O(m?). It can be verified by
checking (28) thafPr (A wins) decreases exponentially fast
Now choose the length of information bits in the linear wir with res_pect t(m' It_remalns o check the secrecy constraints:
tap code as the length of and h. This meansL/4 = 2m. “The L' in (24) s given by N2 /N1, = kg,}jé(NLRé)‘ Hence
The number of channel uses needed to transnit slightly 7 (s; Y, (1),Y,(2)) = me ™ + ¢ ~.E. Hence if we
larger than‘j%—m, where R, is defined in Section IV. Hence choose N;, = m, then it decreases exponentially fast with
the total number of channel uses needed to tranémit, h} respect tom. The decoding error probability of the wire-
bits is given by’8m + ‘f%—m. This means the overall transmissioriap code used to transmitdecreases exponentially fast with
rate converges td/ (8 i d/R.), which can be made arbitrarily respect toO(dm/(NLR.)) = O(m).
close toR. by makingd sufficiently large.

For a given rate and hence fixet] the total number of
channel uses is proportional to. From (23), we see that the In this work, we have considered a source-destination pair
probability that the adversary wins decreases exponbnfeest that communicates via a relay node. The relay node is an

where o/ is chosen to be within the range < o/ < «/2.

VI. CONCLUSION

with the total number of channel uses. eavesdropper and a Byzantine attacker. For the adder model,
Finally, we check the secrecy constraint. The wire-tap cot¢¢ showed that the probability that the adversary wins de-
from [9] offers the following strong notion of secrecy: creases exponentially fast with respect to the total nurober
channel used/r. For the Gaussian two-hop model, we showed
I(s;Yr(2)) < exp(—pL) (24) that that the probability that the adversary wins decreases

whereL’ = md/R, is the length of the wire-tap code. Hence&Xponentially fast with respect tg’Nr. For both models, the
loss in rate due to Byzantine detection is arbitrarily small
(Y, (1),Y,(2) < I(s,2,hY.(1),Y:(2)) (25)
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