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Abstract—We consider a source-destination pair that can
communicate only through a chain of unauthenticated inter-
mediate relay nodes over AWGN links. In this scenario, it is
desirable to use these relays—as otherwise communicating with
the destination is impossible—without the relays being able to
decode the information flowing through them. This in turn is
tantamount to treating the relays as eavesdroppers from whom
the information needs to be kept secret. An important question
then becomes that of identifying the limits of reliable and secure
communication in this network in the information theoretic sense.
In particular, we ask whether it is possible to achieve a non-
vanishing perfect secrecy rate regardless of the number of hops.
In this work, we find that the answer is yes and show that
a constant secrecy rate for an arbitrary number of hops is
achievable by employing the combination of a lattice code and a
random code.

I. INTRODUCTION

Information theory provides security on the link level [1].
This means a message can be transmitted reliably from a
transmitter to a receiver while an eavesdropper is kept unaware
of its content. Most known results on information theoretic se-
crecy focus on “small” networks, which includes the multiple
access channel, the broadcast channel, the three node relay
channel, and the two user interference channel, e.g., [2], [3],
[4]. In this work, in contrast, we consider a scenario where
the information has to be transmitted over multiple links and
an end-to-end security guarantee is desired.

End-to-end security for larger networks with multiple hops
has only been addressed in the context of network coding
[5]: A potential eavesdropper has access to any one edge
of a network and a secure network code design was given
therein to keep the eavesdropper oblivious when the network
is acyclic. However, a fundamental difference exists between
the computer network considered in [5] and the wireless
network of interest to us. The latter has interference, owing
to the broadcast nature of the wireless medium, which can be
exploited to enhance security via enlisting the help of friendly
nodes, i.e., cooperative jamming [3]. The mechanism of this
enhancement is also different from the arithmetic method in
[5]. Interference is an addition of real numbers, while the
addition in [5] is a modulus addition carried out over a finite
group. The latter can perfectly protect the information, as the
sum of two independent random variables from a finite group
is independent from any one of them. The former cannot.

In this work, we design a coding scheme which pro-
vides an end-to-end security guarantee for multi-hop wireless
communication. A message is transmitted from the source
to the destination over multiple untrusted relays. Since the
eavesdropper(s) may reside at any or all of the relays, we
require that none of the relay nodes should have any idea of
what it is relaying.

A two hop communication system of this nature was consid-
ered in [6] in which the relay did compress-and-forward and
a positive secrecy rate was achieved via cooperative jamming.
However, extending the compress-and-forward coding scheme
in [6] to a potentially large number of hops is impractical,
since, after each hop, the noise level in the signal increases
because the relay can not decode the message and therefore
can not completely remove the channel noise. Thus, the main
question becomes: Is it possible to achieve a non-vanishing
secrecy rate regardless of the number of hops?

Interestingly, in this work, we show that the answer is yes.
We provide a coding scheme which is a combination of ran-
dom wiretap code [1] and a nested lattice code [7]. Nested lat-
tice codes were shown in [7] to achieve the capacity of AWGN
channel and then used in [8] to construct a scheme which
is asymptotically optimal at high SNR for a bi-directional
relay network. Lattice codes for secure communication was
considered in [9] for a Modulus-Λ wiretap channel, which is a
channel that is more of theoretical interest. On the other hand,
the use/benefit of lattice codes in secure communication in
Gaussian channels has not been considered. The result of this
paper provides the first such use as well as an analytical tool
for accomplishing this. The key ingredient is the observation
that the modulus operation looses at most 1 bit per channel
use under certain conditions.

The analytical tool is presented as Theorem 1 in Section II.
It is then used to replace the real sum with a modulus sum
with the introduction of genie information with limited rate in
Section V. This enables us to lower bound the equivocation
using a technique similar to the genie bound from [10] and
compute the secrecy rate. The system model is described in
Section III. Section IV details the signaling schedule and the
coding scheme used to obtain the achievable secrecy rate that
is quantified (lower bounded) in Section V. Section VI presents
the conclusion of this work.

The following notation is used throughout this paper: H
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denotes the entropy, and εk is used to denote any variable that
goes to 0 when n goes to ∞. We define C(x) = 1

2 log2(1+x).
�a� denotes the largest integer less than or equal to a. Finally,
we note that, due to space limitation, we omit proofs of the
lemmas and refer the reader to [11].

II. PRELIMINARIES

In this section we summarize some results about the lattice
code which will be useful later.

Let Λ denote a lattice in RN and V denote its fundamental
region [7]. Let tA and tB be two numbers taken from V . For
any set A, define 2A as 2A = {2x : x ∈ A}. Then we have
the following lemma:
Lemma 1:

{tA + tB : tA, tB ∈ V} = 2V (1)

Define Ax as Ax = {tA + tB + x, tA, tB ∈ V}. Then from
the lemma above, we have Ax = x + 2V .
Theorem 1: There is a bijection between tA + tB and the

tuple {T, tA + tB mod Λ}, where T is a discrete variable
taking value from 1 to 2N .
Remark 1: Theorem 1 says modulus operation looses at

most one bit per dimension of information if tA, tB ∈ V .
Proof: By definition of the modulus Λ operation, we have

tA + tB mod Λ = tA + tB + x, x ∈ Λ (2)

The lemma is equivalent to finding the number of possible x

meeting equation (2) for a given tA + tB mod Λ.
To do that, we need to know a little more about the structure

of lattice Λ. Every point in a lattice, by definition, can be
represented by the following form [12]:

x =

N∑

i=1

aivi, vi ∈ RN , ai ∈ Z (3)

Here {ai} is said to be the coordinates of the lattice point x

under the basis {vi}.
Based on this representation, we can define the following

relationship: Consider two points x, y ∈ Λ, with coordinates
{ai} and {bi} respectively. Then we say x ∼ y if ai =
bi mod 2, i = 1...N . It is easy to see the relationship ∼ is
an equivalence relationship. Therefore, it defines a partition
over Λ.

1) Depending on the values of ai− bi mod 2, there are 2N

sets in this partition.
2) The sub-lattice 2Λ is one set in the partition, whose

members have even coordinates. The remaining 2N − 1
sets are its cosets.

Let Ci denote any one of these cosets or 2Λ. Then Ci can
expressed as Ci = 2Λ + yi, yi ∈ Λ. It is easy to verify that
Ax = x+2V , x ∈ Ci is a partition of 2RN +yi, which equals
RN .

We proceed to use the two partitions derived above: Since
Ci, i = 1...2N is a partition of Λ, (2) can be solved by
considering the following 2N equations:

tA + tB mod Λ = tA + tB + x, x ∈ Ci (4)

From Lemma 1, this means tA + tB mod Λ ∈ x + 2V for
some x ∈ Ci. Since x+2V , x ∈ Ci is a partition of RN , there
is at most one x ∈ Ci that meets this requirement. This implies
for a given tA+tB mod Λ, and a given coset Ci, (4) only has
one solution for x. Since there are 2N such equations, (2) has
at most 2N solutions. Hence each tA +tB mod Λ corresponds
to at most 2N points of tA + tB .

The following crypto lemma [9] is well known and is
provided here for completeness.
Lemma 2: Let tA, tB be two independent random variables

distributed over the a compact abelian group, tB has a uniform
distribution, then tA + tB is independent from tA. Here + is
the addition over the group.

III. SYSTEM MODEL

The system model is shown in Figure 1 for the three-hop
case. The source, node 0, has to communicate over multiple
hops to reach the destination, node 4. We assume nodes can
not receive and transmit signals simultaneously, and thus we
use half-duplex. As shown in Figure 1, we assume every
node can only communicate to its two neighbors, one on
each side. Let Yi and Xi be the received and transmitted
signal of the ith node respectively. Then they are related as
Yi = Xi−1 + Xi+1 + Zi, where Zi are zero mean Gaussian
random variables with unit variance. We assume link noises are
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Fig. 1. A Multi-hop Link with 3 Relays

independent from each other. Each node has the same average
power constraint: 1

n

∑n

k=1 E
[
Xi(k)2

]
≤ P̄ and the channel

gains are normalized for simplicity.
We consider the case where there is an eavesdropper re-

siding at each relay node and these eavesdroppers are not
cooperating. This also addresses the scenario where there is
one eavesdropper, but the eavesdropper may appear at any one
relay node that is unknown a priori. In either case, we need
secrecy from all relays and the secrecy constraints for the K

relay nodes are expressed as:

lim
n→∞

1

n
H (W |Y n

i ) = lim
n→∞

1

n
H (W ) , i = 1...K (5)

IV. SIGNALING SCHEME OF THE SOURCE, THE RELAYS,
AND THE DESTINATION

Because all nodes are half duplex, a schedule is necessary
to control when a node should talk. The node schedule is
best represented by the acyclic directional graph as shown in
Figure 2. The columns in Figure 2 indicate the nodes and the
rows in Figure 2 indicate the phases. The length of a phase
is the number of channel uses required to transmit a lattice
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point, which equals the dimension of the lattice. A node in
a row has an outgoing edge if it transmits during a phase.
The node in that row has an incoming edge if it can hear
signals during the previous phase. It is understood, though not
shown in the figure, that the signal received by the node is a
superposition of the signals over all incoming edges corrupted
by the additive Gaussian noise.

A number of consecutive phases is called one block, as
shown in Figure 2. The boundary of a block is shown by the
dotted line in Figure 2. The data transmission is carried over
M blocks.
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Fig. 2. One Block of Channel Uses

The nested lattice code from [8] is then used within each
block. Let (Λ, Λ1) be a properly designed nested lattice
structure in RN as described in [7], where Λ1 is the coarse
sub-lattice of the fine lattice Λ. Let V1 and V be their respective
fundamental regions. Let a ⊕ b denotes (a + b) mod Λ1.

A. The Source Node

The input to the channel by the source has the form
tN ⊕ JN ⊕ dN . Here dN is the dithering noise which is
uniformly distributed over V1. tN and JN are determined as
follows: If it is the first time the source node transmits during
this block, tN is the origin. JN is picked from the lattice
points in Λ∩V1 under a uniform distribution. Otherwise, tN is

picked by the encoder. JN is the lattice point decoded from the
jamming signal the source received during the previous phase.
This design is not essential but it brings some uniformness in
the form of received signals and simplifies explanation.

B. The Relay Node

As this signal propagates toward the destination, each relay
node sends a jamming signal in the form of tNk + dN

k mod
Λ, k = 2...K − 1, where K is the number of nodes. Subscript
k denotes the node index which transmit this signal. If this is
the first time the relay transmits during this block, then tNk is
drawn from a uniform distribution over Λ∩V1, and all previous
received signals are ignored. Otherwise, tNk is computed from
the signal it received during the previous phase. This will
be clarified in the sequel. dN

k again is the dithering noise
uniformly distributed over V1.

The signal received by the relay within a block can be
categorized into the following three cases. Let zN denote the
Gaussian channel noise.

1) If this is the first time the relay receives signals during
this block, then it has the form (tNA ⊕ dN

A )+ zN . It only
contains interference from its left neighbor.

2) If this is the last time the relay receives signals during
this block, then it has the form (tNB ⊕ dN

B )+ zN . It only
contains interference from its right neighbor.

3) Otherwise it has the form

yN
k = (tNA ⊕ dN

A ) + (tNB ⊕ dN
B ) + zN

Here tNA , tNB are lattice points, and dN
A , dN

B represent the dither-
ing noise. Following reference [8], if the lattice is properly
designed and the cardinality of the set Λ ∩ V1 is properly
chosen, then for case (3), the relay, with the knowledge of
dN

A , dN
B , will be able to decode tNA ⊕ tNB . For case (1) and

(2), the relay will be able to decode tNA and tNB respectively.
Otherwise, we say that a decoding error has occurred at the
relay node.

The transmitted signal at the relay node is then computed
as follows:

xN = tNA ⊕ tNB ⊕ (−x′N ) ⊕ dN
C (6)

Here x′N is the lattice point contained in the jamming signal
transmitted by this relay node during the previous phase. − is
the inverse operation defined over the group V1 ∩Λ. tNA ⊕ tNB
are decoded from the signal it received during the previous
phase.

In Figure 2, we labeled the lattice points transmitted over
some edges. For clarity we omitted the superscript N . The +
signs in the figure are all modulus operations. The reason why
we have (−x′N ) in (6) is now apparent: it leads to a simple
expression for the signal as it propagates from the relay to the
destination.

C. The Destination

As shown in Figure 2, the destination simulates the behavior
of a relay node when it computes its jamming signal. Doing
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so ensures the signal received by any relay node has a uniform
form.

It is also clear from Figure 2 that the destination will be able
to decode the data from the source. This is because the lattice
point contained in the signal received by the destination has
the form tN ⊕JN , where tN is the lattice point determined by
the transmitted data, and JN is the lattice point in the jamming
signal known by the destination.

V. A LOWER BOUND TO THE SECRECY RATE

Suppose the source transmits Q + 1 times within a block.
Then each relay node receives Q + 2 batches of signals
within the block. An example with Q = 2 is shown in
Figure 2. Given the inputs from the source of current block,
the signals received by the relay node are independent from
the signals it received during any other blocks. Therefore,
if a block of channel uses is viewed as one mega-channel
use, with the source inputs as the channel input, the signals
received by the relay as the channel output, then the effective
channel is memoryless. Any relay node has the following side

The relay node
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Fig. 3. Notations for Lattice Points contained in Signals, Q = 2

information regarding the source inputs within one block:

1) Q + 2 batches of received signals.
2) All the dithering noises d.
3) Signals transmitted from the relay node during this

block. Only the first batch of signals it transmitted
may provide more information because all subsequent
transmitted signals are computed from received signals
and dithering noises.

Let W be the secret message transmitted over M blocks.
Following the notation in Figure 3, the equivocation with

respect to the relay node is given by:

H2 =
1

NM
H(W |(xNM

A1 ⊕ dNM
α1 ) + zNM

1 , dNM
α1

(xNM
Ai ⊕ dNM

αi ) + (tNM
D(i−1) ⊕ dNM

β(i−1)) + zNM
i ,

dNM
αi , dNM

β(i−1), i = 2...Q + 1

(tNM
D(Q+1) ⊕ dNM

β(Q+1)) + zNM
Q+1, d

NM
β(Q+1), t

NM
B1 , dNM

b1 ) (7)

Let the equivocation under error free decoding be

H̄2 =
1

NM
H(W |(xNM

A1 ⊕ dNM
α1 ) + zNM

1 , dNM
α1

(x̄NM
Ai ⊕ dNM

αi ) + (t̄NM
D(i−1) ⊕ dNM

β(i−1)) + zNM
i ,

dNM
αi , dNM

β(i−1), i = 2...Q + 1

(t̄NM
D(Q+1) ⊕ dNM

β(Q+1)) + zNM
Q+1, d

NM
β(Q+1), t

NM
B1 , dNM

b1 ) (8)

where x̄NM
Ai equals the value xNM

Ai takes when all decodings
are correct. t̄NM

D(i−1) and t̄NM
D(Q+1) are defined in a similar

fashion. Then we have the following lemma:
Lemma 3: For a given Q, H̄2 + ε2 ≥ H2 ≥ H̄2 − ε1 where

ε1,2 → 0 as N, M → ∞.
Lemma 3 says if a equivocation value is achievable with

regard to one relay node, when all the other relay nodes do
ideal error free decode and forward, then the same equivoca-
tion value is achievable when other relay nodes do decode and
forward which is only error free in asymptotic sense.
Lemma 4: H̄2 is the same for any relay node.

Lemma 4 can be verified on Figure 2. Given the source node
input, the joint distribution of the side information for any
relay node is the same. As mentioned earlier, due to the space
limit, we omit the proof of Lemma 3 and 4 which can be
found in [11].
Theorem 2: For any ε > 0, a secrecy rate of at least

0.5(C(2P̄ − 0.5) − 1) − ε bits per channel use is achievable
regardless of the number of hops.

Proof: According to Lemma 4, we only need to design
the coding scheme based on one relay node. We focus on one
block of channel uses as shown in Figure 2. Let V (j) to denote
all the side information available to the relay node within the
jth block. We start by lower bounding H(tNQ

0 |V (j)) under
ideal error free decoding, where t

NQ
0 are the lattice points

picked by the encoder at the source node as described in
Section IV-A within this block. H(tNQ

0 |V (j)) equals

H(tNQ
0 |(x̄N

Ai ⊕ dN
αi) + (t̄ND(i−1) ⊕ dN

β(i−1)) + zN
i ,

dN
αi, d

N
β(i−1), i = 2...Q + 1, tNB1, d

N
b1) (9)

Comparing (9) with the condition terms in (8), we see that we
have removed the first batch and the last batch of received
signals during a block from the condition terms because
they are independent from everything else. The last batch of
received signals contains the lattice point of the most recent
jamming signal observable by the relay node. Its independence
follows from Lemma 2.

We then assume that the eavesdropper residing at the relay
node knows the channel noise. This means (9) can be lower
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bounded by:

H(tNQ
0 |(x̄N

Ai ⊕ dN
αi) + (t̄ND(i−1) ⊕ dN

β(i−1)),

dN
αi, d

N
β(i−1), i = 2...Q + 1, tNB1, d

N
b1) (10)

Next, we invoke Theorem 1 as described in Section II.
Equation (10) can be lower bounded by:

H(tNQ
0 |x̄N

Ai ⊕ dN
αi ⊕ t̄ND(i−1) ⊕ dN

β(i−1), Ti,

dN
αi, d

N
β(i−1), i = 2...Q + 1, tNB1, d

N
b1) (11)

where, according to Theorem 1, Ti can be represented with
N bits. We then apply the following genie lower bound to
equation (11):

H(A|B, T ) = H (A|B) + H (T |B, A) − H (T |B) (12)
≥ H (A|B) − H (T ) (13)

and find that (11) is lower bounded by:

H(tNQ
0 |x̄N

Ai ⊕ dN
αi ⊕ t̄ND(i−1) ⊕ dN

β(i−1),

dN
αi, d

N
β(i−1),i=2...Q+1 , tNB1, d

N
b1) − H(Ti,i=2...Q+1 ) (14)

=H(tNQ
0 |x̄N

Ai ⊕ t̄ND(i−1),i=2...Q+1 , tNB1) − H(Ti,i=2...Q+1 )

(15)
It turns out that in the first term in (15), the conditional
variables are all independent from t

NQ
0 . This is because

t̄N
D(i−1) contains JN

i−2+k , which is a new lattice point not
contained in previous t̄ND(j−1) or x̄N

Aj j < i. The new lattice
point is uniformly distributed over V1 ∩ Λ. Therefore, from
Lemma 2, x̄N

Ai ⊕ t̄N
D(i−1) is independent from t

NQ
0 . Therefore

(15) equals

H(tNQ
0 ) − H(Ti,i=2...Q+1 ) (16)

Define c = 1
NQ

I(tNQ
0 ; V (j)). Then from (16), we have c ∈

(0, 1).
To achieve perfect secrecy, we next construct a codebook of

rate R and size 2�MNQR� that spans over M blocks as follows:
Each codeword is a length MQ sequence. Each component of
the sequence is an N -dimensional lattice point sampled in an
i.i.d fashion from the uniform distribution over V1 ∩ Λ. The
codebook is then randomly binned into several bins. Each bin
contains 2�MNQc� codewords. Denote the codebook with C.

The transmitted codeword is determined as follows: Con-
sider a message set {W}, whose size equals the number of
the bins. The message is mapped to the bins in a one-to-one
fashion. The actual transmitted codeword is then selected from
the bin according to a uniform distribution. Let this codeword
be uMNQ. Let V = {V (j), j = 1...M}. Then we have:

H (W |V, C) (17)
=H

(
W |uMNQ, V, C

)
+ H

(
uMNQ|V, C

)

− H
(
uMNQ|W, V, C

)
(18)

≥H
(
uMNQ|V, C

)
− MNQε (19)

=H
(
uMNQ|C

)
− I

(
uMNQ; V |C

)
− MNQε (20)

≥H
(
uMNQ|C

)
−

M∑

j=1

I
(
uMNQ(j); V (j)

)
− MNQε (21)

=H
(
uMNQ|C

)
− MNQc− MNQε (22)

(19) follows from Fano’s inequality and the size of the bin
is picked according to the rate of information leaked to the
eavesdropper under the same input distribution used to sample
the codebook. (21) follows from C → uMNQ → V being
a Markov chain. Divide (17) and (22) by MNQ and let
M → ∞, we have ε → 0 and limM→∞

1
MNQ

H(W |V, C) =

limM→∞
1

MNQ
H(W ). Therefore a secrecy rate of R − c

bits per channel use is achieved. According to [8], R can be
arbitrarily close to C(P − 0.5) by making N → ∞, where
P is the average power per channel use spent to transmit a
lattice point. For a given node, during 2Q + 3 phases, it is
active in Q + 1 phases. Since c ∈ [0, 1], a secrecy rate of
Q+1
2Q+3 (C(2Q+3

Q+1 P̄ − 0.5) − 1) is then achievable by letting
M → ∞. Taking the limit Q → ∞, we have the theorem.

VI. CONCLUSION

In this work, we have considered a source destination pair
which can only communicate over a chain of untrusted relay
nodes, and showed that, surprisingly, perfectly secure end-
to-end communication in the sense of information theoretic
security is possible via an intelligent combination of wire-tap
and structured codes. Specifically, we have designed a coding
scheme which supports a non-vanishing secrecy rate regardless
of the number of hops.
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