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Abstract—A wireless network of N transmitting and M re-
ceiving nodes is considered, where the goal is to communicate
data from transmitters to the receiving side of the network.
Nodes have energy suppliers that provide energy at a price for
transmission or reception. Nodes wish to optimize their individual
utilities rather than a network-wide utility. We consider one-to-
one and one-to-many matching games where each transmitter
can be matched with one or multiple receivers. In both cases,
transmitters find the best rate for them and propose it to
the receivers. We modify the well-known Deferred Acceptance
Algorithm to solve this game and improve network sum utility.
We next consider wireless energy cooperation for the transmitters

to make their proposals more desirable and compete with each
other. Energy transfer introduces an additional energy cost at the
transmitter and reduces the cost of the receiver and influences its
decision. For the one-to-many matching games, we demonstrate
that the available proposals at each transmitter can be reduced
without loss of optimality. The results point to the observation
that populating the network with additional nodes along with the
possibility of energy transfer improves the rates for the entire
network despite the selfish nature of the nodes.

Index Terms—Energy transfer, matching games, ad hoc net-
works, Vickrey auction, max-min fairness.

I. INTRODUCTION

PRACTICAL wireless networking scenarios often call for

cooperation between pairs of nodes. Cloud radio access

networks are one example where a base station can send its

data to a cloud for computing [2] . Among others are sensor

networks [3] where the sensors can pair up with relays for the

delivery of their measurements, and vehicular networks [4]

where the transmitter-receiver pairs may change during the

communication session due to the dynamic network topology.

Previous work on pair-wise cooperation in wireless networks

has mostly assumed altruistic behavior for all nodes in the

network, where the nodes are assumed to obey the instructions

of a network operator to improve a network wide utility. It

remains interesting to study how to network selfish wireless

nodes that would rather improve their individual utilities than
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work together for the sake of the entire network, as they would

be willing to cooperate with each other only if said cooperation

improves both parties’ utilities. The framework of matching

games is an appropriate tool to study such scenarios and its

application on wireless ad hoc networks with one-to-one and

one-to-many matchings will be the focus of this paper.

Matching games are a suitable model for communities of

individuals with conflicting interests that may be willing to

cooperate in pairs for mutual benefit [5], [6]. The seminal work

in matching theory [5] addresses the problem of matching

an equal number of men and women. Each individual in one

group has different preferences for the members of the other

group. The authors in [5] propose the now well-known De-

ferred Acceptance Algorithm (DAA) where the men propose

to the women in the order determined by their preferences.

In this algorithm, each woman chooses the best proposal she

has received at each stage, but defers the acceptance of this

proposal until she has seen all of her available options. The

matches found by the algorithm are stable and optimal for the

proposers. The algorithm is also extended to college admission

games which are games between colleges and students where

each college can be matched to several students in [5]. The

stability and optimality results are shown to extend as well.

Matching games have previously been employed for re-

source allocation in wireless networks [7]–[17]. Reference [7]

studies one-to-one and many-to-one matchings for resource

allocation in wireless networks and shows that the throughput

maximizing matchings are not always stable. Reference [8]

considers matching games between primary and secondary

users in a cognitive radio network for spectrum allocation,

and proposes a distributed algorithm that can identify a stable

matching. Reference [9] also considers matching games for

cognitive radio networks. Reference [10] studies a many-to-

many matching game between the base stations and service

providers in a small cell network, and proposes an algorithm

that finds a matching that is pairwise stable. Reference [11]

investigates the advantages of matching based modeling for

networking problems over optimization and game theory.

Reference [12] studies a matching game between the users

and base stations in a small cell network and finds a matching

which balances the traffic among cells and satisfies the quality

of service requirements of the users. For an overview on the

application of matching theory on future wireless networks,

see [13].

Energy cooperation has been proposed as a way of improv-

ing energy efficiency of wireless networks by means of transfer

of energy from energy rich nodes to energy deficient nodes

[18]–[27]. References [18], [19] have studied the sum through-
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put maximization problem for energy harvesting multi terminal

networks with energy transfer. Reference [20] has proposed

energy transfer over radio frequencies (RF) performed simul-

taneously with the transfer of data. RF energy harvesting has

been considered in a number of models including the work

in cognitive radio networks [21] which has studied cognitive

radio networks with primary users whose radio transmission

can be used as a source of energy by the secondary users, and

in non-cooperative or leader-follower game theoretic settings

[22] where we have modeled cooperation between selfish

nodes as noncooperative games and Stackelberg games.

While majority of work on energy management in wireless

networks has been for transmission energy, the receivers’

processing costs have recently gained attention [28]–[33].

Reference [28] has studied an energy harvesting network with

sampling and decoding costs at the receiver and shown that

when the battery at the receiver is the bottleneck of the system,

it is optimal for the receiver to sample data packets at every

opportunity and decode them only to avoid battery overflows.

Reference [29] has proposed a framework for utility maximiza-

tion in wireless networks with energy harvesting transmitters

and receivers. Reference [30] has studied decoding costs at the

receivers in energy harvesting networks with energy harvesting

receivers. Reference [30] has considered a decoding cost that

is convex in the rate and in particular, an exponential cost

model as we will in the sequel.

Different from these aforementioned references which con-

sider optimum energy allocation, in given static network

topologies, this paper introduces a methodology for network

formation. In particular, we consider ad hoc network formation

where the nodes are (i) capable of energy cooperation, (ii)

selfish in the sense that they wish to maximize their individual

utilities, and (iii) willing to cooperate in pairs as long as it

improves their utilities.

We utilize the framework of matching games [5] with

both one-to-one and one-to-many matchings. In particular, we

consider a wireless ad hoc network of N transmitters and

M receivers. We consider that the expenditure of energy at

each node, whether it is a transmitter or a receiver, comes

at a price and results in a decrease in the node’s utility.

We formulate a matching game between the transmitters and

receivers where the transmitters propose to the receivers with

the optimal communication rate for the transmitters’ utilities.

The receivers choose one among all proposals they have

received to maximize their own utilities. We find the optimal

decisions for all nodes and derive the resulting utilities. We

next provide the transmitters with the knowledge of the utility

functions of the receivers so that they can take into account

the needs of the receivers when they determine their proposals.

In addition, we let the transmitters offer to transfer energy to

their favorite receiver, i.e., energy cooperation. This allows the

transmitters to assist the receivers with their processing costs to

increase their chances of forming a beneficial cooperation pair.

We model this layer of competition between the transmitters

as a Vickrey auction [34]. We modify the DAA [5] to solve

these games.

We next consider the case where one transmitter can be

matched to multiple receivers. The transmitter multi-casts its

data to these receivers at the same rate and collects a reward

that is proportional to the number of receivers. We model

this communication scenario as a one-to-many matching game

where each transmitter proposes to several receivers for multi-

casting. We solve this game by using the DAA [5] and find a

stable matching that is optimal for the transmitters. We show

that we can limit the proposals that each transmitter can make

without changing the outcome of the algorithm, which leads

to finding a stable and optimal matching with polynomial

number of proposals in the number of receivers. We next

extend this game to include energy cooperation as well where

each transmitter offers an energy transfer to every receiver that

it is interested in. We consider max-min fairness in calculating

these energy offers so that every targeted receiver is satisfied

with the energy transfer. We observe that the competition

between the nodes facilitated by the matching framework

becomes more intense with the addition of energy cooperation

and results in improved rates for the whole network. In

addition, we observe that our modified approach yields larger

rates and requires a smaller number of proposals before it can

identify the solution as compared to the DAA.

The main contributions of this paper are summarized as

follows:

• A matching-game formulation leading to a stable one-

to-one matching of transmitters to receivers is provided,

when energy expenditures of both the transmitters and the

receivers are explicitly taken into account.

• Energy transfer from transmitters to receivers is intro-

duced into the matching game to instigate competition

between the proposing transmitters. Accordingly a Vick-

rey auction is employed between competing transmitters.

• These settings are extended to one-to-many matching

games where a transmitter can be matched to multiple

receivers, and a reduced complexity optimal matching

algorithm is provided.

The remainder of this paper is organized as follows. In

Section II, we describe the system model. In Section III, we

cover the basics of one-to-one matching games and consider

two such games without and with energy cooperation. In

Section IV, we introduce one-to-many matching games and

consider two such games without and with energy cooperation.

In Section V, we provide simulation results. In Section VI, we

conclude the paper.

II. SYSTEM MODEL

Consider an ad hoc network with transmitters Tn, n ∈ N ,

{1, 2, . . . , N}, and receivers Rm, m ∈ M , {1, 2, . . . , M} with

block fading as shown in Fig. 1.

Each transmitter can communicate with any receiver. For

clarity of exposition, we consider a time slotted scenario

with slots of equal duration. The fading coefficient between

transmitter Tn to receiver Rm is denoted by hn,m indicating

the channel quality. The available channels are orthogonal

to one another. Without loss of generality, the noise at each

receiver is modeled as zero-mean and unit-variance additive

white Gaussian noise.

Each node has access to an energy supplier that can provide

any desired amount of energy at a price. Tn can purchase
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Fig. 1. The N -by-M ad hoc network with energy transfer. For clarity of
exposition, only one energy transfer is shown as a dotted line with the
harvesting efficiency of the corresponding receiver.

energy from its supplier at a price of σn, and likewise, Rm

can purchase energy at a price of σ̄m. The prices lead to

a reduction of the total reward that is due to the expended

energy. The unit for the price is bits/Joule, leading to the total

reward in bits as the total bits transmitted or received minus

the energy cost.

The models considered in this work include those that allow

the transmitters to transfer energy to the receivers by RF

energy transfer. For such settings, we consider that receiver

Rm has a harvesting efficiency of ηm ∈ [0, 1], m ∈ M. Note

that ηm accounts for the losses associated with the harvesting

of the energy after it reaches the receiver Rm. The energy sent

by the transmitter is reduced by the channel coefficient while

making its way to the receiver. In other words, if Tn sends E

units of energy to Rm, Rm will receive Ehn,m units, and be

able to harvest Ehn,mηm units to expend for decoding. The

nodes do not have access to any other source of energy for

transmission or decoding, i.e., they must either acquire energy

from the supplier or harvest energy from an energy cooperating

node’s transmission.

During a given time slot, each receiver is interested in

receiving data from one transmitter only. In the one-to-one

case, each transmitter wishes to send data to one receiver

only. We also study the one-to-many case where a transmitter

can send data to several receivers at the same time. At the

beginning of each slot, transmitter-receiver pairs are formed

which will communicate over the orthogonal link reserved for

the transmitter for the duration of the time slot.

Suppose for a given time slot, nodes Tn and Rm, for some

n ∈ N and m ∈ M, are matched with each other and agree on

a data rate of rn,m. We begin with the one-to-one case and a

general definition of utilities for all transmitters and receivers

which are given as

un |m(rn,m) = ρn(rn,m) − σnκn(rn,m) (1)

for Tn given it is matched to Rm, and

ūm |n(rn,m) = ρ̄m(rn,m) − σ̄m κ̄m(rn,m) (2)

for Rm given it is matched to Tn. Here, ρn(rn,m) and ρ̄m(rn,m)

are concave and non-decreasing in rn,m, and represent the

reward that nodes Tn and Rm obtain for transmitting or

receiving data at rate rn,m, respectively. Conversely, κn(rn,m)

and κ̄m(rn,m) are convex and non-decreasing in rn,m, and

represent the energy cost of nodes Tn and Rm for transmitting

or receiving data at rate rn,m, respectively. Note that the reward

and cost functions are averaged over the duration of the time

slot. The utility definitions will be extended to the case of

one-to-many matchings in Section IV.

For clarity of exposition, we focus on the following selec-

tion of reward and cost functions, recalling that our results are

valid for any concave reward and convex cost selection:

ρn(rn,m) = λnrn,m, (3)

ρ̄m(rn,m) = λ̄mrn,m, (4)

κn(rn,m) =
1

hn,m

(

22rn,m − 1
)

, (5)

κ̄m(rn,m) = cm2αmrn,m
+ βmrn,m + γm, (6)

for some λn, λ̄m, cm, αm, βm ≥ 0 and γm ∈ R. In other words,

we consider linear rewards (3) and (4) for both nodes, additive

white Gaussian noise at the receivers leading to the energy cost

for Tn given in (5), and a general processing cost for Rm given

in (6) which addresses exponential and linear processing costs

and activation costs [30], [35], [36]. The resulting utilities for

nodes Tn and Rm are expressed as

un |m(rn,m) = λnrn,m −
σn

hn,m

(

22rn,m − 1
)

, (7)

ūm |n(rn,m) = λ̄mrn,m − σ̄m

(

cm2αmrn,m
+ βmrn,m + γm

)

. (8)

Lastly, we define T , {Tn, n ∈ N} and R , {Rm,m ∈

M} as the set of all transmitters and the set of all receivers,

respectively. Sets N and M index sets T and R, respectively.

In the sequel, we consider two matching game formulations

for our model where each transmitter proposes to the receivers.

Each transmitter aims to maximize its utility that results from

a rate value which the transmitter and the matched receiver

can agree upon.

In the sequel, we will consider one-to-one and one-to-many

matching games for the ad hoc network in consideration. That

is, we will let the transmitters and receivers form cooperation

pairs in the one-to-one case for every time slot. For the one-

to-many case, we will let the transmitters change the receivers

to which they broadcast, to maximize the total data sent to the

receivers.

Remark 1: We assume channel state information (CSI) avail-

ability at the transmitters. The acquisition of the CSI on the

transmit side can be accomplished with receiver side channel

measurements with a pilot and fed back to the transmitters.

The ad hoc network to be formed is effectively one-hop, with

non-interfering links.
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Remark 2: We assume that a small portion of each time slot

is used for the coordination of energy transfer. This assumption

results in the utilities being multiplied by a constant factor

since only a portion of each time slot can contribute to the

utilities, which are averaged over the entire duration of the

time slots. Since this factor is the same for all time slots and

all utilities, it does not affect our analysis or results, and is

omitted.

III. ONE-TO-ONE MATCHING GAMES

A. Preliminaries

We begin by providing a few fundamental definitions from

matching theory from [5], [6].

Definition 1: A (one-to-one) matching is a function µ : T ∪

R → T ∪ R satisfying

1) µ(Tn) = Rm if and only if µ(Rm) = Tn for all n ∈ N ,

m ∈ M,

2) µ(Tn) ∈ R or µ(Tn) = Tn for all n ∈ N ,

3) µ(Rm) ∈ T or µ(Rm) = Rm for all m ∈ M.

The definition of matchings requires that µ be a bijection,

i.e., each node in the network can be matched to either one

other node or to itself, and it must be equal to its inverse, i.e.,

µ(µ(K)) = K for any node K ∈ T ∪ R.

Definition 2: Preference relations ≻n on R and ≻̄m on T

for all n ∈ N , m ∈ M are strict and complete partial orders.

Here, the preference relations symbolize each node’s pref-

erence over all nodes on the other side of the network. That is,

Rm ≻n Rm′ means that Tn prefers Rm over Rm′, and likewise,

Tn ≻̄m Tn′ means that Rm prefers Tn over Tn′ . We assume

that there are no ties, i.e., the preference relations are strict.

This is in line with our selection of block fading coefficients

which are drawn from continuous distributions, resulting in

strict preferences with probability 1. The completeness of the

preference relations means that each node has a favorite among

any collection of nodes from the other side of the network, i.e.,

for all n ∈ N and M ′ ⊂ M, there exists m ∈ M ′ such that

Rm ≻n Rm′ for all m′ ∈ M ′ \ {m}. Likewise, for all m ∈ M

and N ′ ⊂ N , there exists n ∈ N ′ such that Tn ≻̄m Tn′ for all

n′ ∈ N ′ \ {n}.

Definition 3: Matching µ is stable if there exists no

(Tn, Rm) ∈ T × R such that µ(Tn) , Rm, but Rm ≻n µ(Tn)

and Tn ≻̄m µ(Rm). That is, there does not exist a transmitter-

receiver pair that prefer each other and are not matched to

each other, i.e., all nodes are satisfied by µ.

Definition 4: Stable matching µ is optimal for the transmit-

ters (resp. the receivers) if the utility of Tn (resp. Rm) under

µ is no less than its utility under any other stable matching µ′

for all n ∈ N (resp. all m ∈ M).

Although there may exist multiple stable matchings, the

optimal matching must be unique, provided that it exists,

due to the fact that all preference relations are strict. We

next study the matching game given by ({T ,R}, {≻n, ≻̄m})

and how energy cooperation impacts the resulting matchings.

We consider the case where the transmitters propose to the

receivers and note that our results can readily be extended to

the case where the receivers propose. We consider that the one-

shot matching game given by ({T ,R}, {≻n, ≻̄m}) is played at

the beginning of each time slot and confine our analysis to

one time slot.

B. A One-to-One Matching Game

Initially, we assume that the transmitters have no knowledge

of the other nodes’ utility functions or the strategies available

to them. However, Tn knows hn,m for all m ∈ M. Tn’s best

strategy is therefore to maximize its own utility, i.e.,

r∗n,m = arg max
rn,m≥0

un |m(rn,m) (9)

= arg max
rn,m≥0

λnrn,m −
σn

hn,m

(

22rn,m − 1
)

(10)

=

[

1

2
log

(

λnhn,m

2σn ln 2

)]

+

(11)

where we obtain (11) by simply finding the stationary point

and projecting to non-negative values due to concavity of the

objective.

At rate r∗n,m, Tn’s utility is given as

un |m(r
∗
n,m) =

λn

2
log

(

λnhn,m

2eσn ln 2

)

+

σn

hn,m
. (12)

Tn can use (12) to find its favorite receiver among any

collection of receivers R ′ ⊂ R, and subsequently characterize

its preference relation ≻n. Note that (12) depends on receiver

index m only through hn,m and it is convex in σn

hn,m
. Therefore,

Tn’s favorite receiver in R ′ is either Rm1
or Rm2

, whichever

results in a larger utility for Tn where indices m1 and m2 are

found as

m1 = arg max
m : Rm ∈R′

hn,m, (13)

m2 = arg min
m : Rm ∈R′

hn,m. (14)

Starting with R ′
= R, Tn finds Rm ≻n Rm′ for all m′ ∈ R ′ \

{Rm}, and next finds the second favorite receiver by setting

R ′
= R \ {Rm}. Continuing in this fashion, preference relation

≻n is identified for all n ∈ N (see Algorithm 1, lines 2–8 for

a detailed description).

For the receivers’ preference relations, suppose Rm receives

a proposal from all Tn ∈ Tm ⊂ T where we define Tm to be

the set of all transmitters which have proposed to Rm with

a rate offer. The ideal proposal for Rm would maximize its

utility, i.e.,

r†n,m = arg max
rn,m≥0

ūm |n(rn,m) (15)

= arg max
rn,m≥0

λ̄mrn,m − σ̄m

(

cm2αmrn,m
+ βmrn,m + γm

)

(16)

=

[

1

αm
log

(

λ̄m/σ̄m − βm

cmαm ln 2

)]

+

(17)

where (17) is again obtained by identifying the stationary point

of (16).

We observe that ūm |n(rn,m) is concave in rn,m. Therefore,

Rm finds its favorite among all proposals it has received from

the transmitters in Tm as the proposal of Tn1
or Tn2

, whichever
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results in a larger utility for Rm where indices n1 and n2 are

identified as

n1 = arg max
n : Tn ∈Tm,

r∗
n,m

≤r
†
n,m

r∗n,m, (18)

n2 = arg min
n : Tn ∈Tm,

r∗
n,m

>r
†
n,m

r∗n,m . (19)

Note that Rm can identify its preference relation ≻̄m over

Tm using a similar procedure to the one described above for

the transmitters, i.e., Rm starts with Tm, finds its favorite

transmitter in Tm, removes this transmitter from Tm, finds the

second favorite transmitter and so on. However, as will be

seen in Algorithm 1, our solution requires only the favorite

proposal.

Now that matching game ({T ,R}, {≻n, ≻̄m}) is fully char-

acterized, we can identify the optimal matching for our setting.

In order to accomplish this, we adopt the DAA proposed in [5]

to our setting. It is shown in [5, Theorem 2] that DAA finds the

unique stable matching that is optimal for the proposing nodes,

in our case, the transmitters. In this algorithm, the transmitters

first propose to their favorite receivers. Each receiver finds

the one proposal that yields the largest receiver utility and

rejects all others. In the next iteration, the rejected transmitters

propose to their second favorite receivers and the receivers

find the best proposal among all new proposals and the

best proposal from the previous iteration. In this fashion, the

receivers identify the best proposal for themselves, rejecting

all others, but defer the acceptance of said proposal until they

have seen all of their options.

In our implementation of this algorithm, we improve upon

the resulting utilities by imposing that the transmitters refrain

from proposing to receivers which yield negative utilities for

them. Likewise, we require that receivers prefer being matched

to themselves if the best proposal they receive results in

a negative utility for them. This modification eliminates all

matches which result in negative utilities while retaining those

with positive utilities, and necessarily results in improved

utilities for the whole network. In addition, this modification

is in line with the selfish nature of the nodes in our model

since they cannot be expected to tolerate negative utilities

which they can easily improve by solitude. We provide the

complete optimal solution of ({T ,R}, {≻n, ≻̄m}), including the

computation of preference relations and the Modified DAA, in

Algorithm 1.

Here, we denote by Rn the set of receivers that can be

matched to Tn with a positive utility. Rn is updated throughout

the algorithm and gives a collection of possible matches for

Tn at any point in the algorithm. The worst case complexity

is O(N2) which is the same as the original DAA in [5].

In the next section, we consider the game under a different

setting where each transmitter is provided with additional

knowledge, i.e., the utility functions of the receivers, in order

to facilitate competition among the transmitters.

Algorithm 1 Optimal solution µ of ({T ,R}, {≻n, ≻̄m}).

// The transmitters identify their preference relations ≻n.

1: for n = 1, 2, . . . , N do

2: Initialize R ′
= R.

3: while R ′
, ∅ do

4: Find Rm1
and Rm2

using (13) and (14).

5: Identify the favorite receiver as Rm = Rm1
or Rm2

.

6: Update R ′ := R ′ \ {Rm}.

7: Update ≻n such that Rm ≻n Rm′, ∀Rm′ ∈ R ′.

8: end while

9: end for

// The Modified Deferred Acceptance Algorithm.

10: Initialize Rn = R, ∀n ∈ N ; µ(K) = K , ∀K ∈ T ∪ R.

11: Remove all Rm yielding un |m(r
∗
n,m) < 0 from Rn, ∀n.

12: while ∃n ∈ N : µ(Tn) = Tn and Rn , ∅ do

13: for n = 1, 2, . . . , N do

14: if µ(Tn) = Tn and Rn , ∅ then

15: Tn finds its favorite Rm ∈ Rn and proposes (11).

16: Update Rn := Rn \ {Rm}.

17: end if

18: end for

19: for m = 1, 2, . . . , M do

20: if Tm , ∅ then

21: Rm finds its favorite Tn ∈ Tm∪{µ(Rm)} using (18)

and (19).

22: if ūm |n(r
∗
n,m) ≥ 0 then

23: Set T ′
n = µ(Rm), and update µ(T ′

n) = T ′
n.

24: Update µ(Rm) = Tn, µ(Tn) = Rm.

25: end if

26: end if

27: end for

28: end while

C. A One-to-One Matching Game with Energy Cooperation

Consider now that the transmitters are aware of the utility

functions of the receivers. This additional knowledge allows

them to tailor their proposals better to the needs of the

receivers. In this setup, we consider the additional incentive of

energy transfer from the transmitters to their favorite receiver

in order to promote their proposals over others. Note that this

was not possible for the setting in Section III-B since the

transmitters could not compute the ideal proposal for their

favorite receiver, and therefore could not compete with one

another directly. We incorporate energy cooperation into our

model by modifying the utilities as

un |m(rn,m, pn,m) = λnrn,m −
σn

hn,m
(22rn,m − 1) − σnpn,m (20)

ūm |n(rn,m, pn,m) = λ̄mrn,m − σ̄m(cm2αmrn,m
+ βmrn,m + γm

− pn,mhn,mηm) (21)

where pn,m is the amount of energy offered to Rm by Tn

averaged over the duration of the time slot for consistency with

other average quantities in our model. Observe that energy

transfer improves the utility in (21).

For the receivers that receive multiple proposals, we employ

a Vickrey auction [34] between the proposing transmitters to
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determine which one should be matched to the receiver. A

Vickrey auction is a second price sealed bid auction where

the bidder with the highest bid wins the auction, but pays the

second highest bid only. In other words, upon receiving the

bids, the receiver determines the transmitter with the highest

bid, but the winning transmitter has to provide the receiver

with the utility promised only by the runner-up which is

lower than the winner’s original bid [37]. Thanks to this

second price property of Vickrey auctions, each transmitter

can go all out and bid the highest receiver utility they can

provide. However, as the transmitters’ bids increase, their own

utility decreases and they increase their bids until their own

utilities reach zero. In other words, each transmitter calculates

its bid by setting its own utility to zero and finding the

corresponding receiver utility that it can provide. Since in the

end the winning transmitter delivers the bid of the runner up

only, its final utility is positive. Therefore, the Vickrey auction

yields improved utilities for the auctioneers without resulting

in vanishing utilities for the bidders.

Tn first uses (12) to find its favorite receiver among collec-

tion of receivers R ′ ⊂ R, and similarly generates its preference

relation ≻n. Note that transmitter utilities at this point are the

same as those in Section III-B since all pm,n = 0 before the

inter-transmitter competition by means of a Vickrey auction

ensues. Tn can next compute its bid to its favorite receiver,

Rm, as

(r∗n,m, p∗n,m) = arg max
(rn,m,pn,m )≥0

ūm |n(rn,m, pn,m) (22a)

s.t. un |m(rn,m, pn,m) ≥ 0. (22b)

We solve (22) by first solving it in pn,m for any rn,m. We

observe that ūm |n(rn,m, pn,m) is increasing in pn,m for a given

rn,m and un |m(rn,m, pn,m) is decreasing in pn,m. In other words,

pn,m must be as large as possible while constraint (22b) is

satisfied. Therefore, we set (22b) to zero and obtain

p∗n,m(rn,m) =
λnrn,m

σn

−
1

hn,m

(

22rn,m − 1
)

(23)

which guarantees that constraint (22b) is satisfied for any r∗n,m.

Problem (22) becomes

r∗n,m = arg max
rn,m≥0

ūm |n(rn,m, p∗n,m(rn,m)) (24)

which is a convex problem with a unique maximizer. Here,

we define

ψn,m ,
1

ln 2

(

λ̄m

σ̄m

− βm +
hn,mηmλn

σn

)

. (25)

The unique optimal solution of (24) is identified as the r∗n,m
value that satisfies

cmαm2αmr∗
n,m + 2ηm22r∗

n,m = ψn,m . (26)

In general, (26) is a nonlinear equation, in fact, an exponential

polynomial equation [38] which can be solved numerically.

Note that when αm is an integer, (26) reduces to a polynomial

equation. For the special case of αm = 0, i.e., linear processing

cost for the receivers, the solution of (26) is found as

r∗n,m =
1

2
log

(

ψn,m

2ηm

)

(27)

and for the special case of αm = 2, the solution of (26) is

found as

r∗n,m =
1

2
log

(

ψn,m

2(cm + ηm)

)

. (28)

This completes the characterization of all bids (r∗n,m, p∗n,m)

received by Rm. Suppose Rm has received proposals from all

Tn ∈ Tm ⊂ T . Rm then finds the best proposal as

(r∗
n†,m

, p∗
n†,m

) = arg max
(r∗

n,m
,p∗

n,m
) :

Tn ∈Tm

ūm |n(r
∗
n,m, p

∗
n,m) (29)

and the runner-up as

(r∗
n‡,m

, p∗
n‡,m

) = arg max
(r∗

n,m
,p∗

n,m
) :

Tn ∈Tm\{T
n
† }

ūm |n(r
∗
n,m, p

∗
n,m) (30)

which are optimization problems with finite feasible sets.

Finally, Rm identifies Tn† as its favorite transmitter which has

to provide only ūm |n(r
∗
n‡,m

, p∗
n‡,m

), which is necessarily less

than ūm |n(r
∗
n†,m

, p∗
n†,m

). Thus, Tn† can lower p∗
n†,m

to provide

ūm |n(r
∗
n‡,m

, p∗
n‡,m

) only and obtain a positive utility for itself

as well.

In order to solve ({T ,R}, {≻n, ≻̄m}) for an optimal match-

ing in this case, we modify Algorithm 1 to incorporate the

inter-transmitter competition, which we model as a Vickrey

auction, into our solution. The solution is given in Algorithm 2.

Remark 3: The standard marriage problem of Gale and

Shapley [5] has strict preference relations for all agents, but

not utilities. Essentially, all utilities are non-negative. Since the

utilities in our model can be negative and a node matched to

itself receives a utility of zero, it makes sense to eliminate

matches with negative utilities without even proposing to

them. This, along with the introduction of bidding, is our

modification to the DAA. The convergence of our modification

is guaranteed since we are only skipping some proposals which

would not change the outcome of the standard DAA. The

stability is guaranteed since the eliminated proposals would

violate stability under standard DAA as the nodes would prefer

to be matched to themselves.

IV. ONE-TO-MANY MATCHING GAMES

In this section, we extend the results of Section III to the

case of one-to-many matchings where one transmitter can be

matched to multiple receivers.

A. Preliminaries

The definition of matchings extends to the one-to-many case

as follows [7], [10], [11].

Definition 5: A one-to-many matching is a function µ : T ∪

R → T ∪ 2R satisfying

1) µ(Tn) = Rn ⊂ R if and only if µ(Rm) = Tn for all

Rm ∈ Rn, n ∈ N ,
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Algorithm 2 Optimal solution of ({T ,R}, {≻n, ≻̄m}) with

energy cooperation.

// The transmitters identify their preference relations ≻n.

1: for n = 1, 2, . . . , N do

2: Initialize R ′
= R.

3: while R ′
, ∅ do

4: Find Rm1
and Rm2

using (13) and (14).

5: Identify the favorite receiver as Rm = Rm1
or Rm2

.

6: Update R ′ := R ′ \ {Rm}.

7: Update ≻n such that Rm ≻n Rm′, ∀Rm′ ∈ R ′.

8: end while

9: end for

// The Modified Deferred Acceptance Algorithm.

10: Initialize Rn = R, ∀n ∈ N ; µ(K) = K , ∀K ∈ T ∪ R.

11: Remove all Rm yielding un |m(r
∗
n,m) < 0 from Rn, ∀n.

12: while ∃n ∈ N : µ(Tn) = Tn and Rn , ∅ do

13: for n = 1, 2, . . . , N do

14: if µ(Tn) = Tn and Rn , ∅ then

15: Tn finds its favorite Rm ∈ Rn and its proposal using

(22).

16: Update Rn := Rn \ {Rm}.

17: end if

18: end for

19: for m = 1, 2, . . . , M do

20: if Tm , ∅ then

21: Rm finds its favorite Tn ∈ Tm∪{µ(Rm)} using (29)

and (30).

22: if ūm |n(r
∗
n,m) ≥ 0 then

23: Set T ′
m = µ(Rm), and update µ(T ′

m) = T ′
m.

24: Update µ(Rm) = Tn, µ(Tn) = Rm.

25: end if

26: end if

27: end for

28: end while

2) µ(Tn) ⊂ R or µ(Tn) = Tn for all n ∈ N ,

3) µ(Rm) ∈ T or µ(Rm) = Rm for all m ∈ M,

4) µ(Tn) ∩ µ(Tñ) = ∅ for all n, ñ ∈ N, n , ñ.

In other words, each transmitter is matched to either itself

or a set of receivers, no pair of transmitters can be matched to

the same receiver, and each receiver is matched to either itself

or a transmitter. As for the preference relations, the transmitter

preferences ≻n will now be on 2R , ranking all subsets of the

receivers whereas the receiver preferences are as defined in

Section III-A.

Definition 6: One-to-many matching µ is stable if there

exists no (Tn,Rn) ∈ T × 2R such that µ(Tn) , Rn, but

Rn ≻n µ(Tn), and Tn ≻̄m µ(Rm) or Tn = µ(Rm) for all

Rm ∈ Rn. In other words, there does not exist a transmitter

and a group of receivers where the transmitter is not matched

to at least one of the receivers, but all of the nodes in question

wish to be matched together.

Similar to Section III, there may turn out to be multiple

stable one-to-many matchings, but there can be only one stable

matching that is optimal for the transmitters. In the sequel, we

aim to find this matching without or with energy cooperation.

B. A One-to-Many Matching Game

Consider a communication model where each transmitter

can multi-cast its data to a subset of the receivers. This is done

in a way that every receiver can decode the same data. That

is, there is only a common message which is broadcast with

sufficient power so that the receiver with the lowest channel

gain in the subset can decode it. Therefore, the transmission

cost of the transmitter depends only on the weakest link in

the subset. We consider that the reward that the transmitter

gets is proportional to the number of receivers it to which the

transmitter multi-casts.

Suppose Tn is matched to the receivers in Rn ⊂ R after

proposing rate rn,Rn
to them. The utility of Tn can be given

as

un |Rn
(rn,Rn

) = |Rn |λnrn,Rn
−

σn

minm:Rm ∈Rn
hn,m

(22rn,Rn − 1).

(31)

The receiver utilities are unaffected by the channel gains of

the other receivers or by the number of receivers their matched

transmitter is multi-casting to. This is because the receivers do

not experience any interference: they do not receive any signal

intended for another subset of receivers matched to a different

transmitter due to orthogonality, and within their subset, they

all try to decode the same message. Thus, the utility of Rm

given that it is matched to Tn with rate rn,Rn
can be given as

ūm |n(rn,Rn
) = λ̄mrn,Rn

− σ̄m(cm2αmrn,Rn + βmrn,Rn
+ γm).

(32)

Similar to Section III-B, we initially assume that the trans-

mitters do not know the utility or the available strategies for

any other node. What Tn does know is the channel gains

from itself to all receivers. Thus, the best strategy for Tn is to

maximize its utility by choosing the following rate proposal

for Rn.

r∗n,Rn

= arg max
rn,Rn

≥0

un |Rn
(rn,Rn

), (33)

=

1

2
log

(

|Rn |λn minm:Rm ∈Rn
hn,m

2σn ln 2

)

, (34)

which is obtained by differentiating the objective of (33)

with respect to rn,Rn
and setting it to zero. This results in

a transmitter utility given as

un |Rn
(r∗n,Rn

) =
|Rn |λn

2
log

(

|Rn |λn minm:Rm ∈Rn
hn,m

2eσn ln 2

)

+

σn

minm:Rm ∈Rn
hn,m

. (35)

Tn can again use (35) to characterize its preference relation

≻n. One way to accomplish this would be to evaluate (35) for

all 2M − 1 nonempty subsets of R. Though this will not be

necessary as we shall explain in the sequel, let us continue with

this brute force approach for the moment. After identifying the

transmitter preferences, we can solve for the optimal matching

by using the results for the one-to-one case in Section III-B

as follows.

Consider an ad hoc network, much like the one described in

Section II, but with N transmitters and 2M −1 super-receivers.
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Fig. 2. An example of the utility matrix Un .

Each super-receiver corresponds to a distinct subset of the

receivers in the original model, except for the empty set. That

is, each super-receiver is a possible coalition of the receivers

in the original model. The transmitters are the same as in the

original network. We can run Algorithm 1 for this network

to find a stable matching that is optimal for the transmitters.

One thing to note is that when a transmitter proposes to a

super-receiver, every receiver in the coalition must accept the

proposal before the transmitter and the super-receiver can be

(temporarily) matched.

We can reduce the time complexity of this solution as

follows. Each transmitter has at most 2M − 1 options to try

before it is either matched or has given up. However, for some

of these options (or subsets of the receivers) the transmitter

has the same rate proposal and thus the same utility. In fact,

the transmitter can have at most
M(M+1)

2
distinct proposals.

In order to clarify this, first suppose for each transmitter

that channel gains hn,m, m = 1, 2, . . . , M are reordered so

that hn,1 ≥ hn,2 ≥ · · · ≥ hn,M . We can put all possible

un |Rn
(r∗
n |Rn

) values in an M-by-M matrix (Fig. 2). Each row

corresponds to a different hn,m, m = 1, 2, . . . , M, being the

lowest channel gain for a given subset of receivers, i.e., the

mth row corresponds to hn,m being the lowest channel gain

in Rn. The columns correspond to |Rn |. Matrix Un is lower

triangular since the mth row, which corresponds to transmitting

at a rate that the receiver with the mth highest channel gain

can decode, can have at most m utility values. This is because

the transmitter can multi-cast to at most m receivers at this

rate (in fact, the receivers with the highest m channel gains).

This means that the transmitter has at most
M(M+1)

2
distinct

proposals and it does not have to try all 2M − 1 options.

For row m, we have that the lowest channel gain in Rn

is fixed at hn,m. The transmitter can be matched to at most

m receivers with channel gains hn,1 ≥ hn,2 ≥ · · · ≥ hn,m.

Suppose the transmitter is matched to m̃ < m receivers. We

can investigate what happens to the rate proposal and the

transmitter utility if the transmitter adds one more receiver

to Rn where we denote the new coalition by R̃n. We have

that

r∗
n, R̃n

≥ r∗n,Rn

(36)

since minm:Rm ∈Rn
hn,m in (34) is fixed and |R̃n | ≥ |Rn |. For

the transmitter utility, we have

un | R̃n

(r∗
n, R̃n

) ≥ un | R̃n

(r∗n,Rn

) ≥ un |Rn
(r∗n,Rn

) (37)

where the first inequality is due to the fact that r∗
n, R̃n

is optimal

for un | R̃n

and the second one is due to the fact that un |Rn
is

increasing in |Rn |. Therefore, each row of Un in nondecreasing

in the column index.

For column m, |Rn | is fixed at m. As the row index increases

within this column, minm:Rm ∈Rn
hn,m decreases. We have that

r∗
n, R̃n

≤ r∗n,Rn

(38)

since r∗
n,Rn

is increasing in minm:Rm ∈Rn
hn,m. For the trans-

mitter utility, we have that

un | R̃n

(r∗
n, R̃n

) ≤ un |Rn
(r∗
n, R̃n

) ≤ un |Rn
(r∗n,Rn

) (39)

where the first inequality follows from the fact that un |Rn
is

increasing in minm:Rm ∈Rn
hn,m and the second one follows

from the fact that r∗
n,Rn

is optimal for un |Rn
. Therefore, each

column of Un in nonincreasing in the row index and each

diagonal element in Un is the maximum of its row and column.

Using these properties of Un, we can improve the solution

further, i.e., we can have each transmitter start with the

diagonal elements of its utility matrix, next move on to the

subdiagonal and so on. In this approach, the transmitters

go through their available moves in the order of descending

transmitter utilities, just like they did in Section III-B, until

they have a match. Additionally, the modification on DAA

that we considered in Section III-B extends to the one-to-

many case. That is, we can improve the utilities by forbidding

the transmitters from making proposals which yield negative

utilities for them, i.e., the negative elements of matrix Un, if

any. This modification purges only the matches which would

lower the sum utility of the network while leaving the matches

with nonnegative utilities intact. We give in Algorithm 3 the

optimal solution to the one-to-many matching game described

above.

Remark 4: Although we do not consider a quota for the

one-to-many matchings, when the number of transmitters or

receivers is large, it may be useful to introduce quotas for

feasibility of implementation. The approach remains identical

in this case: For a quota of q, the matrix in Fig. 2 will have q ≤

M columns and each transmitter will have at most
M(M+1)

2
−

(M−q)(M−q+1)

2
≤

M(M+1)
2

distinct proposals.

We next extend the matching game in Section III-C to the

one-to-many case and consider energy cooperation as a way

for the transmitters to make more desirable proposals.

C. A One-to-Many Matching Game with Energy Cooperation

Consider the setup in Section IV-B with the addition of

the transmitters’ knowledge of the receivers’ utility functions.

The transmitters are now able to offer energy cooperation in

their proposals to incentivize their target receiver group into

accepting their proposals. We incorporate energy cooperation

into the one-to-many multi-cast scheme of Section IV-B as



2473-2400 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2017.2751643, IEEE
Transactions on Green Communications and Networking

9

Algorithm 3 Optimal solution of the one-to-many matching

game.

// The transmitters compute matrix Un.

1: for n = 1, 2, . . . , N do

2: for m1 = 1, 2, . . . , M do

3: for m2 = 1, 2, . . . ,m1 do

4: Find un |Rn
(r∗
n,Rn

) such that minm:Rm ∈Rn
hn,m =

hn,m1
and |Rn | = m2 using (35).

5: end for

6: end for

7: Generate ≻n such that R1
n ≻n R2

n if un |R1
n

(r∗
n,R1

n

) ≥

un |R2
n

(r∗
n,R2

n

).

8: end for

// The Modified Low-Complexity DAA for the one-to-many

case.

9: Initialize µ(K) = K , ∀K ∈ T ∪ R.

10: Remove all negative entries of Un, i.e., Un := max{Un, 0}

element-wise, ∀n.

11: while ∃n ∈ N : µ(Tn) = Tn and Un , 0 do

12: for n = 1, 2, . . . , N do

13: if µ(Tn) = Tn and Un , 0 then

14: Tn finds the maximum element in Un and proposes

(34).

15: Tn replaces the maximum element in Un with 0.

16: end if

17: end for

18: Initialize an = 0,∀n ∈ N .

19: for m = 1, 2, . . . , M do

20: if Tm , ∅ then

21: Rm finds its favorite Tn ∈ Tm ∪ {µ(Rm)}.

22: if ūm |n(r
∗
n,Rn

) ≥ 0 then

23: Update an = 1.

24: else

25: Update an = 0.

26: end if

27: end if

28: end for

29: for n = 1, 2, . . . , N do

30: if an = 1 then

31: Update µ(Tn) = Rn.

32: for m : Rm ∈ Rn do

33: Set T ′
m = µ(Rm).

34: Update µ(T ′
m) = T ′

m and µ(Rm) = Tn.

35: end for

36: end if

37: end for

38: end while

follows. Let pn,Rn
be Tn’s energy offer to the receivers in Rn.

The transmitter utility is given as

un |Rn
(rn,Rn

, pn,Rn
) = |Rn |λnrn,Rn

−
σn

minm:Rm ∈Rn
hn,m

×
(

22rn,Rn − 1
)

− σnpn,Rn
(40)

and the receiver utility for all m ∈ Rn is given as

ūm |n(rn,Rn
, pn,Rn

) = λ̄mrn,Rn
− σ̄m(cm2αmrn,Rn + βmrn,Rn

+ γm − pn,Rn
hn,mηm). (41)

Note that the transmitter determines a single power value to

send energy at to each receiver in Rn; it does not specify

different powers. The energy that the receivers can harvest

from the energy signal that the transmitter transmits depends

on their channel gains and harvesting efficiencies, and thus

may be different.

We model the competition between the transmitters as a

Vickrey auction similar to Section III-C. The transmitters will

now bid to sets of receivers, or super-receivers, by setting

their own transmitter utilities to zero. Suppose Tn’s favorite

set of receivers is Rn. Note that Tn can generate matrix Un

to find its preference relation over all subsets of the receivers

and determine Rn. In order for Tn to obtain this maximum

utility, all of the receivers in Rn must agree to be matched

with Tn. For this reason, Tn’s proposal should be desirable

to all receivers in Rn and its energy offer should be high

enough to provide a competitive utility for all receivers in Rn.

Therefore, Tn calculates its energy offer in a way to achieve

max-min fairness between the receivers in Rn, i.e.,

(r∗n,Rn

, p∗n,Rn

) = arg max
(rn,Rn

,pn,Rn
)≥0

min
m:Rm ∈Rn

ūm |n(rn,Rn
, pn,Rn

),

(42a)

s.t. un |Rn
(rn,Rn

, pn,Rn
) ≥ 0.

(42b)

Given rn,Rn
, ūm |n(rn,Rn

, pn,Rn
) is increasing in pn,Rn

for all

m such that Rm ∈ Rn, and un |Rn
(rn,Rn

, pn,Rn
) is decreasing in

pn,Rn
. Thus, Tn will offer a pn,Rn

that is as high as possible

while Tn’s own utility is nonnegative, which we find by solving

un |Rn
(rn,Rn

, pn,Rn
) = 0 as

p∗n,Rn

(rn,Rn
) =

|Rn |λnrn,Rn

σn

−
1

minm:Rm ∈Rn
hn,m

(

22rn,Rn − 1
)

(43)

which satisfies constraint (42b) for all rn,Rn
. Problem (42) can

be simplified as

r∗n,Rn

= arg max
rn,Rn

≥0

min
m:Rm ∈Rn

ūm |n(rn,Rn
, p∗n,Rn

(rn,Rn
)) (44)

which is a convex problem that we solve numerically to find

the optimal proposal for Tn.

After all rate and energy offers are calculated and proposed,

each receiver finds the best proposal and the runner-up, i.e.,

the two proposals that yield the two largest utilities for the

receiver. The receiver accepts the best proposal and similar

to Section III-C, the transmitter with the best proposal has to

provide the second largest receiver utility. At this point, each

transmitter knows what it needs to provide for each receiver

that it is matched to, and can lower its energy offer p∗
n,Rn

so

long as all of its matches receive the promised utility.

We can now solve this game by using Algorithm 2 with a

minor modification where the transmitters use (43) and (44)

instead of (34) to compute their bids.



2473-2400 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2017.2751643, IEEE
Transactions on Green Communications and Networking

10

5 10 15 20 25 30 35 40 45 50

Number of transmitters, N

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
A

v
e

ra
g

e
 r

a
te

 (
b

it
s
/s

/H
z
)

Modified DAA

DAA

M=50

M=30

M=10

Fig. 3. Average rate per matched transmitter versus N and M for the one-
to-one game in Section III-B.

V. NUMERICAL RESULTS

In this section, we present numerical results for the games in

Section III and Section IV. We consider a simulation setup of

N transmitters and M receivers uniformly placed on a 100 m

× 100 m square with a 1 MHz band for each orthogonal link,

carrier frequency 900 MHz, noise density 10−19 W/Hz, and

Rayleigh fading. Consequently, the mean fading level between

two nodes which are d m apart is computed as −40 dB/d2

[39], [40]. For processing costs, we assume cm = 5 mW, αm =

2 (bps)−1, βm = 5 mW/bps, and γm = 50 mW for all receivers

[29], [30], [41]. In addition, σn and σ̄m are uniform in [0, 0.1]

bps/W, ηm is uniform in [0, 1], λn = 1, and λ̄m = 1 for all

nodes. We average our findings over 105 realizations of this

setup.

Fig. 3 shows the sum rate of the network resulting from our

solution for the game in Section III-B divided by the number

of matched transmitters. As can be seen from the figure, our

modified DAA algorithm results in an improvement in the

average rate of the network as compared to DAA since our

solution does not allow any transmitter-receiver pairs to be

matched with each other unless said matching results in non-

negative utilities for both nodes. As we add more transmitters

to the network, the receivers are presented with a larger

selection of proposals to choose from. Likewise, the addition

of more receivers into the network may result in a new favorite

receiver for each transmitter, improving their best option. In

other words, larger N and M yields more options for both sides

and better matches. As a result, the average rate is increasing

in the number of transmitters and the number of receivers in

the network.

We repeat this setup for the game in Section III-C with

energy cooperation and present our findings in Fig. 4. We

observe similar phenomena for this case and note the larger

average rate values as compared to Fig. 3. This additional im-

provement is due to the competition between the transmitters

which results from the Vickrey auction we employ for this
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Fig. 4. Average rate per matched transmitter versus N and M for the one-
to-one game in Section III-C.
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Fig. 5. Average rate per matched transmitter versus N and M for the one-
to-many game in Section IV-B.

case. The transmitters are more inclined to compromise their

own utilities so that they can propose better offers to their

favorite receivers, which yields an overall improvement in the

resulting rates.

Figs. 5 and 6 show the average rate per matched transmitter

for the one-to-many game without energy cooperation in Sec-

tion IV-B and the one-to-many game with energy cooperation

in Section IV-C. We observe that the improvement introduced

by our modification on the DAA extends to the one-to-many

case. We also observe larger rates. One reason for this is that

the transmitters with good channels to several receivers are

no longer limited to sending their data to just one receiver.

Likewise, some receivers may find it more desirable to join a

receiver coalition than accept a one-to-one proposal which was

the only option they had in Section III. Further, the transmitters
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Fig. 6. Average rate per matched transmitter versus N and M for the one-
to-many game in Section IV-C.
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Fig. 7. The normalized number of proposals before an optimal matching is
found versus N for the one-to-one game in Section III-B.

are even more inclined to forgo their own utilities in the one-

to-many game in Section IV-C since they must satisfy all

receivers in their favorite receiver subset.

Figs. 7 and 8 show the average number of proposals that

must be presented and considered before our solution con-

verges to an optimal matching for the games in Sections III-B

and III-C, respectively. Here, we normalize the number of

proposals by N M which is the maximum number of proposals

and thus corresponds to the worst case scenario. As can be

seen, our solution requires a smaller number of proposals

as compared to DAA since in our solution, the transmitters

automatically eliminate receivers which yield negative utilities

whereas they may propose to such receivers in DAA. We

observe that both our solution and DAA are efficient in the

sense that the addition of more receivers into the system
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Fig. 8. The normalized number of proposals before an optimal matching is
found versus N for the one-to-one game in Section III-C.

results in a lower number of proposals per receiver required

for convergence. Lastly, we observe that the game in Sec-

tion III-C with energy cooperation requires a smaller number

of proposals on average than the one in Section III-B without

energy cooperation. This is due to the fact that with energy

cooperation, the transmitters can propose better offers to their

favorite receivers. Hence, they are more likely to be matched

to their favorite receivers and do not need to propose to their

second favorite receivers and so on, which results in a lower

number of proposals required to converge to a stable matching.

Lastly, Fig. 9 shows the average number of proposals

required for convergence for the one-to-many game in Sec-

tion IV-C. This time, the maximum number of proposals for

the worst case scenario is N(2M−1) which we use to normalize

the proposal counts in Fig. 9. The exponential-to-polynomial

reduction in the number of proposals that we have shown in

Section IV is observed numerically. We finally note that the

improvement is magnified further as M is increased.

VI. CONCLUSION

In this paper, we have considered a wireless ad hoc network

composed of N transmitters and M receivers. We have studied

a communication scenario where the transmitters collect data

which they can deliver to the receivers. We have taken into

account the energy consumption of the entire network by

modeling the transmission and decoding costs at the trans-

mitters and receivers appropriately, bearing in mind the fact

that energy is often not free which may influence the nodes’

decisions regarding their operation. We have first formulated

a one-to-one matching game between the transmitters and

the receivers, and provided analytical expressions for each

node’s optimal decision with respect to its individual utility.

We have next introduced another medium of competition by

employing a Vickrey auction among the transmitters. We have

shown that the transmitters can offer energy cooperation to

the receivers to obtain better matches. We have observed that
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Fig. 9. The normalized number of proposals before an optimal matching is
found versus N for the one-to-many game in Section IV-C.

energy cooperation lets the transmitters provide additional

incentive to the receivers and results in larger rates for the

network. We have next introduced one-to-many matchings to

the network and shown that we can lower the complexity

of the DAA by eliminating some possible proposals at the

transmitter which do not affect the outcome of the algorithm.

We have lastly extended energy cooperation to the one-to-

many matching case and seen that the transmitters must be

able to convince each receiver in their favorite receiver set in

a max-min fair fashion.

The insights gained from this study are that we can match

transmitters and receivers to increase the network through-

put with judicious energy usage despite their selfish nature.

Moreover energy transfer can further incentivize selfish nodes

towards network formation and improve the overall network

performance. Future directions include many-to-many games

where transmitters and receivers can form coalitions, and bidi-

rectional energy transfer where receivers can transfer energy

to transmitters.

REFERENCES

[1] B. Varan and A. Yener, “Matching games for wireless networks with
energy cooperation,” in Proc. International Symposium on Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks Workshop on
Green Networks, May. 2016.

[2] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and
J. Zhang, “What will 5G be?” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, Aug. 2002.

[4] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,”
IEEE Vehicular Technology Magazine, vol. 2, no. 2, pp. 12–22, Jun.
2007.

[5] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” American mathematical monthly, pp. 9–15, 1962.

[6] A. E. Roth and M. A. O. Sotomayor, Two-sided matching: A study in

game-theoretic modeling and analysis. Cambridge University Press,
1992.

[7] E. Jorswieck, “Stable matchings for resource allocation in wireless net-
works,” in 17th International Conference on Digital Signal Processing,
Jul. 2011.

[8] R. El-Bardan, W. Saad, S. Brahma, and P. K. Varshney, “Matching theory
for cognitive spectrum allocation in wireless networks,” in Proc. 50th
Conf. on Information Sciences and Systems, Mar. 2016.

[9] N. Namvar and F. Afghah, “Spectrum sharing in cooperative cognitive
radio networks: A matching game framework,” in 49th Annual Confer-
ence on Information Systems and Sciences, Mar. 2015.

[10] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,” in
12th International Symposium on Modeling and Optimization in Mobile,

Ad Hoc, and Wireless Networks (WiOpt), May 2014, pp. 569–574.

[11] H. Xu and B. Li, “Seen as stable marriages,” in Proceedings of the IEEE
INFOCOM, Apr. 2011, pp. 586–590.

[12] N. Namvar, W. Saad, B. Maham, and S. Valentin, “A context-aware
matching game for user association in wireless small cell networks,” in
2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), May 2014, pp. 439–443.

[13] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: Fundamentals and applications,” IEEE

Communications Magazine, vol. 53, no. 5, pp. 52–59, May 2015.

[14] F. Pantisano, M. Bennis, W. Saad, S. Valentin, and M. Debbah,
“Matching with externalities for context-aware user-cell association in
small cell networks,” in 2013 IEEE Global Communications Conference

(GLOBECOM), Dec. 2013, pp. 4483–4488.

[15] Z. Chang, L. Zhang, X. Guo, Z. Zhou, and T. Ristaniemi, “User-
cell association in heterogenous small cell networks: A context-aware
approach,” in 2015 IEEE/CIC International Conference on Communi-

cations in China (ICCC), Nov. 2015, pp. 1–5.

[16] A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier
sensing for stable channel access control in cognitive radio systems,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp.
82–95, Jan. 2012.

[17] R. W. Irving, P. Leather, and D. Gusfield, “An efficient algorithm for
the optimal stable marriage,” Journal of the ACM, vol. 34, no. 3, pp.
532–543, Jul. 1987.

[18] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in
energy harvesting communications,” IEEE Transactions on Communi-

cations, vol. 61, no. 12, pp. 4884–4898, Dec. 2013.

[19] K. Tutuncuoglu and A. Yener, “Energy harvesting networks with energy
cooperation: Procrastinating policies,” IEEE Transactions on Communi-

cations, vol. 63, no. 11, pp. 4525–4538, Nov. 2015.

[20] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wire-
less information and power transfer,” IEEE Transactions on Wireless

Communications, vol. 12, no. 5, pp. 1989–2001, May 2013.

[21] S. Lee, R. Zhang, and K. Huang, “Opportunistic wireless energy
harvesting in cognitive radio networks,” IEEE Transactions on Wireless

Communications, vol. 12, no. 9, pp. 4788–4799, Sep. 2013.

[22] B. Varan and A. Yener, “Incentivizing signal and energy cooperation in
wireless networks,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 12, pp. 2554–2566, Dec. 2015.

[23] K. Huang and E. Larsson, “Simultaneous information and power transfer
for broadband wireless systems,” IEEE Transactions on Signal Process-

ing, vol. 61, no. 23, pp. 5972–5986, Dec. 2013.

[24] C. Zhong, H. Suraweera, G. Zheng, I. Krikidis, and Z. Zhang, “Wire-
less information and power transfer with full duplex relaying,” IEEE
Transactions on Communications, vol. 62, no. 10, pp. 3447–3461, Oct.
2014.

[25] K. Tutuncuoglu and A. Yener, “Cooperative energy harvesting commu-
nications with relaying and energy sharing,” in Proceedings of the 2013

IEEE Information Theory Workshop, Sep. 2013.

[26] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. Ng, and R. Schober,
“Simultaneous wireless information and power transfer in modern com-
munication systems,” IEEE Communications Magazine, vol. 52, no. 11,
pp. 104–110, Nov. 2014.

[27] L. Liu, R. Zhang, and K.-C. Chua, “Wireless information and power
transfer: A dynamic power splitting approach,” IEEE Transactions on

Communications, vol. 61, no. 9, pp. 3990–4001, Sep. 2013.

[28] R. Yates and H. Mahdavi-Doost, “Energy harvesting receivers: Packet
sampling and decoding policies,” IEEE Journal on Selected Areas in

Communications, vol. 33, no. 3, pp. 558–570, Mar. 2015.

[29] K. Tutuncuoglu and A. Yener, “Communicating with energy harvesting
transmitters and receivers,” in Information Theory and Applications

Workshop, Feb. 2012.



2473-2400 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2017.2751643, IEEE
Transactions on Green Communications and Networking

13

[30] A. Arafa and S. Ulukus, “Optimal policies for wireless networks with
energy harvesting transmitters and receivers: Effects of decoding costs,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 12,
pp. 2611–2625, Dec. 2015.

[31] O. Orhan, D. Gunduz, and E. Erkip, “Energy harvesting broadband com-
munication systems with processing energy cost,” IEEE Transactions on
Wireless Communications, vol. 13, no. 11, pp. 6095–6107, Nov. 2014.

[32] J. Xu and R. Zhang, “Throughput optimal policies for energy harvesting
wireless transmitters with non-ideal circuit power,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 2, pp. 322–332, Feb.
2014.

[33] O. Ozel, K. Shahzad, and S. Ulukus, “Optimal energy allocation for
energy harvesting transmitters with hybrid energy storage and processing
cost,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp.
3232–3245, Jun. 2014.

[34] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[35] P. Grover, K. Woyach, and A. Sahai, “Towards a communication-
theoretic understanding of system-level power consumption,” IEEE

Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1744–
1755, Sep. 2011.

[36] P. Rost and G. Fettweis, “On the transmission-computation-energy
tradeoff in wireless and fixed networks,” in 2010 IEEE Globecom

Workshops, Dec. 2010, pp. 1394–1399.
[37] M. J. Osborne and A. Rubinstein, A course in game theory. MIT press,

1994.
[38] J. F. Ritt, “On the zeros of exponential polynomials,” Transactions of

the American Mathematical Society, vol. 31, no. 4, pp. 680–686, 1929.
[39] A. Goldsmith, Wireless communications. Cambridge university press,

2005.
[40] T. S. Rappaport, Wireless communications: Principles and practice.

Prentice Hall PTR New Jersey, 1996.
[41] S. Cui, A. Goldsmith, and A. Bahai, “Energy-constrained modulation

optimization,” IEEE Transactions on Wireless Communications, vol. 4,
no. 5, pp. 2349–2360, Sep. 2005.

Burak Varan (S’13) received the B.S. degree in
electrical and electronics engineering from Bogazici
University, Istanbul, Turkey, in 2011. He is currently
pursuing the Ph.D. degree at The Pennsylvania State
University, University Park, PA, USA. He has been a
Graduate Research Assistant with the Wireless Com-
munications and Networking Laboratory (WCAN),
The Pennsylvania State University, since 2011. His
research interests include green communications and
optimal resource allocation in energy harvesting
networks under competitive and altruistic commu-

nication scenarios. He received the AT&T Graduate Fellowship Award at
The Pennsylvania State University in 2016, and the Dr. Nirmal K. Bose
Dissertation Excellence Award from the Department of Electrical Engineering
in 2017.

Aylin Yener (S’91–M’01–SM’14–F’15) received
the B.Sc. degree in electrical and electronics en-
gineering and the B.Sc. degree in physics from
Bogazici University, Istanbul, Turkey, and the M.S.
and Ph.D. degrees in electrical and computer en-
gineering from the Wireless Information Network
Laboratory (WINLAB), Rutgers University, New
Brunswick, NJ, USA. She is a Professor of Electrical
Engineering at The Pennsylvania State University,
University Park, PA, USA, since 2010, where she
joined the faculty as an Assistant Professor in 2002.

Since 2017, she has been a Dean’s Fellow in the College of Engineering at
The Pennsylvania State University. She is currently also a Visiting Professor
at the Department of Electrical Engineering, Stanford University, Stanford,
CA, USA. From 2008 to 2009, she was a Visiting Associate Professor
with the same department. Her research interests include information theory,
communication theory, and network science, with recent emphasis on green
communications and information security. She received the NSF CAREER
Award in 2003, the Best Paper Award in Communication Theory from the
IEEE International Conference on Communications in 2010, the Penn State
Engineering Alumni Society (PSEAS) Outstanding Research Award in 2010,
the IEEE Marconi Prize Paper Award in 2014, the PSEAS Premier Research
Award in 2014, and the Leonard A. Doggett Award for Outstanding Writing
in Electrical Engineering at Penn State in 2014.

Dr. Yener is currently a member of the Board of Governors of the IEEE In-
formation Theory Society, where she was previously the Treasurer from 2012
to 2014. She served as the Student Committee Chair for the IEEE Information
Theory Society from 2007 to 2011, and was the Co-Founder of the Annual
School of Information Theory in North America co-organizing the school from
2008 to 2010. She was a Technical (Co)-Chair for various symposia/tracks at
the IEEE ICC, PIMRC, VTC, WCNC, and Asilomar from 2005 to 2014. She
served as an Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS

from 2009 to 2012, an Editor and an Editorial Advisory Board Member for
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2001 to
2012, and a Guest Editor for the IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY in 2011, and the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS in 2015. Currently, she serves on the Editorial
Board of the IEEE TRANSACTIONS ON MOBILE COMPUTING and as a Senior
Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.


