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Abstract—This paper studies energy harvesting transmitters
in the single user channel, the two-way channel, and the
two-way relay channel with block fading. Each transmitter is
equipped with a finite battery to store the harvested energy,
and a finite buffer to store the data that arrive during the
communication session. We consider delay sensitive applications
and maximize throughput while enabling timely delivery of
data with delay constraints. We show that the resulting delay
limited throughput maximization problem can be solved using
alternating maximization of two decoupled problems termed the
energy scheduling problem and the data scheduling problem. We
solve the energy scheduling problem using a modified directional

waterfilling algorithm with right permeable taps, water pumps,
and overflow bins and the data scheduling problem with forward
induction. Additionally, we identify the online optimum policy
for throughput maximization. We provide numerical results to
verify our analytical findings and to demonstrate the impact of
the finite data buffer capacity and the delay requirements on the
throughput. We observe that larger buffer sizes become useful
for more lenient delay requirements, and a data buffer size that
is comparable to the throughput within one time slot accounts
for the majority of the increase in throughput.

Index Terms—Energy harvesting, finite energy storage, finite
data storage, data delivery delay constraints, throughput maxi-
mization, two-way and two-way relay channels.

I. INTRODUCTION

Energy harvesting wireless networks employ nodes which

acquire their energy intermittently over the course of their

operation [1]. The source of the harvested energy may be

solar radiation, piezoelectric devices, RF signals, and other

external sources [2], [3]. The intermittent nature of energy

harvests requires careful scheduling of the available energy to

ensure uninterrupted operation of the communication system.

Physically, this entails storing the energy in a battery of finite

size and drawing the energy for transmission in a manner to

optimize the system performance while simultaneously ensur-

ing energy is not wasted. The impact of energy intermittency

and storage has been studied extensively in energy harvesting
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networks in recent years, see [1], [4]–[22] and many others. A

standing assumption in most previous work is that the energy

harvesting transmitters have an infinite capacity buffer to store

their data until an opportune time arises for transmission. In

practice, data may also be received intermittently and neither

an infinite backlog of data nor an infinite capacity buffer may

be available, for example in energy harvesting sensors [19].

Furthermore, quality of service constraints such as a maximum

delay constraint also influence how transmission should be

scheduled. These aspects necessitate and motivate the study

of energy harvesting communications with these new added

ingredients of limited data buffers and delay requirements,

which is the focus of this paper.

Among the previous work in the area of energy harvest-

ing communications, particularly related to this work from

the perspective of modeling and analysis are references [1],

[4], [5], [9], [16]. In [1], the transmission completion time

minimization of an energy harvesting transmitter has been

solved with intermittent data arrivals, and an infinite capacity

battery and buffer at the transmitter. In [4], the through-

put maximization problem has been solved for an energy

harvesting transmitter with an infinite backlog of data, an

infinite capacity buffer, and a finite capacity battery. In [5],

directional waterfilling has been proposed and used to solve

the throughput maximization problem for the single user

fading channel and in [9], a generalized iterative directional

waterfilling algorithm has been shown to solve the sum-

throughput maximization in an interference channel. In [16], a

framework for throughput maximization in a wireless network

with energy harvesting transmitters and receivers, and energy

storage limitations is proposed and the throughput maximiza-

tion problem has been decoupled into energy efficiency and

energy harvesting adaptation problems. All of these references

assume knowledge of energy arrivals beforehand, the so-called

offline scenario, which provides exact maximum throughput

and thus a benchmark for performance as well as the comfort

of using deterministic convex optimization methods.

Another line of work includes references [23]–[25] that

have considered online scenarios where energy arrivals are

known only causally and considered optimizing the expected

long term throughput. In [23], the maximization of long term

expected throughput of a sensor network with rechargeable

batteries is studied and the optimal transmission policy that

determines whether a message should be transmitted depend-

ing on the available energy in the battery and the reward that

the transmission of the message brings is derived. In [24], the

long term expected throughput maximization for an infinite

battery energy harvesting broadcast channel is considered, and
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it has been shown that there exists an asymptotically optimal

transmission policy that keeps the data queues stable. In [25],

transmission policies that maximize the long term expected

throughput or minimize the mean delay in the data queue are

derived. Other previous work on online policies for throughput

maximization includes [19], [26]–[28]. References [19], [27]

have studied the long term average throughput maximization

problem for an energy harvesting transmitter. These two works

have considered a finite battery and a finite data buffer at the

transmitter just like we will, but utilize queuing and network

theoretic tools in order to identify asymptotically optimal

and near optimal policies for long term expected throughput

maximization.

In this work, we consider the short term throughput max-

imization problem1 with finite energy and data buffer con-

straints, as well as data delivery delay constraints in both

offline and online settings. We note that recent reference [29]

has also considered finite data buffers, for offline transmission

completion time minimization, which is the dual problem

to the short term throughput maximization problem that we

consider here. In particular, reference [29] has considered the

special case where the transmitter is required to transmit all

of the packets it receives. By contrast, we will not have this

restriction and observe that, by allowing dropped packets, we

can provide the system design insights for optimal operation.

Furthermore, our solution methodology will extend to multi

terminal networks.

We summarize the contributions of this paper as follows:

1. We solve the throughput maximization problem for en-

ergy harvesting networks in the presence of (i) energy storage

constraints, (ii) data buffer constraints, and (iii) quality-of-

service requirements in the form of delay constraints. We

initially consider an offline setting for one energy harvesting

transmitter with finite energy and data storage constraints. Our

approach to solve this problem is by decomposing it into an

energy scheduling problem and a data scheduling problem.

Alternating maximization between these two smaller problems

iteratively solves the delay limited throughput maximization

problem.

2. We identify a directional waterfilling [5] interpretation

for the solution of the energy scheduling problem. To do so,

we add the new notions of water pumps and overflow bins to

directional waterfilling. For the data scheduling problem, we

show the optimality of a forward induction based solution.

3. Next, we extend the solution for the delay limited

throughput maximization problem to multi terminal networks

with energy harvesting. To do so, we study the energy har-

vesting two-way channel, the energy harvesting two-way relay

channel.

4. In addition to analytically solving the offline optimization

problems, we also study the online setup where energy and

data arrivals are known causally. We identify various properties

of the optimal online policy for simplification of the search

space, and utilize dynamic programming to find the optimal

policy.

1Short term throughput is defined as the amount of reliably communicated
data in a communication session of duration T [5].

Fig. 1. The energy harvesting single user channel with a finite battery and a
finite buffer at the transmitter.

We provide numerical results to assess the performance of

the optimal policies, and how the data buffer capacity and

the delay requirements impact the optimal throughput. We

observe that data buffer sizes comparable to the throughput

within one time slot on average are sufficient to obtain most of

the optimal throughput and larger buffers bring in diminishing

returns. In addition, stricter delay requirements result in a

lower throughput, but require smaller data storage on average.

The remainder of this paper is organized as follows. In

Section II, we describe the system model for the energy

harvesting single user channel, and formulate the short term

offline optimization problem. In Section III, we solve the

problem using alternating maximization. In Section IV, we

extend our results to the two-way channel. In Section V, we

further extend our results to the two-way relay channel and

comment on its special cases, i.e., the two-hop relay and the

multiple access channels. In Section VI, we identify optimum

online policies. In Section VII, we provide simulation results.

In Section VIII, we conclude the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an energy harvesting transmitter communicating

with a receiver through a block fading channel2. The transmit-

ter harvests energy and receives delay constrained data packets

over the course of the communication session, which are stored

in an on board battery and a data buffer. The battery and the

data buffer have finite capacities Emax and Bmax, respectively;

excess energy and data that cannot be stored are discarded. The

model is depicted in Fig. 1. We will consider the two-way,

two-way relay, and multiple access channels as extensions in

Sections IV and V.

We consider communication with a deadline in a block

fading channel. The communication session consists of N time

slots of duration ℓ. We denote the fading coefficient in time

slot n by hn. Without loss of generality, we consider unit

noise variance at the receiver. Transmitter T1 allocates transmit

power pn ≥ 0 in time slot n and discards wn ≥ 0 units of

energy to avoid battery overflows3. The total number of bits

communicated through the channel in time slot n is ℓC(hnpn)
where C(x) = 1

2 log(1 + x). In time slot n, node T1 harvests

En units of energy, receives Bn units of data, and removes

dn units of data from its data buffer. We consider a delay

2As usual the additive noise at the receiver is assumed to be white Gaussian.
3We aim to find energy efficient transmission policies that maximize the

throughput and spend the least amount of energy while doing so. We identify
excess energy amounts wn that cannot improve the throughput, but can be
used for other purposes such as energy transfer [30].
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limited scenario where the data received in time slot n expires

if not sent before the end of time slot n + τ as was in [29].

However, we do not require the successful transmission of all

data packets before they expire, but instead allow node T1 to

drop some of its data packets if timely delivery of all packets

is infeasible. The expired packets are immediately dropped by

node T1. dn includes data transmitted to the receiver as well

as data dropped due to limited buffer size, and data dropped

due to unmet delay constraints.

Remark 1: Through dn, the model allows node T1 to drop

some of the data in the buffer if future data arrivals are to cause

an overflow. As a result, our approach proactively eliminates

infeasibilities stemming from the finite buffer size, and allows

us to identify jointly optimal transmission and packet dropping

policies even if transmitting all data by the deadline is not

feasible. This feature sets our approach apart from previous

treatments.

The amount of data that is conveyed to the receiver in time

slot n is the minimum of the amount of data scheduled to leave

the buffer and the amount of data that can be transmitted by

the allocated power, i.e., min{ℓC(hnpn), dn}. Therefore, the

amount of data dropped due to buffer or delay constraints is

given by dn − min{ℓC(hnpn), dn}. We define our objective

as the throughput of the system with a penalty c ≥ 0 per

dropped data unit, and formulate the delay limited throughput

maximization problem with penalty c as4

max
p,w,d≥0

N
∑

i=1

min{ℓC(hipi), di}

− c

N
∑

i=1

(di −min{ℓC(hipi), di}) (1a)

s.t.

n
∑

i=1

(ℓpi + wi) ≤

n
∑

i=1

Ei, (1b)

n
∑

i=1

Ei −

n
∑

i=1

(ℓpi + wi) ≤ Emax, (1c)

n
∑

i=1

di ≤
n
∑

i=1

Bi,
n
∑

i=1

Bi −
n
∑

i=1

di ≤ Bmax, (1d)

n
∑

i=1

di ≥

n−τ
∑

i=1

Bi, n = 1, 2, . . . , N. (1e)

Here, (1b) and (1c) represent the energy constraints and (1d)

and (1e), the data constraints. Constraint (1b) is the energy

causality constraint [1] which ensures that the total amount

of energy consumed for transmission or discarded up to the

end of time slot n is limited by the total amount of energy

harvested by that time. Constraint (1c) is the battery capacity

constraint [4] which ensures that the amount of energy stored

in the battery is not greater than the battery capacity. The first

constraint in (1d) is the data causality constraint which ensures

that the data leaving the buffer has already arrived. The second

constraint in (1d) is the buffer capacity constraint [29] which

4As is generally the case in the literature, e.g., [1], [14], [29], we too assume
that the data packet sizes are sufficiently small so that we can model data as
a continuous variable.

limits the amount of data stored in the buffer to the buffer

capacity. Constraint (1e) is the delay constraint which ensures

that no expired data remains in the buffer. We use bold face

to denote vectors of decision variables, e.g., p = [p1, . . . , pN ].
A finite c for the penalty models a data loss tolerant scenario,

i.e., data loss is acceptable for the sake of the feasibility of

the problem. Data loss is unacceptable with c = ∞ as in [29].

Since all constraints are linear and the objective is concave,

(1) is a convex problem.

Remark 2: One can envision a delay limited communication

scenario with heterogeneous data where different data packets

may have different delay requirements. This would necessitate

the addition of data classes into the model and the reformu-

lation of (1) with a delay constraint for each class, similar to

(1e). Since we would need to track packets violating individual

data constraints, the resulting problem would be more involved

and is left as future work.

Remark 3: The penalty model can be readily extended to

any penalty function ζ that is convex and nondecreasing in the

total data lost, i.e., the second term in (1a) can be replaced

with −ζ(
∑N

i=1(di − min{ℓC(hipi), di})). While our results

are valid for any convex nondecreasing ζ, we focus on the case

of ζ(x) = cx in order to (i) provide a clear presentation of our

results and (ii) find closed form expressions for our solution

and its proof of optimality. We can envision an even more

general penalty function in a heterogeneous setting where the

penalty for the loss of data depends on the class of data. In this

work, we focus on homogeneous data where all packets are

equally significant and leave the study of the heterogeneous

setting as future work.

We next solve (1) for jointly optimal power and data

allocation policies.

III. THROUGHPUT MAXIMIZATION FOR THE SINGLE USER

CHANNEL

In this section, we solve the delay limited throughput

maximization problem by decoupling it into smaller problems

which we next solve individually. We begin by noting that

the feasible region of (1) is separable. Namely, the energy

constraints (1b) and (1c) are functions of energy variables

p and w only, and the data constraints (1d) and (1e) are

functions of data variable d only. Thus, the feasible region

of (1) is the Cartesian product of the set of all (p,w)
satisfying (1b) and (1c) and the set of all d satisfying (1d) and

(1e). Therefore, we can solve the convex program (1) using

alternating maximization [31, §2.7]. That is, we start with an

initial feasible d, and solve (1) for (p,w). Given these energy

variables, we next solve (1) for d. By iterating between the

energy and data variables in this fashion, we can solve for one

while keeping the other constant, and monotonically converge5

to a jointly optimal power and data allocation policy for the

energy harvesting single user channel [31, §2.7], [32].

We next formulate the decoupled energy and data schedul-

ing problems for (1) where we use a superscript in square

brackets to denote the iteration index. For instance, p[m] is

5Convergence to a unique optimal policy can be facilitated by regularizing
the objectives as was done in [9].



0733-8716 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2545418, IEEE Journal
on Selected Areas in Communications

4

the power vector p found in the mth iteration. Suppose d[0] is

an arbitrary initial solution that satisfies (1d) and (1e). In the

mth iteration, we update the energy variables (p[m],w[m]) by

solving the energy scheduling problem given by

arg max
(p,w)≥0

N
∑

i=1

min{ℓC(hipi), d
[m−1]
i } (2a)

s.t.

n
∑

i=1

(ℓpi + wi) ≤

n
∑

i=1

Ei, (2b)

n
∑

i=1

Ei −

n
∑

i=1

(ℓpi + wi) ≤ Emax, (2c)

for n = 1, 2, . . . , N where we simplify the objective by

removing −c
∑N

i=1 di, which depends only on d, and dividing

by 1 + c > 0. In the same block iteration, we update the data

variables d[m] by solving the data scheduling problem given

by

arg max
d≥0

N
∑

i=1

min{di, ℓC(hip
[m]
i )} − c̃

N
∑

i=1

di (3a)

s.t.

n
∑

i=1

di ≤

n
∑

i=1

Bi,

n
∑

i=1

Bi −

n
∑

i=1

di ≤ Bmax, (3b)

n
∑

i=1

di ≥

n−τ
∑

i=1

Bi, (3c)

for n = 1, 2, . . . , N where c̃ = c/(1+c) ≥ 0. In what follows,

we identify the solutions to the energy scheduling problem (2)

and the data scheduling problem (3) based on waterfilling and

forward induction, respectively.

A. Solution of the Energy Scheduling Problem

In order to solve (2), we derive an equivalent problem

that shows the interaction between the two problems more

explicitly and admits a modified directional waterfilling inter-

pretation for its solution. We first note that we can leverage

the invertibility and monotonicity of C(·) to rewrite the

objective of (2) as ℓ
∑N

i=1 C(himin{pi, Pi}) where we define

Pn , C−1(d
[m−1]
n /ℓ)/hn for n = 1, 2, . . . , N . It is now clear

that the solution of the data scheduling problem in the previous

iteration introduces a maximum power for each time slot in

the energy scheduling problem. Note that all Pn are constant

and can be computed before solving the problem.

Lemma 1: Problem (2) is equivalent to

arg max
(p,w)≥0

N
∑

i=1

C(hipi) (4a)

s.t.

n
∑

i=1

(ℓpi + wi) ≤

n
∑

i=1

Ei, (4b)

n
∑

i=1

Ei −

n
∑

i=1

(ℓpi + wi) ≤ Emax, (4c)

pn ≤ Pn, n = 1, 2, . . . , N. (4d)

Proof: Suppose (p,w) is a feasible policy (2) with pn >
Pn for some n. Define another policy (p̃, w̃) by p̃i = pi and

Fig. 2. Directional waterfilling with right permeable taps and pumps for (a)
pn < Pn and (b) pn ≥ Pn. Initial allocations are shown on the left, and the
optimal allocations are shown on the right. The elements between time slots
are, from top to bottom, taps, water pumps, and overflow bins.

w̃i = wi for all i 6= n, p̃n = Pn, and w̃n = wn + ℓpn − ℓPn.

(p̃, w̃) is feasible as well since ℓpi +wi = ℓp̃i + w̃i for all i,
and attains the same objective as (p,w) does. Thus, at least

one policy that solves (2) also satisfies pn ≤ Pn for all n.

In order to obtain a waterfilling interpretation of the solution

of (4), we derive the stationarity condition on pn and wn as

(

pn +
1

hn

)−1

=

N
∑

i=n

(λi − µi) + νn − κn, (5)

γn =

N
∑

i=n

(λi − µi), (6)

where λn and µn are the nonnegative dual variables associated

with the energy causality and battery capacity constraints

(4b) and (4c); and νn, κn, and γn are those associated with

constraints pn ≤ Pn, pn ≥ 0, and wn ≥ 0, respectively.

The complementary slackness condition on pn ≤ Pn is

νn(pn − Pn) = 0. (7)

By (7), we must have νn = 0 whenever pn < Pn. In this

case, there is sufficient data allocated by (3) in the previous

iteration; thus, the solution is the same as the directional water-

filling solution for an infinite backlog of data and Bmax = ∞
found in [5]. That is, we model the time slots as rectangular

bins (see Fig. 2) of width ℓ with base levels of height 1/hn,

and model the energy arrivals as En units of water that are

initially filled into the nth bin. The water level in each bin

denotes the power allocated for the corresponding time slot.

The taps between adjacent bins are right permeable, i.e., they

allow water to flow only from left to right, and they turn off

when the amount of water transferred to the next bin is Emax

due to (1b) and (1c). An example of directional waterfilling

with pn < Pn is shown in Fig. 2(a), where the initial water

level is higher in the first time slot. This results in water flow

to the next time slot through the directional tap. Once the

battery is full in the second time slot, the tap turns off and

does not allow any water flow even though the water level in
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the first time slot is still higher.

On the other hand, if νn > 0, by (7) we must have pn = Pn.

Notice that pn is decreasing in νn in (5). That is, a positive

νn results in a decrease in pn until pn = Pn. No more than

Pn units of power are allowed in each time slot, i.e., the

data allocated by (3) in the previous iteration results in a

maximum power of Pn for each time slot. We interpret this

phenomenon by introducing water pumps and overflow bins

to directional waterfilling. The water pump for the nth time

slot is inactive as long as pn ≤ Pn. However, if this constraint

is violated by the initial water levels, or the operation of the

right permeable taps, then the water pump is activated. The

water pump is responsible for bringing the water level down

to Pn by pumping water first to the next time slot until total

water flow reaches Emax, after which it pumps water into

the overflow bin. Here, the water in overflow bin represents

wn, i.e., discarded or wasted energy. An example is shown in

Fig. 2(b), where the initial water level is higher in the second

time slot, so the tap is off. However, since pn > Pn, i.e., there

is not enough data in the first time slot to utilize the transmit

power to its full extent, the pump is activated. Water is pumped

to the second time slot until the battery is full, at which point

the excess water is discarded into the overflow bin.

Theorem 1: The directional waterfilling algorithm with

water pumps and overflow bins outputs the unique optimal

policy for (4).

Proof: Problem (4) is convex with a strictly concave

objective. Thus, its Karush-Kuhn-Tucker (KKT) conditions,

given by (5) and (6), and the respective complementary

slackness and dual feasibility conditions, are satisfied by only

one policy which is necessarily the unique solution to (4).

Let pn, wn, and tn denote the transmit power, the amount

of discarded energy, and the amount of energy pumped to the

next bin in the nth time slot found by the waterfilling solution.

If Pn = 0 for some n, then νn ≥ 0 and κn ≥ 0 can be freely

chosen to satisfy (5) and (6). Hence, without loss of generality,

we consider Pn > 0 for all n. If pn = 0 for some n, then hn

must be too low for efficient transmission. κn ≥ 0 is free and

we have νn = 0. We can set

γn =

{

γn−1, if pn−1 +
1

hn−1
≤ pn+1 +

1
hn+1

,

γn+1, if pn−1 +
1

hn−1
> pn+1 +

1
hn+1

,
(8)

and the KKT conditions are satisfied by κn = max{γn −
hn, 0}.

Now suppose without loss of generality that Pn > 0 and

pn > 0 for all n. We set the dual variables as

νn =







tn, if wn = 0,
(

pn + 1
hn

)−1

, if wn > 0,
(9)

γn =



























γn+1, if 0 < en < Emax,
(

pn + 1
hn

)−1

, if en = 0,
(

pn + 1
hn

)−1

− νn, if en = Emax and wn = 0,

0, if wn > 0,

(10)

λn = max{γn − γn+1, 0}, (11)

µn = max{γn+1 − γn, 0}, (12)

κn = 0, (13)

for n = 1, 2, . . . , N , where γN+1 = 0 and en =
∑n

i=1(Ei −
lipi − wi). The stationarity condition in (6) and the non-

negativity of λn, µn, νn, and κn are trivially satisfied. The

stationarity condition in (5), the complementary slackness

conditions, and the nonnegativity of γn can be shown to hold

by induction using (10) and the water flow dynamics outlined

by the directional waterfilling algorithm.

Having identified all optimal policies for the energy schedul-

ing problem, we next solve the data scheduling problem.

B. Solution of the Data Scheduling Problem

The data scheduling problem determines the optimal d, i.e.,

how much data departs the data buffer in each time slot. If the

transmit power scheduled by (2) does not suffice to transmit

dn in its entirety for some n, the remaining data is dropped. As

such, p
[m]
n defines a maximum throughput Dn , ℓC(hnp

[m]
n )

for each time slot. Problem (3) does not have a strictly concave

objective, and thus may have multiple solutions. By utilizing

the linearity of the objective for dn ≤ Dn, we characterize

the optimal policy that transmits packets as soon as possible

and uses the buffer in a first-in-first-out fashion. That is, when

the policy schedules dn units of data to depart the buffer, the

oldest dn units of data are transmitted or dropped.

When τ = 0, the data constraints (1d) and (1e) become

a single equality constraint, and the only feasible, and hence

optimal scheduling is dn = Bn for n = 1, . . . , N . For τ > 0,

we express the solution recursively starting from the first time

slot, and show its optimality by induction.

Theorem 2: Problem (3) admits an optimal policy d =
[d1, . . . , dN ] which is given by

dn = bn−1 − bn +Bn, n = 1, . . . , N. (14)

Here, bn is the amount of data in the buffer at the end of time

slot n, which evolves as

bn = max {0,min {Bmax, bn−1 +Bn −Dn − dexpn }} (15)

for n = 1, . . . , N where b0 = 0, and

dexpn =















0, n = 1, . . . , τ,

max
{

0, bn−1 −
∑n−1

i=n−τ Bi −Dn

}

,

n = τ + 1, . . . , N,

(16)

is the amount of data that will expire at the end of time slot

n and needs to be dropped.

Proof: Suppose d̃ is a policy that differs from d in the first

time slot. We will consider three cases, namely (i) B1−D1 ≤
0, (ii) 0 < B1 − D1 ≤ Bmax, and (iii) B1 − D1 > Bmax.

In cases (i) and (ii), d̃1 < d1 leaves additional data in the

buffer which could have been transmitted in the first time slot,

whereas in case (iii), d̃1 < d1 violates (1d). On the other hand,

in case (i), d̃1 > d1 is infeasible, and in cases (ii) and (iii),

d̃1 > d1 drops additional data that could have been transmitted

in future time slots. Hence, d̃ cannot outperform d in the first
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Algorithm 1 Throughput maximization algorithm.

1: Set m = 0.

2: Initialize d[0] = [B1, B2, . . . , BN ].
3: do

4: Update m := m+ 1.

5: Initialize p[m] = [E1, E2, . . . , EN ]/ℓ and w[m] = 0.

6: Find Pn = C−1(d
[m−1]
n /ℓ)/hn for n = 1, 2, . . . , N .

7: Run the waterfilling algorithm to update p[m] and

w[m].

8: if τ = 0 then

9: Set d[m] = d[0].

10: continue

11: end if

12: Find Dn = ℓC(hnp
[m]
n ) for n = 1, 2, . . . , N .

13: Set b0 = 0.

14: for n = 1, 2, . . . , N do

15: Find dexpn using (16).

16: Set bn = max{0,min{Bmax, bn−1 + Bn − Dn−
dexpn }}.

17: Set d
[m]
n = bn−1 − bn +Bn.

18: end for

19: while (p[m],w[m],d[m]) 6= (p[m−1],w[m−1],d[m−1])
20: return (p[m],w[m],d[m])

time slot, i.e., no other policy can transmit more data or drop

less data in the first time slot.

Now suppose no policy outperforms d in the first n − 1
time slots, and d̄ is a policy with d̃i = di for i = 1, . . . , n−1.

Consider the cases (i) bn−1 +Bn −Dn ≤ 0, (ii) 0 < bn−1 +
Bn −Dn ≤ Bmax + dexpn , and (iii) B1 −D1 > Bmax in time

slot n. In cases (i) and (ii), d̃n < dn leaves additional data

in the buffer which could have been transmitted in the first

time slot, whereas in case (iii), d̃n < dn violates (1d). On the

other hand, in case (i), d̃n > dn is infeasible, and in cases (ii)

and (iii), d̃n > dn drops additional data that could have been

transmitted in future time slots. Hence, d̃ cannot outperform

d in time slot n, and by induction, d cannot be outperformed

by any other feasible data schedule.

We note that when there is sufficient transmit power sched-

uled by (2), delaying the transmission of some packets by

leaving more data in the buffer could result in the same

objective, assuming the delayed transmission is still feasible.

However, we design d to maximize the transmitted data and

minimize the dropped data on a slot-by-slot basis, assuming

optimality for the past time slots. In doing so, we identify the

optimal policy that never leaves packets for future time slots

unless it is necessary to leave them due to Dn. Although there

may be multiple solutions to (3), d is unique in the sense that

it also minimizes individual packet delays. This completes the

solution of the data scheduling problem.

We present the solution of the delay limited throughput

maximization problem for the single user channel in Al-

gorithm 1. We next extend our findings to multi terminal

networks.

Fig. 3. The energy harvesting two-way channel with a finite battery and a
finite buffer at the transmitters.

IV. THROUGHPUT MAXIMIZATION FOR THE TWO-WAY

CHANNEL

A. System Model and Problem Statement

We next consider a block fading two-way channel with

energy harvesting transmitters T1 and T2 as in Fig. 3. Both

transmitters receive data intermittently to send to each other

which they store in their respective data buffers. Node Tj

employs a finite battery of capacity Ej,max and a finite data

buffer of capacity Bj,max, j = 1, 2. We consider delay

constrained communication over N time slots of duration ℓ,
and block fading with fading coefficients h1,n from T1 to

T2, and h2,n from T2 to T1 in time slot n. Without loss of

generality, both nodes have unit variance noise.

We consider half duplex nodes and let ∆n ∈ [0, 1] denote

the fraction of the nth time slot that is reserved for T1’s

transmission. Thus, node T1 transmits for ℓ∆n seconds and

node T2 transmits for ℓ(1 −∆n) seconds in time slot n. Let

pj,n denote the average transmit power chosen by Tj in time

slot n, averaged over the entire time slot. The total amount of

data that node T1 can transmit is at most ℓ∆nC(h1,np1,n/∆n).
Likewise, the amount of data that node T2 can transmit is at

most ℓ(1−∆n)C(h2,np2,n/(1−∆n)).
In time slot n, Tj harvests Ej,n units of energy, receives

Bj,n units of data, schedules transmit power pj,n, discards

wj,n units of energy, and pulls dj,n units of data from its

buffer. We denote by τj the maximum delay for node Tj’s

data. That is, packets arriving at Tj must be transmitted or

dropped within τj time slots of their arrival. The transmission

of expired packets does not contribute to the sum-throughput,

thus the expired packets are immediately dropped at both

nodes.

For this model, we aim to find optimal transmission poli-

cies that maximize the sum-throughput of the network while

satisfying delay requirements, and simultaneously minimize

the lost data at both nodes. Let Tj(pj,n, dj,n,∆n) denote the

amount of data that node Tj can send in time slot n. We have

T1(p1,n, d1,n,∆n) = min

{

ℓ∆nC

(

h1,np1,n
∆n

)

, d1,n

}

, (17)

T2(p2,n, d2,n,∆n) = min

{

ℓ(1−∆n)C

(

h2,np2,n
1−∆n

)

, d2,n

}

.

(18)

We formulate the delay limited throughput maximization prob-

lem with penalty c for the two-way channel as

max
p,w,d≥0,
0≤∆≤1

2
∑

j=1

N
∑

i=1

[Tj(pj,i, dj,i,∆i)

− c(dj,i − Tj(pj,i, dj,i,∆i))] (19a)
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s.t.

n
∑

i=1

(ℓpj,i + wj,i) ≤
n
∑

i=1

Ej,i, (19b)

n
∑

i=1

Ej,i −

n
∑

i=1

(ℓpj,i + wj,i) ≤ Ej,max, (19c)

n
∑

i=1

dj,i ≤

n
∑

i=1

Bj,i, (19d)

n
∑

i=1

Bj,i −

n
∑

i=1

dj,i ≤ Bj,max, (19e)

n
∑

i=1

dj,i ≥

n−τj
∑

i=1

Bj,i, (19f)

j = 1, 2, n = 1, 2, . . . , N, (19g)

where we use the bold face notation to denote tuples of

decision variables across all users over all time slots, e.g.,

p = [p1,1, . . . , p1,N , p2,1, . . . , p2,N ], and ∆ = [∆1, . . . ,∆N ].
Note that (19b)–(19f) are the multi user extensions of (1b)–

(1e). We next solve (19) for jointly optimal transmission

policies.

B. Solution of the Delay Limited Throughput Maximization

Problem

The feasible region of (19) is separable between block

variable (p,w,∆) and data variable d, admitting a solution

using alternating maximization. Starting with an arbitrary

feasible d[0], we decompose (19) into an energy scheduling

problem where we find (p[m],w[m],∆[m]) by solving

arg max
(p,w,∆)≥0

2
∑

j=1

N
∑

i=1

Tj(pj,i, d
[m−1]
j,i ,∆i) (20a)

s.t.

n
∑

i=1

(ℓpj,i + wj,i) ≤
n
∑

i=1

Ej,i, (20b)

n
∑

i=1

Ej,i −

n
∑

i=1

(ℓpj,i + wj,i) ≤ Ej,max, (20c)

∆ ≤ 1, j = 1, 2, n = 1, 2, . . . , N, (20d)

and a data scheduling problem where we find d[m] by solving

arg max
d≥0

2
∑

j=1

N
∑

i=1

[Tj(p
[m]
j,i , dj,i,∆

[m]
i )− c̃dj,i] (21a)

s.t.

n
∑

i=1

dj,i ≤

n
∑

i=1

Bj,i, (21b)

n
∑

i=1

Bj,i −
n
∑

i=1

dj,i ≤ Bj,max, (21c)

n
∑

i=1

dj,i ≥

n−τj
∑

i=1

Bj,i, (21d)

j = 1, 2, n = 1, 2, . . . , N. (21e)

We start with the energy scheduling problem (20). We first

observe that the ∆n variables are not constrained by the energy

constraints (20b) and (20c), and they are not coupled, i.e., we

can optimize ∆n for each time slot given (p,w). We rewrite

the energy scheduling problem as

arg max
(p,w)≥0

2
∑

j=1

N
∑

i=1

Tj(pj,i, d
[m−1]
j,i ,∆∗

i ) (22a)

s.t.

n
∑

i=1

(ℓpj,i + wj,i) ≤

n
∑

i=1

Ej,i, (22b)

n
∑

i=1

Ej,i −

n
∑

i=1

(ℓpj,i + wj,i) ≤ Ej,max, (22c)

for j = 1, 2 and n = 1, 2, . . . , N where ∆∗
n is found as

arg max
0≤∆n≤1

[T1(p1,n, d
[m−1]
1,n ,∆n) + T2(p2,n, d

[m−1]
2,n ,∆n)]

(23)

for n = 1, 2, . . . , N . In other words, ∆∗
n is the optimal time

allocation for the two nodes’ transmission given their transmit

powers and data available for transmission. Suppose that the

data scheduling problem allocates sufficiently large amounts of

data in the previous time slot, i.e., we have d
[m−1]
1,n = d

[m−1]
2,n =

∞. In this case, we can use the concavity of C(·) to bound

the objective of (23) as

T1(p1,n, d
[m−1]
1,n ,∆n) + T2(p2,n, d

[m−1]
2,n ,∆n)

= ℓ∆nC

(

h1,n
p1,n
∆n

)

+ ℓ(1−∆n)C

(

h2,n
p2,n

1−∆n

)

(24a)

≤ ℓC(h1,np1,n + h2,np2,n) (24b)

where (24b) is an equality when ∆n =
h1,np1,n

h1,np1,n+h2,np2,n
.

However, the data scheduling problem may not necessarily

schedule as much data as can be transmitted for this choice

of ∆n. Thus, the data scheduling problem results in upper

and lower bounds on ∆n, i.e., the greatest ∆n = ∆n and

the smallest ∆n = ∆n such that nodes T1 and T2 are given

just enough time to transmit their available data, respectively.

These limits are found as the solutions to

∆nℓC

(

h1,n
p1,n

∆n

)

= d
[m−1]
1,n , (25)

(1−∆n)ℓC

(

h2,n
p2,n

1−∆n

)

= d
[m−1]
2,n , (26)

which are nonlinear equations with unique solutions that can

be obtained using the bisection method [33, §2.1] or the

Lambert W function [34]. The optimal time allocation ∆∗
n

for epoch n is then found as

∆∗
n =















min
{

max
{

h1,np1,n

h1,np1,n+h2,np2,n
,∆n

}

,∆n

}

,

if ∆n ≥ ∆n,
1
2 (∆n +∆n), if ∆n < ∆n,

(27)

for n = 1, 2, . . . , N . Note that in the second case with ∆n <
∆n, any ∆n such that ∆n ≤ ∆n ≤ ∆n is optimal and both

nodes have enough time to transmit all their data.

Having found the optimal ∆ given any (p,w), we go

back to solving (22). Note that by expressing ∆ in terms
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Fig. 4. The energy harvesting two-way relay channel with a finite battery at all nodes and a finite buffer at the transmitters.

of p and w, we have decoupled the energy scheduling

problem between nodes T1 and T2. Therefore, we can fur-

ther separate (22) between the two transmitters and identify

p
[m]
j = [p

[m]
j,1 , . . . , p

[m]
j,N ] and w

[m]
j = [w

[m]
j,1 , . . . , w

[m]
j,N ] for

each j = 1, 2. This approach decomposes (22) into two

single user energy scheduling problems which are equivalent

to (2) for each node. Thus, the waterfilling solution found

in Section III-A applies immediately in each iteration. The

data scheduling problem (21) can be reduced to single user

data scheduling problems as well. In order to accomplish this,

we first compute ∆
[m]
n using (27). We next solve (21) in

d
[m]
j = [d

[m]
j,1 , . . . , d

[m]
j,N ] for each j = 1, 2 separately, noting

that the objective and the constraints are separable between the

two transmitters. The optimization of each d
[m]
j is equivalent

to (3), and therefore the solution in Section III-B applies. This

concludes the solution of (19).

V. THROUGHPUT MAXIMIZATION FOR THE TWO-WAY

RELAY CHANNEL

A. System Model and Problem Statement

We next consider a more general channel model, namely

the block fading two-way relay channel, for delay limited

throughput maximization. This channel consists of three trans-

mitters, namely two energy harvesting source nodes T1 and T2

and an energy harvesting relay T0, as shown in Fig. 4. Node

Tj , j = 0, 1, 2, employs a finite battery of capacity Ej,max

to store its harvested energy. The source nodes receive data

intermittently over the course of the communication session.

The two source nodes cannot communicate directly, requiring

relay T0 for their communication. Source node Tk, k = 1, 2,

employs a finite data buffer of capacity Bk,max, whereas the

relay node T0 does not employ a data buffer and must forward

received packets immediately. The communication session is

composed of N time slots of duration ℓ. Without loss of

generality, we consider channel reciprocity, i.e., the block

fading coefficient is hk,n from Tk to T0 and from T0 to Tk,

k = 1, 2, in time slot n. All nodes experience unit variance

noise.

We focus on half duplex nodes and multiple access-

broadcast decode-and-forward relaying [35]. That is, each time

slot is divided into two phases: (i) the multiple access phase

in which the two transmitters send their data to the relay

simultaneously, and the relay decodes all incoming data, and

(ii) the broadcast phase in which the relay forwards nodes

T1 and T2’s data simultaneously, utilizing each transmitter’s

knowledge of its own data, see [35] for details on the relaying

scheme. We denote by ∆n ∈ [0, 1] the fraction of the nth time

slot that is reserved for the multiple access phase, and by ∆n

the fraction for the broadcast phase.

For j = 0, 1, 2, let Ej,n denote the amount of energy

harvested by Tj , wj,n the amount of energy discarded by Tj

in time slot n, and pj,n the average transmit power of Tj

averaged over the entire time slot. Likewise, for k = 1, 2, let

Bk,n denote the amount of data that transmitter Tk receives,

dk,n the amount of data that transmitter Tk removes from its

buffer in time slot n, and τk the maximum number of time

slots for which the delivery of the packets arriving at Tk can

be delayed. Similar to the previous models, all packets must

depart the buffers before they expire, and if they do expire,

their transmission does not contribute to the sum-throughput.

The amount of data each transmitter can send in each time

slot depends on the transmit powers for all nodes, ∆n, and the

data available at the transmitters, i.e., the amount of data they

have pulled from their buffers. In order to express the sum-

throughput for the two-way relay channel, we define [35]

g1(p0,n, p1,n, d1,n,∆n) = min

{

ℓ∆nC

(

h1,np1,n
∆n

)

,

ℓ(1−∆n)C

(

h2,np0,n
1−∆n

)

, d1,n

}

, (28a)

g2(p0,n, p2,n, d2,n,∆n) = min

{

ℓ∆nC

(

h2,np2,n
∆n

)

,

ℓ(1−∆n)C

(

h1,np0,n
1−∆n

)

, d2,n

}

, (28b)

gsum(p1,n, p2,n,∆n) = ℓ∆nC

(

h1,np1,n + h2,np2,n
∆n

)

.

(28c)

Here, gk(p0,n, p1,n, p2,n,∆n) constrains the amount of data

that node Tk can send in time slot n for k = 1, 2, and

models three factors that determine this amount: the individual

rate constraint for the multiple access phase for Tk, the

individual rate constraint for the broadcast phase for Tk,

and the data availability at node Tk. Due to the sum rate

constraint for the multiple access phase, we need to also define

gsum(p0,n, p1,n, p2,n,∆n) which constrains the total amount of

data that the two transmitters can send in time slot n. Since

we are interested in the sum-throughput for each epoch, we

define

T ({pj,n}, {dk,n},∆n) = min{g1(p0,n, p1,n, d1,n,∆n)

+ g2(p0,n, p2,n, d2,n,∆n), gsum(p1,n, p2,n,∆n)}, (29)

where {pj,n} = (p0,n, p1,n, p2,n) and {dk,n} = (d1,n, d2,n).
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Here, T ({pj,n}, {dk,n},∆n) is the sum-throughput for time

slot n given a choice of transmit powers, data availability, and

∆n.

For the channel model and the communication scheme

described above, we will identify optimal energy and data

allocation policies that maximize the sum-throughput of the

network, minimize lost data, and satisfy delay requirements

for both transmitters’ data. We formulate the delay limited

throughput maximization problem with penalty c for the two-

way relay channel as

max
p,w,d≥0,
0≤∆≤1

N
∑

i=1

T ({pj,n}, {dk,n},∆n)

− c
N
∑

i=1

(d1,i + d2,i − T ({pj,n}, {dk,n},∆n)) (30a)

s.t.

n
∑

i=1

(ℓpj,i + wj,i) ≤

n
∑

i=1

Ej,i, (30b)

n
∑

i=1

Ej,i −

n
∑

i=1

(ℓpj,i + wj,i) ≤ Ej,max, (30c)

n
∑

i=1

dk,i ≤

n
∑

i=1

Bk,i, (30d)

n
∑

i=1

Bk,i −
n
∑

i=1

dk,i ≤ Bk,max, (30e)

n
∑

i=1

dk,i ≥

n−τk
∑

i=1

Bk,i, (30f)

j = 0, 1, 2, k = 1, 2, n = 1, 2, . . . , N, (30g)

where p = [p0,1, . . . , p0,N , p1,1, . . . , p1,N , p2,1, . . . , p2,N ],
w = [w0,1, . . . , w1,1, . . . , w2,1, . . . , w2,N ], d = [d1,1, . . . ,
d2,1, . . . , d2,N ], and ∆ = [∆1, . . . ,∆N ]. We next solve (30)

for jointly optimal energy and data allocation policies.

B. Solution of the Delay Limited Throughput Maximization

Problem

We solve (30) by alternating maximization, noting that it

can be separated into an energy scheduling problem over

(p,w,∆) and a data scheduling problem over d. We start

with a feasible initial d[0], and update the solution in the mth

iteration (p[m],w[m],∆[m]) by solving the energy scheduling

problem given by

arg max
(p,w,∆)≥0

N
∑

i=1

T ({pj,n}, {d
[m−1]
k,n },∆i) (31a)

s.t.

n
∑

i=1

(ℓpj,i + wj,i) ≤

n
∑

i=1

Ej,i, (31b)

n
∑

i=1

Ej,i −

n
∑

i=1

(ℓpj,i + wj,i) ≤ Ej,max, (31c)

∆ ≤ 1, j = 0, 1, 2, n = 1, 2, . . . , N, (31d)

and d[m] by solving the data scheduling problem given by

arg max
d≥0

N
∑

i=1

[T ({p
[m]
j,n }, {dk,n},∆

[m]
i )− c̃(d1,i + d2,i)]

(32a)

s.t.

n
∑

i=1

dk,i ≤

n
∑

i=1

Bk,i, (32b)

n
∑

i=1

Bk,i −

n
∑

i=1

dk,i ≤ Bk,max, (32c)

n
∑

i=1

dk,i ≥

n−τk
∑

i=1

Bk,i, (32d)

k = 1, 2, n = 1, 2, . . . , N. (32e)

We solve the energy scheduling problem (31) by decompos-

ing it into single user energy scheduling problems. We observe

that we can first find the optimal ∆n for a given p and d by

solving

∆∗
n = arg max

0≤∆n≤1
T ({pj,n}, {d

[m−1]
k,n },∆n) (33)

for n = 1, 2, . . . , N . Consequently, the maximum sum-

throughput for time slot n is T ({pj,n}, {d
[m−1]
k,n },∆∗

n). Prob-

lem (33) represents sum-throughput maximization for a given

time slot in the two-way relay channel with maximum data

amounts d
[m−1]
1,n and d

[m−1]
2,n . We know from reference [11] that

there exists at least one optimal policy for (31) which operates

on the front face of the rate region for the multiple access

phase. That is, there exists a solution with sum-throughput

equal to gsum(p1,n, p2,n,∆n) in every time slot. Hence, to

solve (33), we consider the three cases shown in Fig. 5. The

intersection of the multiple access region and the broadcast

region, shown in Fig. 5 in blue and red, respectively, determine

which one of these three cases will be valid for given transmit

powers. Since the broadcast region and the data availability

region are both rectangular, we lump these two constraints

and represent them by a single rectangle in Fig. 5.

Instead of solving three different versions of (33), we

express T ({pj,n}, {d
[m−1]
k,n },∆∗

n) as the minimum of three

sum rates. Note that in all three cases, the maximum sum-

throughput is equal to ḡsum(p1,n, p2,n,∆n) evaluated at dif-

ferent ∆n values. However, only one of these ∆n values

will yield a feasible sum-throughput, depending on the given

transmit powers. Hence, out of the three ∆n values, we need

to choose the one with the lowest sum-throughput, i.e.,

∆∗
n = arg min

α=1,2,3
gsum(p1,n, p2,n,∆

∗
n,α) (34)

where ∆∗
n,α, α = 1, 2, 3 are found by solving

∆∗
n,1C

(

h1,np1,n + h2,np2,n
∆∗

n,1

)

= (1−∆∗
n,1)

(

C

(

h1,np0,n
1−∆∗

n,1

)

+ C

(

h2,np0,n
1−∆∗

n,1

))

,

(35a)
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(a) (b) (c)

Fig. 5. The three cases for the sum-throughput T ({pj,n}, {d
[m−1]
k,n

},∆∗

n). The set of all throughput pairs that can be obtained in the multiple access phase

is shown with blue borders. The set of all throughput pairs smaller than d
[m−1]
1,n and d

[m−1]
2,n , respectively, that can be obtained in the broadcast phase is

shown with red borders. The shaded region is the intersection of these two regions, and the throughput pair in this region that has the largest sum-throughput
is marked with a dot.

∆∗
n,2C

(

h1,np1,n
h2,np2,n +∆∗

n,2

)

= min

{

(1 −∆∗
n,2)C

(

h2,np0,n
1−∆∗

n,2

)

,
d
[m−1]
1,n

ℓ

}

, (35b)

∆∗
n,3C

(

h2,np2,n
h1,np1,n +∆∗

n,3

)

= min

{

(1 −∆∗
n,3)C

(

h1,np0,n
1−∆∗

n,3

)

,
d
[m−1]
2,n

ℓ

}

. (35c)

The left hand sides of equations (35) increase from 0 to

their respective maxima as ∆∗
n,α is increased from 0 to 1.

Conversely, the right hand sides decrease from their respective

maxima to 0 as ∆∗
n,α is increased from 0 to 1. Therefore, all

three equations have a unique solution which can be found

using simple root finding algorithms such as the bisection

method.

We next solve (31) for p[m] and w[m]. Note that the

coupling between the three nodes is now removed with the

separate optimization of ∆n. Thus, the feasible region of (31)

is separable between the three nodes. For j = 0, 1, 2, we

solve (31) for node Tj using the waterfilling solution given

in Section III-A since (31) is equivalent to (2) when the

optimization is restricted to only one node’s energy variables.

Likewise, the data scheduling problem (32) reduces to single

user data scheduling problems that are equivalent to (3) and

can be solved using the optimal data allocation policy found

in Section III-A. As such, we obtain the solution to the delay

limited sum-throughput maximization problem for the half

duplex two-way relay channel.

Remark 4: The two-hop relay channel is a special case of

the two-way relay channel with data flow in only one direction,

e.g., from T1 to T2. The optimal policy can thus be found by

setting the energy and data profile for T2 to have no arrivals.

In this case, the multiple access phase corresponds to the

duration in which T1 sends its data to the relay, i.e., the first

hop, and the broadcast phase corresponds to the second hop

in which the relay forwards T1’s data to T2. The multiple

access channel is also a special case of the two-way relay

channel without the broadcast phase. Hence, there is no need

for ∆n optimization, and the sum-throughput is constrained

by the multiple access phase constraints only. The energy and

data scheduling problems can be separated between the two

transmitters, and the resulting single user problems can be

solved using the solutions found in Section III.

Remark 5: Our results can be readily extended to the full

duplex two-way and two-way relay energy harvesting channels

with perfect self-interference cancellation. This is done by

eliminating ∆n from the analysis, leading to two separate

single user channels for the two-way channel, and rendering

the ∆n optimization in (34) unnecessary for the two-way

relay channel. In practice, full duplex systems have residual

self-interference. Studying these models with realistic self-

interference constraints is an interesting future direction.

Remark 6: In this paper, we address delay limited commu-

nication and therefore consider a relay which forwards data

immediately without buffering it. While the identified policies

can certainly be used in the setting where the relay is capable

of buffering data, they may or may not yield the optimum

policy, since data buffering at the relay can potentially improve

throughput under certain system parameters.

Remark 7: There has been limited contribution in energy

harvesting relay channels with relay buffers. For instance, ref-

erences [13], [36] have studied a half duplex energy harvesting

two-hop channel with backlogged data at the source and an

infinite data buffer at the relay. We have studied the impact of

the size of the relay’s data buffer in [37] and concluded that it

can be done away with under certain conditions. All of these

are for single-way relay communications. Sum-throughput

maximization for an energy harvesting two-way relay channel

with relay data buffer remains an open problem and is an

interesting future direction.

Remark 8: The computational complexity of the solution

given in Section III-A for the energy scheduling problem

is O(N2) since the pn, wn, and tn values for each epoch

can be found using a binary search which necessitates the

recalculation of pn, wn, and tn for at most N − 1 epochs.

The computational complexity of the solution for the data

scheduling problem in Section III-B is O(N). The computa-
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tional complexity of Algorithm 1 is therefore O(N2) for the

single user channel, the two-way channel, and the two-way

relay channel since alternating maximization is guaranteed to

converge in a finite number of iterations.

VI. ONLINE POLICIES

So far we considered the offline setting where the complete

energy and data arrival profiles are available to design the

transmission policies offline. This approach is applicable to

settings with predictable arrivals, and also serves as a bench-

mark for the setting where arrivals are revealed causally to the

transmitters. In this section, we focus on this latter setting, and

provide online policies which only require causal knowledge

of energy and data arrivals. In doing so, we utilize properties

of the problem at hand for tractability. We consider the single

user channel in this section, i.e., the online counterpart of the

problem in Section III, and note that the extension to multi

terminal networks is straightforward.

In time slot n, the transmitter has knowledge of harvested

energy amounts En = (E1, . . . , En), data arrival amounts

Bn = (B1, . . . , Bn), block fading coefficients hn, and cur-

rent energy and data buffer states before arrivals, denoted

by xn−1 = (en−1, bn−1) with e0 = b0 = 0. Using this

information, the transmitter chooses the variables pn, wn, and

dn based on an action function

φn : (xn−1, E
n, Bn, hn) 7→ (pn, wn, dn). (36)

We consider the sum-throughput maximization problem, and

thus define Rn(φn(xn−1, E
n, Bn, hn)), the reward function

for the nth epoch as the sum-throughput corresponding to the

variables pn, wn, and dn given by φn(xn−1, E
n, Bn, hn). The

expected sum-throughput of the system from time slot n to

the end of the transmission is therefore the value function

Jn(xn−1, E
n, Bn, hn). In each time slot, the optimal action

φn is the one that maximizes the value Jn. Notice that the

value function can be defined recursively, as the sum of the

throughput of the current time slot and the expected value

function for the next time slot, which yields the Bellman

equations

JN (xN−1, E
N , BN , hN )

= max
φN

RN (φN (xN−1, E
N , BN , hN )), (37)

Jn(xn−1, E
n, Bn, hn) = max

φn

(

Rn(φn(xn−1, E
n, Bn, hn))+

EEn+1,Bn+1,hn+1|En,Bn

[

Jn+1(xn+1, E
n+1, Bn+1, hn+1)

])

,
(38)

for n = 1, . . . , N−1. In its current state, the dynamic program

solving (37) and (38) may be intractable since the value

function and the action function have an exponentially large

parameter space. Therefore, before we solve this problem,

we consider possible simplifications. We first note that there

exists an optimal action which chooses only pn and assigns

deterministic values to wn and dn.

Lemma 2: There exists an optimal action function in the

form of

φ∗
n : (xn−1, E

n, Bn, hn) 7→ (pn, w
∗
n, d

∗
n). (39)

where w∗
n = max{0, en−1 + En − ℓpn − Emax} and d∗n is

computed using (14).

Proof: We show that for any action function φn :
(xn−1, E

n, Bn, hn) 7→ (pn, wn, dn), there exists an action

function φ∗
n in the form of (39) which yields a value function

at least as good as that of φn. The choice of w∗
n and d∗n

in (39) implies only discarding energy and data that will

overflow if not discarded. Therefore, the action φ∗
n always

results in energy and data buffer states that are greater

than or equal to those of an arbitrary feasible φn. Since

JN (xN−1, E
N , BN , hN ) is nondecreasing in buffer states

xN−1, so is Jn(xn−1, E
n, Bn, hn) in xn−1, and therefore φ∗

n

performs no worse than any φn with the same pn.

As a consequence of Lemma 2, we can restrict our attention

to actions of the form (39) without loss of generality, and

only choose the optimal pn while calculating wn and dn
accordingly. Next, we consider the case where energy and data

arrivals are i.i.d. or first order Markov processes. This implies

that given En and Bn, En+1 and Bn+1 are independent of past

arrivals En−1 and Bn−1, and hence the expectation in (38)

can be rewritten to be independent of En−1 and Bn−1. In this

case, choosing a different action for different (En−1, Bn−1)
values is also redundant, and (37) and (38) can be revised as

JN (xN−1, EN , BN , hn)

= max
φN

RN (φN (xN−1, EN , BN , hN )), (40)

Jn(xn−1, En, Bn, hn) = max
φn

(

Rn(φn(xn−1, En, Bn, hn))

+ EEn+1,Bn+1,hn+1|En,Bn
[Jn+1(xn, En+1, Bn+1, hn+1)]

)

,
(41)

for n = 1, . . . , N−1. Note that in (40) and (41), the dimension

of the action and value functions is significantly decreased. At

this point, the optimal online transmission policy can be found

by solving (40) for the last epoch, and then solving (38) for

n = N − 1, N − 2, . . . , 1.

A simpler alternative online policy can be found by solving

J(x,E,B,h) = max
φ

(R(φ(x,E,B, h))

+ βEx′,E′,B′,h′|x,E,B [J(x′, E′, B′, h′)]) (42)

iteratively, where the states and the actions no longer depend

on the epoch index, and x′ denotes the next state. This is

the infinite horizon characterization of the online throughput

maximization problem with a discount factor β < 1. Problem

(42) can be solved by value iteration, i.e., by starting from

an arbitrary action φ and iterating until φ converges. This

approach provides a single action φ for all time slots, as

opposed to n actions φ1, . . . , φn for the case in (40) and

(41). As a result, this action is easier to store and implement

in practice. We implement this numerically in Section VII,

along with the original finite horizon problem, and assess

the resulting performance as compared to the offline optimal

policy found in Section III.

We note that the implementation entails quantizing the

input, state, and action variables for Q quantization levels.

The value iterations in (37) and (38) with the original def-

inition of actions in (36) require Q3 value updates, leading
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Fig. 6. Throughput for varying peak harvest rate Epeak resulting from various
transmission policies in a single user channel with Bpeak = 2 Mbit, Bmax =
1 Mbit, Emax = 50 mJ, and τ = 9 s.

to the computational complexity of O(NQ3), O(NQ6), and

O(NQ8) for the single user, two-way, and two-way relay

channels, respectively. By restricting the actions to the form

in (39) without loss of optimality, we reduce the complexity

to O(NQ), O(NQ2), and O(NQ3), respectively. We further

reduce the complexity by eliminating the time dependence

of the actions and propose the time-invariant infinite horizon

simplification in (42). The infinite horizon approach has com-

putational complexity O(Q), O(Q2), and O(Q3) for the single

user, two-way, and two-way relay channels, respectively.

VII. NUMERICAL RESULTS

For our simulations, we first consider a block fading

single user channel with Rayleigh power gains with mean

−110 dB, receiver noise spectral density 10−19 W/Hz, band-

width 1 MHz, and a communication session of N = 10 time

slots each of duration ℓ = 1 s. The energy harvests and data

arrivals are uniform in [0, Epeak] and [0, Bpeak], respectively.

We consider a delay constraint, i.e., a data loss tolerant

scenario unless otherwise stated. We specify the remaining

parameters for each setup in the captions of Figs. 6–12.

The performance of the policies identified in this paper is

compared with others in Fig. 6 for the single user channel.

Here, we plot the throughput of the offline and online solutions

(labeled “Offline policy” and “Online policy”), and upper and

lower bounds versus the peak harvested energy Epeak. For the

upper bound (Non-EH bound), we consider a classical, i.e.,

non-energy harvesting, transmitter where the total energy to

be harvested throughout the session is available at the start of

the session and thus only the data scheduling problem needs

to be solved. The “constant power” policy attempts to transmit

with transmit power Epeak/(2ℓ) whenever possible. The “no

battery” policy does not utilize the battery, and consumes all

harvested energy for transmission as soon as it is harvested.

The “no battery/buffer” policy does not utilize the battery or

the buffer, and discards unused energy or data at the end
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Fig. 7. Throughput for varying buffer sizes Bmax at the transmitter resulting
from various transmission policies in a single user channel with Bpeak = 2
Mbit, Epeak = 50 mJ, Emax = 50 mJ, and τ = 9 s.
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Fig. 8. Optimal throughput for varying buffer sizes Bmax and maximum
packet delays τ in a single user channel with Epeak = 5 mJ, Emax = 5 mJ,
B1 = B2 = B3 = 1 Mbit, and B4 = · · · = B10 = 0 Mbit.

of each time slot. As seen in Fig. 6, the offline and online

policies perform considerably better than the lower bounds.

The advantage of having data buffers is evident even for simple

transmission policies since the difference between “no battery”

and “no battery/buffer” policies is increasing in Epeak.

Fig. 7 shows the throughput resulting from the six trans-

mission policies for varying data buffer size Bmax. For the

offline policy in the setting of Fig. 7, we observe that on

average, a data buffer size roughly equal to the throughput

within one time slot accounts for most of the increase in

performance. We thus infer that larger buffers do not improve

throughput indefinitely. This saturation phenomenon arises for

other policies as well, except for the “no battery/buffer” policy

which does not use the buffer.

Fig. 8 demonstrates the impact of the packet delay constraint



0733-8716 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2545418, IEEE Journal
on Selected Areas in Communications

13

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2  

Peak harvest rate for the transmitter (mJ)

 

P
e

a
k
 d

a
ta

 a
rr

iv
a

l 
fo

r 
th

e
 t

ra
n

s
m

it
te

r 
(M

b
it
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9. The probability of infeasibility for varying peak harvest rate Epeak

and peak data arrival Bpeak in a single user channel with Emax = 50 mJ,
Bmax = 1 Mbit, τ = 9 s, and c = ∞.

on the optimal throughput and the required buffer size. For

clarity of exposition, we consider a bursty data arrival scenario

where 3 Mbits of data arrive at the transmitter within the first

three time slots, and there are no other data arrivals. As can be

seen, for low values of τ , the data packets need to be departed

quickly, and thus the throughput saturates at relatively small

buffer sizes. As τ is increased, the transmitter can utilize more

of its data buffer to avail the transmission of additional data

packets which would expire with low τ values. Hence, the

minimum buffer size required for optimality is increasing in τ .

This is because the use of larger data buffers implicitly delays

the transmission of some data packets that can contribute to

the throughput only if τ is sufficiently large.

In the next simulation setup, we set c = ∞, i.e., we do

not allow data loss. This is the requirement in reference [29]

and no solution exists unless all data packets can be sent to

the receiver. Fig. 9 shows the empirical probability of this

infeasibility, based on 10,000 trials over channel gains, energy

and data arrivals. As can be seen, lossless transmission is

feasible only when a sufficiently large amount of energy is

harvested or the incoming data rate is low. As the system

becomes energy deprived with smaller energy harvests or

larger data arrivals, the transmitter is compelled to drop some

data packets, and the probability of infeasibility increases. By

contrast, our formulation returns a non-zero throughput in all

of these scenarios (including those indicated with yellow) by

allowing packet loss, see for example Fig. 6.

We next simulate the two-way channel and the two-way

relay channel to investigate the interaction between the sizes

of the two data buffers at nodes T1 and T2, and their collective

impact on the throughput. Figs. 10 and 11 show the sum-

throughput for varying B1,max and B2,max. Similar to the

single user case, we observe that near optimal operation of

the network is attained with buffers that can store the sum-

throughput within one time slot on average. We also remark

the diminishing returns of larger data buffer sizes for both
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B2,max in a two-way channel with Epeak = 25 mJ and Ej,max = 50
mJ for all nodes, Bpeak = 0.5 Mbit for both transmitters, and τ1 = τ2 = 9
s.
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s.

nodes, in line with the single user case in Fig. 7.

Finally, Fig. 12 shows the sum-throughput resulting from the

offline solution in Section V and the finite and infinite horizon

online solutions in Section VI extended to the two-way relay

channel. As can be seen, the online solutions perform closely

to the offline solution in the case of the two-way relay channel

as well. Potentially larger energy arrivals at node T1 result

in a larger sum-throughput until the data arrivals become the

bottleneck of the system. As can be seen, the infinite horizon

simplification results in little loss compared to finite horizon

in exchange for lower complexity.

VIII. CONCLUSION

In this paper, we have studied (sum-)throughput maximiza-

tion for multiple energy harvesting setups including the single
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Fig. 12. Optimal sum-throughput for varying peak harvest rates at node T1

resulting from the offline and online solutions for the two-way relay channel
with Epeak = 25 mJ for nodes T2 and T0, Ej,max = 50 mJ for all nodes,
Bj,max = Bpeak = 0.5 Mbit for both transmitters, and τ1 = τ2 = 9 s.

user channel, the two-way channel, and the two-way relay

channel, with finite capacity data buffers at all nodes, in

addition to finite energy storage. We have considered a delay

limited block fading scenario which also penalizes data loss

at the source nodes. We have shown that the delay limited

throughput maximization problems for each model can be

decomposed into an energy scheduling problem and a data

scheduling problem, and can subsequently be solved using

alternating maximization. We have shown that the energy

scheduling problem admits a directional waterfilling solution

[5] with the addition of the new notions of water pumps

and overflow bins. We have solved the data scheduling prob-

lem using forward induction where we identify optimal data

amounts to transmit on a slot-by-slot basis. We have also

provided an online solution to the throughput maximization

problem using dynamic programming. We have assessed the

improvement provided by our optimal policy over simpler

solutions through numerical results, and verified our analytical

findings. In particular, we have observed that for lenient delay

requirements, data buffers that can store the data transmitted

within one time slot on average provide the majority of

the increase in throughput. However, with more strict delay

requirements, even smaller buffer sizes suffice since trans-

mitters cannot delay data packets any further by utilizing

a larger buffer. Future directions include examining energy

harvesting receivers as well as transmitters in the same setting

for these and other channel models, and considering priorities

on individual data packets.
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