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Abstract—This work considers an energy harvesting transmit-
ter that gathers a continuous flow of energy from intermittent
sources, thus relaxing the modeling assumption of discrete
amounts of harvested energy present in all previous work on
energy harvesting communications. Tools from convex analysis
are utilized to describe the optimal transmission policy as the
boundary of a properly defined region based on the energy
profile. The results are extended to include models where the
transmitter has a finite capacity battery with various imperfec-
tions, as well as those that incorporate a processing cost (circuit
power) at the transmitter whenever it is in operation.

Index Terms—Energy harvesting wireless transmitter, contin-
uous arrivals, throughput maximization, finite battery, battery
imperfections.

I. INTRODUCTION

Wireless communication networks comprised of devices

that harvest the energy needed for their operation are re-

cently introduced into wireless system design research [1],

[2]. Energy harvesting devices are those which intermittently

acquire energy over the course of their operation. They differ

from conventional communication devices in that they are not

guaranteed a constant power for their operation available at all

times. Instead, energy harvesting devices receive their energy

from external intermittent sources such as solar radiation,

wind, vibration, radio waves, or body heat [3]–[7]. Although

a continuous modeling better captures most of these sources,

initial work on energy harvesting communications has almost

exclusively assumed a packetized, i.e., discrete, model for the

arriving energy. The justification of such an approach has been

the need for a minimum energy amount for communication at

a meaningful scale, as well as the mathematical tractability of

the ensuing system optimization.

Energy harvesting has been studied in various communica-

tion models including single and multi user networks [1], [2],

[8], networks with relaying [9]–[14], devices with limited ca-

pacity batteries with imperfections [15]–[17], and cooperative

networks where the nodes can transfer their harvested energy

to one another [18], [19]. The simplest setup with one energy

harvesting transmitter and one receiver is studied in [1] with

the objective of minimizing the time of a file transfer to the

receiver. The problem of maximizing the total number of bits

the transmitter can send by a deadline is studied in [2], [20]

with a finite capacity battery at the transmitter. In particular,

reference [2] has shown that the optimal transmission policy

follows the shortest path in the feasible energy tunnel which

is defined by the cumulative harvested energy curve and a

minimum energy curve resulting from the finite capacity of the

battery. The throughput maximization problem is considered

for fading channels in [20] resulting in a directional water-

filling algorithm. Energy harvesting receivers are considered

in [21]–[23]. The multiple access energy harvesting channel

is studied in [8] where it is shown that the allocated sum

power should follow the shortest path in the feasible energy

tunnel in order to maximize the sum throughput. Other multi

user systems are studied in [9]–[14], [24]–[26] including the

broadcast channel, interference channel, and one way or bidi-

rectional relay channels. Battery imperfections have also been

studied such as decaying battery capacity [15], [16], leakage

at a constant rate [15], and proportional storage loss [17].

Reference [27] considers the energy cost for the processing

circuitry at the transmitter.

In this paper, we study a single user communication system

with an energy harvesting transmitter and a receiver. We

model the energy harvested at the transmitter as a continuous

function, and solve the throughput maximization problem to

identify optimal transmission policies. That is, we remove

the assumption of discrete energy arrivals in previous work.

We use tools from convex analysis to obtain a geometric

description of the problem and its optimal solution. We present

the optimal policy with an infinite battery, and also for a

finite battery; battery inefficiency in the form of a proportional

loss of all drawn energy; and a constant processing cost, e.g.,

circuit power at the transmitter. For the last two cases, we

solve the throughput maximization problem by constructing

an equivalent model, and then showing that the solution for

this model can be modified to yield the optimal policy for the

original model.

The remainder of this paper is organized as follows. In

Section II, we describe the energy harvesting communication

system, and state the throughput maximization problem. In

Section III, we identify the optimal transmission policy in

an ideal setting with a battery that has infinite capacity and

no imperfections. In Section IV, we extend our results to

settings where the battery at the transmitter is of finite capacity

that degrades (shrinks) in time. In Section V, we extend our

solution to settings with battery inefficiency and a processing

cost. In Section VI, we provide numerical results, and in



Fig. 1. The energy harvesting single user setup with continuous energy arrivals
and imperfect energy storage.

Section VII, we conclude the paper.

II. SYSTEM MODEL

Consider a wireless communication system with a trans-

mitter receiver pair. As shown in Fig. 1, the transmitter is

an energy harvesting node that receives energy from external

sources in a continuous fashion. The receiver node is assumed

to have a continuing source of energy which provides sufficient

power for decoding at any rate the transmitter can achieve.

The objective is to maximize the total number of bits that

depart the transmitter by the deadline T , as in [2], [11]–

[15], [17], [20], [21], [24], [25], [27]. The transmitter node

has a battery which harvests the arriving energy and stores

it. We denote the size of this battery at time t by Emax(t).
Throughout the paper, we will consider various settings for the

battery capacity. In Section III, we consider the battery with

infinite capacity: Emax(t) = ∞, ∀t ∈ [0, T ]. In Section IV,

we consider a finite constant capacity: Emax(t) = Emax ≤
∞, ∀t ∈ [0, T ], as well as finite capacity that is decreasing

in time: Emax(t) ≤ ∞, ∀t ∈ [0, T ], Emax(t1) ≤ Emax(t2)
for all t1 ≤ t2. In all of these settings, we have that the

battery capacity is non-increasing in time. We denote the

instantaneous rate at which the intermittent and continuous

energy arrives at the battery by g(t) at time t, and the

cumulative energy harvested by time t by h(t). We denote

by h0 ≥ 0 the energy available in the battery at the beginning

of transmission. Naturally, we have

h(t) = h0 +

∫ t

0

g(τ)dτ. (1)

We consider instantaneous energy arrival rates g(t) that are

non-negative and integrable. It directly follows that the cu-

mulative harvested energy curve h(t) is non-decreasing in

t, although it does not have to be continuous in t. We are

interested in identifying offline transmission policies, and thus

consider the case where non-causal knowledge of g(t) is

available for all 0 ≤ t ≤ T .

Following in part the notation in [15], we define the min-

imum energy curve as the minimum cumulative amount of

energy that has to be spent by time t, and denote it by m(t).
The minimum energy curve is not a physical constraint, but

a design imposed constraint, which arises from the fact that

the throughput maximizing policy should not allow battery

overflows as they result in waste of energy that otherwise

can be utilized for transmission of data. The minimum energy

curve is a function of the cumulative harvested energy h(t),
and the battery capacity Emax(t) ≥ 0. It can be calculated as

m(t) = max{h(t)− Emax(t), 0} (2)

for all t ∈ [0, T ]. Since h(t) is non-decreasing in t, and

Emax(t) is non-increasing in t, we have that the minimum

energy curve is non-decreasing in t, i.e., t1 ≤ t2 implies

that m(t1) ≤ m(t2). With the assumption that g(t) is known

beforehand for all t, h(t) and m(t) are also known non-

causally for all t. We let s(t) denote the cumulative amount

of energy that has been drawn from the battery by time t.
We assume that s(t) is continuous and differentiable, so that

its first derivative is the instantaneous rate of consumption at

which energy is drawn from the battery which we denote by

p(t). Due to potential battery imperfections and processing

costs, the transmitter may not be able to fully utilize the

drawn energy for transmission. Thus, we define a function

f : [0,∞) → [0,∞) which maps the instantaneous rate of con-

sumption to the instantaneous power at which the transmitter

can send its messages. Function f for different assumptions

on the battery and transmission circuitry at the transmitter can

be defined as follows:

• f(p) = p, ∀p for an ideal battery with no losses and no

processing costs,

• f(p) = ηp, ∀p for some 0 ≤ η ≤ 1 for an imperfect

battery which leaks a constant percentage of all drawn

energy, and no processing costs,

• f(p) = (ηp − c)+, ∀p for some 0 ≤ η ≤ 1 for an

imperfect battery with constant proportional loss and a

constant processing cost per unit time c ≥ 0 which

the transmitter incurs whenever it is in operation. Here,

(x)+ = max{x, 0}. Using this definition of f , we can

also model a battery that leaks some of the stored energy

at a constant rate whenever the transmitter draws energy

from it. In this case c denotes the sum of the processing

cost per unit time and the constant leakage rate.

We denote the instantaneous rate achieved from the trans-

mitter to the receiver by r(·), and characterize it as a function

of the instantaneous transmit power pT (t) , f(p(t)). We

consider rate functions that satisfy the following.

1) r(0) = 0,

2) r(·) is non-decreasing in transmit power, i.e., r(p1) ≤
r(p2) if p1 ≤ p2,

3) r(p) is concave in p.

As an example, consider a Gaussian channel with a channel

power gain of γ from the transmitter to the receiver, normal-

ized by the variance of the Gaussian noise. Then, we have

r(pT (t)) =
1

2
log (1 + γpT (t)) (3a)

=
1

2
log (1 + γf(p(t))) . (3b)



We assume during transmission that the transmitter has back-

logged data so that whenever it is optimal to transmit, the

transmitter will have enough data to transmit.

Our objective is to find optimal offline transmission policies

which maximize the total amount of bits that depart the

transmitter by deadline T , that is, we aim to solve the short

term throughput maximization problem

max
p(t)

∫ T

0

r(f(p(t)))dt (4a)

s.t. m(t) ≤

∫ t

0

p(τ)dτ ≤ h(t), ∀t ∈ [0, T ], (4b)

p(t) ≥ 0, ∀t ∈ [0, T ]. (4c)

Here, (4b) ensures that the amount of energy drawn from

the battery up until time t is never greater than the cumulative

harvested energy by t, and it is never less than the value of the

minimum energy curve at time t. It is worth reiterating that the

latter, i.e., the minimum energy curve follows from the obser-

vation that whenever a transmission policy s(t) =
∫ t

0
p(τ)dτ

goes below m(t), say at time t′, some energy will have to be

wasted. Hence, we can replace s(t) by another policy which

spends the wasted amount of energy before t′ and possibly

achieves a higher rate since r(p) is non-decreasing in p. For

a more detailed proof, see [2]. Constraint (4c) ensures that

the instantaneous rate of consumption p(t) is never negative,

which would impractically imply that the transmitter is able

to charge the battery by drawing energy at a negative rate.

In the following sections, we solve (4) under various char-

acterizations of function f , i.e., battery imperfections, and

Emax(t), i.e., battery size characteristics. Instead of using

calculus of variations in solving this continuous optimization

problem, we utilize tools from convex analysis to arrive at the

solution.

III. OPTIMAL POLICIES FOR AN INFINITE CAPACITY

BATTERY

In this section, we study an ideal setting of (4) as follows.

• We set f(p) = p, ∀p ∈ [0,∞), that is, the energy drawn

from the battery can be fully utilized for transmission

without any losses or processing costs. In this case,

the instantaneous transmit power is the same as the

instantaneous rate of consumption, i.e., pT (t) = p(t).
Since this case provides the largest efficiency of the stored

energy, the results we get with f(p) = p will be an

upperbound on results that would follow in settings with

a different efficiency characterization f(·).
• We set Emax(t) = ∞, ∀t ∈ [0, T ]. Hence, we have that

m(t) = 0 (5)

for all 0 ≤ t ≤ T , resulting in the removal of the left

inequality in constraint (4b).

We begin by defining the following region that depends on

the cumulative harvested energy curve h(t) =
∫ t

0 g(τ)dτ .

H = {(t, e) : 0 ≤ t ≤ T, h(t) ≤ e ≤ h(T )} ∪ {(0, 0)} (6)

H

Hc

Fig. 2. An example of H and Hc.

which is the area above h(t) and below the e = h(T ) line

plus the origin in case h0 > 0, see Fig. 2. We denote by Hc

the convex hull of H:

Hc = conv (H) = {(λt1 + (1− λ)t2, λe1 + (1 − λ)e2)

: 0 ≤ λ ≤ 1, (t1, e1), (t2, e2) ∈ H}. (7)

We use the ∂ operator to denote boundaries of regions, i.e.,

we denote the boundary of region A by ∂A:

∂A = cl (A) \ int (A) (8)

where cl (A) is the closure of A and int (A) is the interior

of A. Since H is closed by definition, so is Hc, and we have

∂Hc = Hc \ int (Hc). We define Hinf as

Hinf = int (H) ∪ {(0, e) : 0 < e ≤ h(T )}

∪ {(t, h(T )) : 0 ≤ t < T } (9)

and so(t) as the lower path that tracks ∂Hc from (0, 0) to

(T, h(T )). We use Hinf to identify infeasible policies in the

following Lemma.

Lemma 1: A transmission policy s(t) is infeasible if there

exists t′ ∈ [0, T ] such that (t′, s(t′)) ∈ Hinf .

Proof: We begin the proof with the observation that Hinf

can also be characterized as

Hinf = H \ {(t, h(t)) : 0 ≤ t ≤ T }. (10)

Hence, any point in Hinf is strictly above the cumulative

harvested energy curve h(t). This means that any transmission

policy that lies in region Hinf violates energy causality, i.e.,

the second inequality in (4b), and thus is infeasible.

Jensen’s inequality, stated in the next Lemma, will be useful

in characterizing the optimal transmission policy [15], [28].

Lemma 2 (Jensen’s inequality [29]): Let ρ, π : [a, b] → R

be two functions such that α ≤ ρ(x) ≤ β and π(x) > 0 for

all x ∈ [a, b]. Let φ : [α, β] → R be concave. Then,

φ

(

∫ b

a
ρ(x)π(x)dx
∫ b

a π(x)dx

)

≥

∫ b

a
φ(ρ(x))π(x)dx
∫ b

a π(x)dx
(11)



Fig. 3. A transmission policy s(t) that exceeds so(t) at time t′.

with strict inequality if φ is strictly concave, a 6= b, and α 6= β.

We next present the following Lemma.

Lemma 3: A transmission policy s(t) for which there exists

t′ ∈ [0, T ] such that (t′, s(t′)) ∈ int (Hc) \ Hinf can be

replaced with another transmission policy which does not lie

in int (Hc) \ Hinf and performs at least as well as s(t).

Proof: Let t′ be as given in the statement of the Lemma

and e′ = s(t′). Consider the line segment that connects

(t′, s(t′)) to (t′, 0). Since (t′, e′) ∈ int (Hc) and Hc is convex,

the line segment will intersect ∂Hc at only one point, (t′, e′′)
where e′′ = so(t

′). See Fig. 3 for an example.

(t′, e′′) is a point on the boundary of Hc, which is the

convex hull of H. Then, by Caratheodory’s theorem [30],

there exist two points (t1, e1), (t2, e2) ∈ ∂Hc ∩ H such that

(t′, e′′) = λ(t1, e1) + (1 − λ)(t2, e2) for some λ ∈ [0, 1].
Without loss of generality, suppose that t1 < t2, which implies

that e1 ≤ e2. Let l(t) be the line segment that connects (t1, e1)
and (t2, e2), i.e.,

l(t) =
e2 − e1
t2 − t1

(t− t1) + e1. (12)

Since s(t) and l(t) are both continuous, so is s(t)− l(t). We

also know that s(t′)− l(t′) > 0. Following from the feasibility

of s(t), we have that s(t1) ≤ h(t1) and s(t2) ≤ h(t2). Then,

by the intermediate value theorem [31], there exist τ1 and

τ2 such that t1 ≤ τ1 < t′ < τ2 ≤ t2, s(τ1) = l(τ1), and

s(τ2) = l(τ2). Define a new feasible policy s̄(t) as

s̄(t) =

{

l(t), if t ∈ [τ1, τ2],

s(t), if t ∈ [0, T ] \ [τ1, τ2].
(13)

s̄(t) is continuous and we have

d

dt
l(t) =

e2 − e1
t2 − t1

=
l(τ2)− l(τ1)

τ2 − τ1
. (14)

The difference between the throughput values achieved by s(t)
and s̄(t) can be computed as

∫ T

0

r

(

d

dt
s̄(t)

)

dt−

∫ T

0

r

(

d

dt
s(t)

)

dt (15a)

=

∫ τ2

τ1

r

(

d

dt
s̄(t)

)

dt−

∫ τ2

τ1

r

(

d

dt
s(t)

)

dt (15b)

=

∫ τ2

τ1

r

(

l(τ2)− l(τ1)

τ2 − τ1

)

dt−

∫ τ2

τ1

r

(

d

dt
s(t)

)

dt, (15c)

= (τ2 − τ1)r

(

l(τ2)− l(τ1)

τ2 − τ1

)

−

∫ τ2

τ1

r

(

d

dt
s(t)

)

dt.

(15d)

Now we invoke Lemma 2 with φ = r, π ≡ 1, and ρ(t) =
d
dts(t) for all t ∈ [τ1, τ2]. We get

r

(
∫ τ2
τ1

(

d
dts(t)

)

dt

τ2 − τ1

)

≥

∫ τ2
τ1

r
(

d
dts(t)

)

dt

τ2 − τ1
, (16a)

r





∫ τ2
τ1

(

l(τ2)−l(τ1)
τ2−τ1

)

dt

τ2 − τ1



 ≥

∫ τ2
τ1

r
(

d
dts(t)

)

dt

τ2 − τ1
, (16b)

(τ2 − τ1)r

(

l(τ2)− l(τ1)

τ2 − τ1

)

≥

∫ τ2

τ1

r

(

d

dt
s(t)

)

dt, (16c)

which implies that the right hand side of (15d) is non-negative,

that is, the new policy s̄(t) performs at least as well as the

original policy s(t). By repeating this procedure, we can get

a feasible policy which does not lie in int (Hc) \ Hinf and

performs at least as well as s(t).

Corollary 1: Lemmas 1 and 3 imply that any policy s(t)
that, for some t′ ∈ [0, T ], satisfies s(t′) > so(t

′) can be

replaced by another feasible policy which never exceeds so(t
′)

and performs at least as well as s(t). Therefore, we can limit

our search for the optimal transmission policy to the following

set of transmission policies.

R , {s(t) : s(t) ≤ so(t), 0 ≤ t ≤ 1} (17)

Another way of interpreting this result is that there exists at

least one optimal policy which intersects Hc only at points

that are on the so(t) curve.

In the following Lemma, we reduce the search space of

transmission policies further.

Lemma 4: A transmission policy s(t) ∈ R for which there

exists t′ ∈ [0, T ] such that s(t′) < so(t
′) can be replaced with

another transmission policy s̄(t) ∈ R which satisfies s̄(t′) =
so(t

′) and performs at least as well as s(t).

Proof: Define S as the region above the s(t) curve in the

same way as we defined H, i.e.,

S = {(t, e) : 0 ≤ t ≤ T, s(t) ≤ e ≤ s(T )}. (18)

First, suppose that S is not convex. In this case, we can think

of s(t) as the cumulative harvested energy curve for another

system. Then, we know from Lemma 3 that the lower path that

tracks ∂ conv (S) from (0, 0) to (T, s(T )) performs at least as

well as s(t), and thus can replace s(t) without decreasing the

achieved throughput.

Now, let S be a convex region. We have S ⊃ Hc since

s(t) ≤ so(t) for all t ∈ [0, T ]. Let e′ = s(t′) and e′′ = so(t).
Then, (t′, e′′) ∈ ∂Hc, and since Hc is convex, there exists a

line that is tangent to Hc at (t′, e′′). Since S is convex, and



Fig. 4. A transmission policy s(t) that falls below so(t) at time t′.

S ⊃ Hc, this line must intersect s(t) at two points, say (t1, e1)
and (t2, e2) (see Fig. 4). Define a new policy s̄(t) as

s̄(t) =

{

e2−e1
t2−t1

(t− t1) + e1, if t ∈ [t1, t2],

s(t), if t ∈ [0, T ] \ [t1, t2].
(19)

The continuity of s̄(t) follows from the fact that the line

intersects s(t) at (t1, e1) and (t2, e2). Also, since the line is

tangent to convex set Hc, it cannot intersect int (Hc), and

therefore, s̄(t) ∈ R. We can compute the difference in the

throughput values achieved by s̄(t) and s(t), and use Lemma 2

in the same way as we did in Lemma 3 to show that s̄(t) does

not perform worse than s(t). This completes the proof.

We now describe an optimal transmission policy using

Corollary 1 and Lemma 4.

Theorem 1: An optimal solution of (4) with f(p) = p, ∀p ∈
[0,∞) and Emax(t) = ∞, ∀t ∈ [0, T ] can be given as

so(t) = min {e : (t, e) ∈ ∂Hc} (20)

where Hc is as defined in (7). Moreover, (20) is the unique

optimal policy if r(p) is strictly concave in p.

Proof: We already know from Corollary 1 that there exists

at least one optimal policy in R. We also know from Lemma 4

that any policy that goes below so(t) at some time can be

replaced with another policy which matches so(t) at that time,

and does not perform worse than s(t). Then, by repeating the

procedure in Lemma 4, we can conclude that so(t) performs

at least as well as any other policy in R; and thus, is optimal.

The uniqueness of so(t) with a strictly concave rate function

r(p) follows from the fact that with a strictly concave rate

function, we can use Jensen’s inequality (Lemma 2) with strict

inequality and show that any policy that goes above (Lemma 3)

or below (Lemma 4) so(t) is not only replaceable by so(t), but

also performs worse than so(t). Thus, with a strictly concave

rate function, the optimal transmission policy is unique and

equal to so(t).

In this section, we have provided the solution for Emax(t) =
∞, ∀t ∈ [0, T ]. In the next section, we remove the infinite

battery assumption and solve (4) for any finite valued Emax(t).

M

Fig. 5. An example for region M.

IV. OPTIMAL POLICIES FOR A DEGRADING BATTERY OF

FINITE CAPACITY

In this section, we solve (4) for any battery size that may

be decaying in time. The result is trivially applicable when the

battery size is constant, i.e., Emax(t) = Emax, ∀t ∈ [0, T ].
We still keep the assumption that f(p) = p, ∀p ∈ [0,∞). With

a general Emax(t) that is non-increasing in t, the minimum

energy curve m(t) no longer satisfies (5). Instead, we have

(2) and since h(t) is non-decreasing in t, and Emax(t) is non-

increasing in t, m(t) is non-decreasing in t. Denote the region

below m(t) by M which can be expressed as

M = {(t, e) : 0 ≤ t ≤ T, 0 ≤ e ≤ m(t)}. (21)

See Fig. 5 for an example.

In what follows, we describe the solution for various in-

stances of M, and finally, arrive at a solution for any M.

Lemma 5: If M ∩ H is not empty, then the problem can

be divided into sub-problems, each of which either does not

have such a non-empty intersection, or has a trivial solution.

Proof: The definition of m(t) in (2) implies that m(t) ≤
h(t) for all t ∈ [0, T ]. Then,

M∩H = {(t, h(t)) : ∀t ∈ [0, T ] : h(t) = m(t)}, (22)

that is, M ∩ H is the intersection of curves h(t) and m(t).
Whenever h(t) = m(t), the optimal transmission policy

has to follow h(t) since it would otherwise go below m(t)
which would be infeasible. For the remaining parts of the

transmission, we have h(t) > m(t) which means that we can

consider these parts as subproblems for which this intersection

will be empty.

As a result of Lemma 5, we can assume without loss of

generality that M∩H = ∅.

Lemma 6: If M∩Hc ⊂ ∂Hc, then there exists an optimal

solution which is the same as the optimal solution found in

the previous section with m(t) = 0.

Proof: We already know that the problem considered

in the previous section is relaxed compared to the problem

we have in this section. Hence, if so(t) is feasible, it will



Fig. 6. Optimal transmission policy with a finite battery and a M ∩ Hc

region that satisfies Property 1.

also be optimal. Suppose there exists t′ ∈ [0, T ] such that

so(t
′) < m(t′). Then, the point (t′,m(t′)) is above so(t

′),
and thus, in int (Hc). It is also in M since it is on the

m(t) curve. This implies that M ∩ Hc 6⊂ ∂Hc which is a

contradiction. Therefore, so(t) ≥ m(t) for all t ∈ [0, T ], i.e.,

so(t) is feasible, and thus optimal.

In light of Lemmas 5 and 6, we conclude that it only remains

to find the optimal transmission policy for M such that M∩
Hc ⊂ (Hc \ H).

Any point (t, e) ∈ M ∩ Hc can be projected onto the

so(t) curve as (t, so(t)) where so(t) ≤ e. Since all these

projections are on ∂Hc, each of them can be written as convex

combination of two points in ∂Hc ∩ H. First, suppose that

M∩Hc satisfies the following property.

Property 1: There exist two points (t1, e1), (t2, e2) ∈
∂Hc ∩ H such that for all (t, e) ∈ M ∩ Hc, we have

(t, so(t)) = λ(t1, e1) + (1 − λ)(t2, e2) for some λ ∈ [0, T ].
In other words, the projection of any point in M ∩ Hc can

be written as a convex combination of the same two points in

∂Hc ∩H, possibly with different coefficients λ ∈ [0, 1].

See Fig. 6 for an example of M ∩ Hc that satisfies

Property 1. Without loss of generality, suppose that t1 < t2,

and therefore e1 ≤ e2. Consider the following transmission

policy for t1 ≤ t ≤ t2, which is parametrized by τ1 and τ2
such that t1 ≤ τ1 < τ2 ≤ t2.

sm(t; τ1, τ2) =

{

s∂(t), if t ∈ [τ1, τ2]
e2−e1
t2−t1

(t− t1) + e1, if t ∈ [t1, t2] \ [τ1, τ2]

(23)

where s∂(t) is used to denote the upper path that tracks ∂C
from (τ1, so(τ1)) to (τ2, so(τ2)) where

C , conv ((M∩Hc) ∪ {(τ1, so(τ1)), (τ2, so(τ2))}). (24)

If C ∩ H 6= ∅, then we can separate the problem into

subproblems as described in Lemma 5. Without loss of gen-

erality, suppose C ∩ H = ∅. The continuity of sm(t; τ1, τ2)
follows from the fact that so(t) = e2−e1

t2−t1
(t − t1) + e1 for

all t ∈ [t1, t2]. By invoking Lemma 3, we conclude that the

throughput achieved by sm(t; τ1, τ2) never decreases as τ1 and

τ2 move closer to t1 and t2. Then, we need to minimize τ1
and maximize τ2 while keeping t1 ≤ τ1 and τ2 ≤ t2 and

making sure that sm(t; τ1, τ2) does not enter int (H). We can

decrease τ1 until C is tangent to H, or τ1 = t1. Let τ∗1 denote

the minimum such τ1. Similarly, we can increase τ2 until C is

tangent to H, or τ2 = t2. Let τ∗2 denote the maximum such

τ2. It follows that sm(t; τ∗1 , τ
∗
2 ) hits ∂H, or h(t) at t = τ∗1

and t = τ∗2 . In other words, the optimal policy must deplete

the battery at t = τ∗1 and t = τ∗2 . Therefore, we can separate

the problem into three subproblems as follows.

1) Throughput maximization for 0 ≤ t ≤ τ∗1 . This subprob-

lem can be solved using the solution found in Section III

since it does not have a non-empty M∩Hc region.

2) Throughput maximization for τ1 ≤ t ≤ τ∗2 . For this

problem, we know that sm(t; τ∗1 , τ
∗
2 ) is optimal.

3) Throughput maximization for τ2 ≤ t ≤ T ∗. This

subproblem can also be solved using the solution found

in Section III since it does not have a non-empty M∩Hc

region.

To finalize our optimal solution, we remove the assumption

that M∩Hc satisfies Property 1, and observe that any M∩Hc

that may or may not satisfy Property 1, can be written as

a disjoint union of regions that do satisfy Property 1. Let

these regions be indexed by i ∈ I . We can calculate τ∗i,1,

τ∗i,2, and the optimal transmission policy for τ∗i,1 ≤ t ≤ τ∗i,2
using the methodology described above for each i ∈ I . We

know that the battery is empty at t = τ∗i,1 and t = τ∗i,2
for all i ∈ I . Hence, we can start a new subproblem at

t = τ∗i,1 and t = τ∗i,2 for all i ∈ I . We already have

the optimal transmission policies for t ∈
⋃

i∈I [τ
∗
i,1, τ

∗
i,2]. For

the subproblems in [0, T ] \
⋃

i∈I [τ
∗
i,1, τ

∗
i,2], we know that the

optimal policy found in Section III can be used since they

do not have non-empty M∩Hc regions. This concludes the

description of our solution for any non-increasing non-negative

Emax(t).
Remark 1: Although we found the solution with the as-

sumption that Emax(t) is non-increasing in t, the validity of

our solution only requires that Emax(t) ≥ 0 for all t ∈ [0, T ].
With an Emax(t) function that is only non-negative valued,

but not necessarily non-increasing, the resulting m(t) curve

will not be non-decreasing. In that case, we can define

m̄(t) = max
0≤τ≤t

m(τ) (25)

which is non-decreasing and also satisfies m̄(t) ≥ m(t) for

all t ∈ [0, T ]. Since we know that all feasible transmission

policies are non-decreasing, we can find the optimal policy

with m̄(t) as the minimum energy curve, and this policy

will also be optimal with m(t) as the minimum energy

curve. Therefore, Emax(t) does not actually have to be non-

increasing. That said, a battery whose capacity increases over

time is not very realistic.

In the next section, we relax our assumption on f(p) to a

more general case, and solve (4).



V. OPTIMAL POLICIES WITH A PROCESSING COST

In this section, we solve (4) with the following characteri-

zations of Emax(t) and f(p).

• We set f(p) = (ηp − c)+, ∀p ∈ [0,∞) for some 0 ≤
η ≤ 1 for an imperfect battery with constant proportional

loss and a constant processing cost per unit time c ≥ 0.

Note that when the transmitter draws energy from the

battery at a rate 0 ≤ p ≤ c/η, the drawn power will be

wasted since it is not sufficient for both processing and

transmission. Then, it follows that the transmitter should

either draw energy from the battery at a rate higher than

c/η, or should not draw any energy and remain silent.

In this case, the instantaneous transmit power and the

instantaneous rate of consumption will be related as

pT (t) = f(p(t)) = (ηp(t)− c)+, ∀t ∈ [0, T ]. (26)

• We study a generic battery capacity function Emax(t) that

is non-negative valued. As observed in Remark 1, if the

minimum energy curve m(t) = max{h(t)−Emax(t), 0}
that results from any non-negative Emax(t) is not non-

decreasing, we can solve the equivalent problem with

m̄(t), defined in (25), as the minimum energy curve,

and the optimal transmission policy that we find for

the equivalent problem is also optimal for the original

problem. Therefore, without loss of generality, we assume

that m(t) is non-decreasing.

Let us begin by studying the rate function. We know, that

r(pT ) is non-decreasing and concave in transmit power pT =
f(p), and r(0) = 0. The rate can also be written as a function

of the instantaneous rate of consumption p as

r̃(p) , r(f(p)), (27a)

= r((ηp − c)+), (27b)

=

{

0, if 0 ≤ p ≤ c/η

r(ηp− c), if p ≥ c/η
(27c)

It is clear that r̃(p) is not concave in p. However, it is concave

on [c/η,∞) and equal to 0 everywhere else. We can concavify

r̃(p) by time sharing between achievable points on it, as done

in [21], [25], [32], i.e.,

rc(p) =

{

(p/p∗)r(ηp∗ − c), if 0 ≤ p ≤ p∗

r(ηp− c), if p ≥ p∗
(28)

where p∗ ∈ [c/η,∞) can be found as

p∗ ∈ arg max
c/η≤p

r(ηp − c)

p
. (29)

It is shown in [15] that p∗ is unique if r(pT ) is strictly concave

in pT . With a concave rate function, the uniqueness of p∗ is

not guaranteed. We can relax the constraint on p in (29) since

r(pT ) is non-negative valued and equal to 0 for all pT ≤ c/η.

Then, a necessary and sufficient condition of optimality can

Fig. 7. An example for the concavification of r̃(p).

be stated as

d

dp

(

r(ηp − c)

p

)∣

∣

∣

∣

p=p∗

= 0 (30)

which implies

p∗ηr′(ηp∗ − c)− r(ηp∗ − c) = 0 (31)

where r′(·) denotes the first derivative of r(·). Rearranging the

terms, we get

r(ηp∗ − c)

p∗
= r′(ηp∗ − c), (32)

that is, we are searching for a point p∗ ∈ [c/η,∞) such that

the line that connects the origin to (p∗, r(ηp∗ − c)) is tangent

to r(ηp∗ − c) at p∗, see Fig. 7. As an example, consider a

Gaussian channel, for which r(pT ) can be given as

r(pT ) =
1

2
log (1 + γpT ) . (33)

Then, the optimality condition in (32) becomes

ln(1 + γ(ηp∗ − c)) =
γηp∗

1 + γ(ηp∗ − c)
(34)

which can be solved numerically, or using the Lambert W

function.

Having found a p∗ that satisfies (32), we can compute

rc(p) which we know is concave in p. We observe that with

a processing cost per unit time, c, the efficient transmission

strategy is to never transmit at a power value that is less than

p∗. Instead of transmitting at p < p∗ for τ seconds, expending

pτ amount of energy, the transmitter should transmit at p∗ for

τp/p∗ seconds, and remain silent for τ(1−p/p∗) seconds. This

is a convex combination of two feasible strategies: silence with

weight 1−p/p∗, and transmission at p∗ with weight p/p∗; and

thus, explains the linear structure of rc(p) for 0 ≤ p ≤ p∗.

We can now solve (4) in the setting described at the

beginning of this section using rc(p) and an alternative chan-

nel setting. Consider another instance of the system model

described in Section II where f(p) = p, ∀p, and rc(p) is the



Fig. 8. An example for the optimal policy found with our methodology.

instantaneous rate that can be achieved with transmit power

or instantaneous rate of consumption equal to p. The optimal

transmission policy for this setup can be found by using our

findings in Sections V and IV, let it be denoted by ŝ(t), and let

p̂(t) denote its first derivative, i.e., the optimal power policy.

If the rate rc(p) is not achieved at instantaneous power p
for p < p∗, we would be done. However, it can achieve the

linear portion of the curve rc(p) for p < p∗ only through

time sharing. Then, we must modify p̂(t) without changing

the energy expended and the amount of bits departed in a

given in time. We state and prove the Lemma which we later

use to find optimal policies for the setting of interest.

Lemma 7: Let τ ∈ [0, T ), and ǫ > 0 be arbitrarily chosen

such that p̂(t) ≤ p∗ for all t ∈ [τ, τ + ǫ). There exists a power

policy pm(t) such that

1) pm(t) ∈ {0, p∗}, ∀t ∈ [τ, τ + ǫ),
2)
∫ τ+ǫ

τ pm(t)dt =
∫ τ+ǫ

τ p̂(t)dt,

3)
∫ τ+ǫ

τ rc(pm(t))dt =
∫ τ+ǫ

τ rc(p̂(t))dt.

Proof: Define λ as

λ =
1

p∗ǫ

∫ τ+ǫ

τ

p̂(t)dt. (35)

Since p̂(t) ≤ p∗ for all t ∈ [τ, τ + ǫ), we have that
∫ τ+ǫ

τ

p̂(t)dt ≤

∫ τ+ǫ

τ

p∗(t)dt = p∗ǫ, (36)

which implies that λ ∈ [0, 1]. Let

pm(t) =

{

p∗, if τ ≤ t ≤ τ + λǫ

0, if τ + λǫ ≤ t ≤ τ + ǫ
. (37)

Then,
∫ τ+ǫ

τ

pm(t)dt =

∫ τ+λǫ

τ

p∗dt, (38a)

= λp∗ǫ, (38b)

=

∫ τ+ǫ

τ

p̂(t)dt. (38c)

rc(p) is linear on [0, p∗], thus
∫ τ+ǫ

τ

rc(p̂(t))dt = rc

(∫ τ+ǫ

τ

p̂(t)dt

)

, (39a)

= rc(λp
∗ǫ), (39b)

= λǫrc(p
∗), (39c)

and
∫ τ+ǫ

τ

rc(pm(t))dt =

∫ τ+λǫ

τ

rc(p
∗)dt, (40a)

= λǫrc(p
∗). (40b)

This completes the proof.

Finally, we can construct the optimal power policy pm(t)
for the original setting. First, we set pm(t) = p̂(t) whenever

p̂(t) ≥ p∗. Let U = {t : p̂(t) < p∗}. We can partition U into

intervals of sufficiently small length so that when Lemma 7

is applied on each of these partitions, the constraints in (4b)

are not violated. The power policy pm(t) we get at the end

of this procedure is an optimal solution of (4) in the general

case with any concave rate, non-negative valued Emax(t), any

processing cost c ≥ 0, and any proportional loss coefficient

0 ≤ η ≤ 1.

VI. EXAMPLE AND NUMERICAL RESULTS

In this section, we provide an example of the optimal policy

found using our methodology, and compare its performance

with that of optimal policies with discrete energy arrivals.

Fig. 8 shows an example of the optimal policy found with

our methodology. The finite capacity of the battery results in

the separation of the problem into four subproblems, marked



Fig. 9. An example for the generation of hδ(t) using h(t).

P1, P2, P3, and P4 in the figure. The procedure to identify

these subproblems is as follows. We first compute so(t) which

intersects M. Thus, the solution method in Section IV applies.

The resulting M ∩ Hc region is a disjoint union of two

regions each of which satisfies Property 1. We can calculate

(τ∗i,1, τ
∗
i,2) as the maximizer of the throughput achieved by

(23) for both of these two regions, i.e., i = 2, 3. Then, the

divisions will be at τ∗2,1, τ∗2,2, τ∗3,1, and τ∗3,2. If τ∗2,2 6= τ∗3,1,

then there will be another subproblem for τ∗2,2 ≤ t ≤ τ∗3,1
which can be trivially optimized by following h(t). Thus,

without loss of generality, suppose τ∗2,2 = τ∗3,1. Let si,o(t)
be the lower boundary of the Hc region found for the ith
subproblem, for all i = 1, 2, 3, 4. We have M ∩ Hc = ∅
for the first and fourth subproblems, that is, the minimum

energy curve m(t) does not affect the optimal policy. Thus,

Lemmas 3 and 4 apply, and the optimal policies for these two

subproblems are s1,o(t) and s4,o(t), respectively. However,

M∩Hc 6= ∅ for the second and third subproblems. Therefore,

we have to calculate s2,m(t; τ∗2,1, τ
∗
2,2) and s3,m(t; τ∗3,1, τ

∗
3,2)

as explained in Section IV to find the optimal policies for

these two subproblems.

In order to quantify the impact of discretizing the energy

arrivals on optimum throughput, we let 0 < δ ≤ T , and define

ti =











0, if i = 0

iδ, if i = 1, 2, . . . ,
⌈

T
δ

⌉

− 1

T, if i =
⌈

T
δ

⌉

(41)

and a discretized cumulative harvested energy curve hδ(t) as

hδ(t) =

{

h(ti−1), if ti−1 ≤ t < ti

h(T ), if t = T
(42)

for all i = 1, 2, . . . ,
⌈

T
δ

⌉

. See Fig. 9 for an example. Similarly,

we can discretize m(t) by replacing it with mδ(t). Fig. 10

shows average rates achieved by the optimal solution of the

discretized problem for varying δ and Emax for a Gaussian

channel with available bandwidth 1 MHz, channel gain −110
dB, noise density 10−19 W/Hz, and g(t) ∈ [0, 200 mW]. δ = 0
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Fig. 10. Average rates achieved by the optimal solution of the discretized
problem for varying δ and Emax(t) = Emax.

represents the original problem with continuous arrivals. We

observe that as the discretization interval gets coarser, the

optimal achievable average rate decreases, i.e., the assumption

of discrete energy arrivals at the transmitter limits the trans-

mitter’s throughput. This limitation becomes more severe as

Emax decreases. This is because, in the discretized problem,

the transmitter receives a large amount of energy at once which

it would otherwise receive over an interval of duration δ. When

this amount is larger than Emax, the transmitter loses the

difference which, in the continuous case, is utilized.

VII. CONCLUSION

In this paper, we have studied an energy harvesting trans-

mitter which receives a continuous flow of energy, rather than

discrete packets of energy. We used tools from convex analysis

to solve the throughput maximization problem with a finite

capacity battery that may be degraded, and a processing cost.

We have shown that the optimal solution with an infinite

capacity battery can be characterized as the boundary of a

well defined region, which is the convex hull of the area

above the cumulative harvested energy curve, confirming that

the shortest path interpretation of the optimal policy remains

valid. For finite capacity batteries or processing costs, we

have shown that the solution can also be computed using this

region. Through simulations, we observed that discretization

of the throughput maximization problem yields a reduced per-

formance, especially with coarse quantization of the harvested

energy.
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