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Abstract—We consider a wireless ad hoc network composed
of N transmitters and M receivers which are all selfish in the
sense that they wish to optimize their individual utilities rather
than a network wide utility. Each node can acquire energy from a
supplier at a price to power the transmission or reception of data.
For such a network, we consider a matching game played between
the transmitters and the receivers. The transmitters compute the
optimal rate for them and propose this to a receiver. The receivers
determine the best proposal they have received to maximize their
utilities. We identify the optimal decisions for all nodes and the
resulting utilities. We next consider a Vickrey auction between
transmitters which have proposed to the same receiver. We show
that the transmitters can compete with each other by offering
energy transfer to the receiver. The energy transfer reduces the
processing costs of the receiver and influences its decision, thereby
pointing to the merit of energy cooperation. We observe that
populating the network with additional nodes generally results
in more options for all nodes to choose from, and larger rates for
the entire network, which are improved even further by energy
cooperation.

I. INTRODUCTION

Wireless networks with nodes that can benefit from estab-

lishing cooperation pairs arise in many practical communica-

tion scenarios. Among these are cloud radio access networks

[1] where a base station can send its data to a cloud for

computing, sensor networks [2] where the sensors can pair

up with relays for the delivery of their measurements, and

vehicular networks [3] where the transmitter-receiver pairs

may change during the communication session due to the

dynamic network topology. The majority of previous work

on cooperation in wireless networks has assumed altruistic

behavior for all nodes where they follow the directions of

a network operator and collectively improve a network wide

utility, e.g., the sum throughput of the network. It remains

interesting to study the selfish behavior of wireless nodes

that would rather improve their individual utilities than work

together for the sake of the entire network, which is the focus

of this paper.

In this paper, we consider a general model for such networks

whose nodes are capable of energy cooperation, using the

framework of matching games [4]. In particular, we consider

a wireless ad hoc network of N transmitters and M receivers

which are selfish, but are willing to form transmitter-receiver
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pairs if such pairing improves both sides’ utilities. We consider

that the expenditure of energy at each node comes at a price

and results in a decrease in the node’s utility. We formulate a

matching game between the transmitters and receivers where

the transmitters propose to the receivers with the optimal

communication rate for the transmitters’ utilities. The receivers

choose one among all proposals they have received to improve

their own utilities. We find the optimal decisions for all

nodes and derive the resulting utilities. We next provide the

transmitters with the knowledge of the utility functions of the

receivers so that they can take into account the needs of the

receivers when they determine their proposals. In addition,

we let the transmitters offer to transfer energy to their favorite

receiver, i.e., energy cooperation. This allows the transmitters

to assist the receivers with their processing costs to increase

their chances of forming a beneficial cooperation pair. We

modify the well known Deferred Acceptance Algorithm [4] to

solve these games. We observe that the competition between

the nodes facilitated by the matching framework becomes

more intense with the addition of energy cooperation and

results in improved rates for the whole network. In addition,

we observe that our modified approach yields larger rates

and requires a smaller number of proposals before it can

identify the solution as compared to the Deferred Acceptance

Algorithm.

Related work: Matching games are a suitable model for

communities of individuals with conflicting interests that may

cooperate in pairs for mutual benefit [4], [5] and have pre-

viously been employed for resource allocation in wireless

networks [6]–[8]. Energy cooperation has been proposed as

a way of increasing the energy efficiency of wireless net-

works by means of a transfer of energy from energy rich

nodes to energy deficient nodes [9]–[11]. References [9],

[10] have studied the sum throughput maximization problem

for energy harvesting multi terminal networks with energy

transfer. Reference [11] has proposed energy transfer over

radio frequencies (RF) performed simultaneously with the

transfer of data. RF energy harvesting has been considered in

a number of models including cognitive radio networks [12]

which has studied cognitive radio networks with primary users

whose radio transmission can be used as a source of energy

by the secondary users, and in non-cooperative or leader-

follower game theoretic settings [13] where we have modeled
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cooperation between selfish nodes as noncooperative games

and Stackelberg games.

While the majority of work on energy management in wire-

less networks has been for transmission energy, the receivers’

processing costs have recently gained attention [14]–[16].

Reference [14] has studied an energy harvesting network with

sampling and decoding costs at the receiver and shown that

when the battery at the receiver is the bottleneck of the system,

it is optimal for the receiver to sample data packets at every

opportunity and decode them only to avoid battery overflows.

Reference [15] has proposed a framework for utility maximiza-

tion in wireless networks with energy harvesting transmitters

and receivers. Reference [16] has studied decoding costs at the

receivers in energy harvesting networks with energy harvesting

receivers. Reference [16] has considered a decoding cost that

is convex in the rate and in particular, an exponential cost

model as we will in the sequel.

II. SYSTEM MODEL

Consider an ad hoc network with transmitters Tn, n ∈ N ,

{1, 2, . . . , N}, and receivers Rm, m ∈ M , {1, 2, . . . ,M}
with block fading as shown in Fig. 1. The transmitters have

data which they can transmit to the receivers over orthogonal

links. Thus, without loss of generality, the noise at each

receiver is zero-mean and unit-variance. For clarity of expo-

sure, we consider a time slotted scenario with slots of equal

duration. For a given time slot, the block fading coefficient

from Tn to Rm, which we denote by hn,m, is drawn from a

continuous distribution.

Each node has access to an energy supplier that can provide

any desired amount of energy at a price. Tn can purchase

energy from its supplier at a price of σn, and likewise, Rm

can purchase energy at a price of σ̄m. The prices lead to a

reduction of the total reward that is due to the expended energy.

The unit for the price is bits/Joule, leading to the total reward

in bits as the total bits transmitted or received minus the energy

cost.

Some of the game formulations considered in this work

allow the transmitters to transfer energy to the receivers. For

this case, we consider that Rm has a harvesting efficiency of

ηm ∈ [0, 1], m ∈ M, i.e., if Rm receives E units of energy

from an energy cooperating transmitter, it will be able to utilize

ηE units while the remaining (1− η)E units will be lost. The

nodes do not have access to any other source of energy for

transmission or decoding, i.e., they must either acquire energy

from the supplier or harvest energy from an energy cooperating

node’s transmission.

During a given time slot, each receiver is interested in

receiving data from one transmitter only, and likewise, each

transmitter wishes to send data to one receiver only. We focus

on one-to-one matchings in this work and leave the study

of many-to-one matchings as future work. At the beginning

of each slot, transmitter-receiver pairs are formed which will

communicate over the orthogonal link reserved for the trans-

mitter for the duration of the time slot.

Fig. 1. The N -by-M ad hoc network with energy cooperation. For clarity
of exposition, only one energy transfer is shown as a dotted line with the
harvesting efficiency of the corresponding receiver.

Suppose for a given time slot, nodes Tn and Rm, for some

n ∈ N and m ∈ M, are matched with each other and agree

on a data rate of rn,m. We begin with a general definition of

utilities for all transmitters and receivers which are given as

un|m(rn,m) = ρn(rn,m)− σnκn(rn,m) (1)

for Tn given it is matched to Rm, and

ūm|n(rn,m) = ρ̄m(rn,m)− σ̄mκ̄m(rn,m) (2)

for Rm given it is matched to Tn. Here, ρn(rn,m) and

ρ̄m(rn,m) are concave and non-decreasing in rn,m, and rep-

resent the reward that nodes Tn and Rm obtain for transmit-

ting or receiving data at rate rn,m, respectively. Conversely,

κn(rn,m) and κ̄m(rn,m) are convex and non-decreasing in

rn,m, and represent the energy cost of nodes Tn and Rm

for transmitting or receiving data at rate rn,m, respectively.

Note that the reward and cost functions are averaged over the

duration of the time slot.

For clarity of exposition, we focus on the following selec-

tion of reward and cost functions, recalling that our results are

valid for any concave reward and convex cost selection:

ρn(rn,m) = λnrn,m, (3)

ρ̄m(rn,m) = λ̄mrn,m, (4)

κn(rn,m) =
1

hn,m

(

22rn,m − 1
)

, (5)

κ̄m(rn,m) = cm2αmrn,m + βmrn,m + γm, (6)

for some λn, λ̄m, cmαm, βm ≥ 0 and γm ∈ R. In other words,

we consider linear rewards (3) and (4) for both nodes, additive

white Gaussian noise at the receivers leading to the energy cost



for Tn given in (5), and a general processing cost for Rm given

in (6) which addresses exponential and linear processing costs

and activation costs. The resulting utilities for nodes Tn and

Rm are expressed as

un|m(rn,m) = λnrn,m −
σn
hn,m

(

22rn,m − 1
)

, (7)

ūm|n(rn,m) = λ̄mrn,m − σ̄m (cm2αmrn,m + βmrn,m + γm) .
(8)

Lastly, we define T , {Tn, n ∈ N} and R , {Rm,m ∈
M} as the set of all transmitters and the set of all receivers,

respectively. Sets N and M index sets T and R, respectively.

In the sequel, we consider two matching game formulations

for our model where each transmitter proposes to the receivers.

Each transmitter aims to maximize its utility that results from

a rate value which the transmitter and the matched receiver

can agree upon.

III. MATCHING GAMES

A. Preliminaries

We begin by defining fundamental concepts from matching

theory [4], [5].

Definition 1: A matching is a function µ : T ∪R → T ∪R
satisfying

1) µ(Tn) = Rm if and only if µ(Rm) = Tn for all n ∈ N ,

m ∈ M,

2) µ(Tn) ∈ R or µ(Tn) = Tn for all n ∈ N ,

3) µ(Rm) ∈ T or µ(Rm) = Rm for all m ∈ M.

The definition of matchings requires that µ be a bijection,

i.e., each node in the network can either be matched to only

one other node or to itself, and it must be equal to its inverse,

i.e., µ(µ(K)) = K for any node K ∈ T ∪ R.

Definition 2: Preference relations ≻n on R and ≻̄m on T
for all n ∈ N , m ∈ M are strict and complete partial orders.

Here, the preference relations symbolize each node’s pref-

erence over all nodes on the other side of the network. That

is, Rm ≻n Rm′ means that Tn prefers Rm over Rm′ , and

likewise, Tn ≻̄m Tn′ means that Rm prefers Tn over Tn′ .

We assume that there are no ties, i.e., the preference relations

are strict. This is in line with our selection of block fading

coefficients which are drawn from continuous distributions,

resulting in strict preferences with probability 1. The com-

pleteness of the preference relations means that each node has

a favorite among any collection of nodes from the other side

of the network, i.e., for all n ∈ N and M′ ⊂ M, there exists

m ∈ M′ such that Rm ≻n Rm′ for all m′ ∈ M′ \ {m}.

Likewise, for all m ∈ M and N ′ ⊂ N , there exists n ∈ N ′

such that Tn ≻̄m Tn′ for all n′ ∈ N ′ \ {n}.

Definition 3: Matching µ is stable if there exists no

(Tn, Rm) ∈ T ×R such that µ(Tn) 6= Rm, but Rm ≻n µ(Tn)
and Tn ≻̄m µ(Rm). In other words, there does not exist a

transmitter-receiver pair that prefer each other and yet are not

matched to each other, i.e., all nodes are satisfied by µ.

Definition 4: Stable matching µ is optimal for the transmit-

ters (resp. the receivers) if the utility of Tn (resp. Rm) under

µ is no less than its utility under any other stable matching µ′

for all n ∈ N (resp. all m ∈ M).

Although there may exist multiple stable matchings, the

optimal matching must be unique, provided that it exists,

due to the fact that all preference relations are strict. We

next study the matching game given by ({T ,R}, {≻n, ≻̄m})
and how energy cooperation impacts the resulting matchings.

We consider the case where the transmitters propose to the

receivers and note that our results can readily be extended to

the case where the receivers propose.

B. A Matching Game

Initially, we assume that the transmitters have no knowledge

of the other nodes’ utility functions or the strategies available

to them. However, Tn knows hn,m for all m ∈ M. Tn’s best

strategy is therefore to maximize its own utility, i.e.,

r∗n,m = arg max
rn,m≥0

un|m(rn,m) (9)

= arg max
rn,m≥0

λnrn,m −
σn
hn,m

(

22rn,m − 1
)

(10)

=
1

2
log

(

λnhn,m
2σn ln 2

)

(11)

where the trivial case of r∗n,m = 0 when (11) turns out to

be negative is omitted for brevity as will other trivial special

cases in the sequel. At rate r∗n,m, Tn’s utility is given as

un|m(r∗n,m) =
λn
2

log

(

λnhn,m
2σn ln 2

)

+
σn
hn,m

−
λn

2 ln 2
. (12)

Tn can use (12) to find its favorite receiver among any

collection of receivers R′ ⊂ R, and subsequently charac-

terize its preference relation ≻n. Note that (12) depends on

receiver index m only through hn,m and it is convex in σn

hn,m

.

Therefore, Tn’s favorite receiver in R′ is either Rm1
or Rm2

,

whichever results in a larger utility for Tn where indices m1

and m2 are found as

m1 = arg max
m : Rm∈R′

hn,m, (13)

m2 = arg min
m : Rm∈R′

hn,m. (14)

Starting with R′ = R, Tn finds Rm ≻n Rm′ for all m′ ∈
R′ \ {Rm}, and next finds the second favorite receiver by

setting R′ = R\{Rm}. Continuing in this fashion, preference

relation ≻n is identified for all n ∈ N (see Algorithm 1, lines

2–8 for a detailed description).

For the receivers’ preference relations, suppose Rm receives

a proposal from all Tn ∈ Tm ⊂ T where we define Tm to be

the set of all transmitters which have proposed to Rm with a

rate offer. The ideal proposal for receiver m would maximize

its utility, i.e.,

r†n,m = arg max
rn,m≥0

ūm|n(rn,m) (15)

= arg max
rn,m≥0

λ̄mrn,m − σ̄m(cm2αmrn,m+ βmrn,m + γm)

(16)



=
1

αm

log

(

λ̄m/σ̄m − βm
cmαm ln 2

)

. (17)

We observe that ūm|n(rn,m) is concave in rn,m. Therefore,

Rm finds its favorite among all proposals it has received from

the transmitters in Tm as the proposal of Tn1
or Tn2

, whichever

results in a larger utility for Rm where indices n1 and n2 are

identified as

n1 = arg max
n : Tn∈Tm,

r∗
n,m

≤r†
n,m

r∗n,m, (18)

n2 = arg min
n : Tn∈Tm,

r∗
n,m

>r†
n,m

r∗n,m. (19)

Note that Rm can identify its preference relation ≻̄m over

Tm using a similar procedure to the one described above for

the transmitters, i.e., Rm starts with Tm, finds its favorite

transmitter in Tm, removes this transmitter from Tm, finds

the second favorite transmitter and so on. However, as will be

seen in Algorithm 1, our solution requires only the favorite

proposal.

Now that matching game ({T ,R}, {≻n, ≻̄m}) is fully

characterized, we can identify the optimal matching for our

setting. In order to accomplish this, we adopt the Deferred

Acceptance Algorithm (DAA) proposed in [4] to our setting.

It is shown in [4, Theorem 2] that DAA finds the unique

stable matching that is optimal for the proposing nodes, in our

case, the transmitters. In this algorithm, the transmitters first

propose to their favorite receivers. Each receiver finds the one

proposal that yields the largest receiver utility and rejects all

others. In the next iteration, the rejected transmitters propose

to their second favorite receivers and the receivers find the best

proposal among all new proposals and the best proposal from

the previous iteration. In this fashion, the receivers identify the

best proposal for themselves, rejecting all others, but defer the

acceptance of said proposal until they have seen all of their

options.

In our implementation of this algorithm, we improve upon

the resulting utilities by imposing that the transmitters refrain

from proposing to receivers which yield negative utilities for

them. Likewise, we require that receivers prefer being matched

to themselves if the best proposal they receive results in

a negative utility for them. This modification eliminates all

matches which result in negative utilities while retaining those

with positive utilities, and necessarily results in improved

utilities for the whole network. In addition, this modification

is in line with the selfish nature of the nodes in our model

since they cannot be expected to tolerate negative utilities

which they can easily improve by solitude. We provide the

complete optimal solution of ({T ,R}, {≻n, ≻̄m}), including

the computation of preference relations and the Modified

DAA, in Algorithm 1.

We next consider the same game under a different setting

where each transmitter is provided with additional knowledge,

i.e., the utility functions of the receivers, in order to facilitate

competition among the transmitters. We solve the game for

Algorithm 1 Optimal solution µ of ({T ,R}, {≻n, ≻̄m}).

// The transmitters identify their preference relations ≻n.

1: for n = 1, 2, . . . , N do

2: Initialize R′ = R.

3: while R′ 6= ∅ do

4: Find Rm1
and Rm2

using (13) and (14).

5: Identify the favorite receiver as Rm = Rm1
or Rm2

.

6: Update R′ := R′ \ {Rm}.

7: Update ≻n such that Rm ≻n Rm′ , ∀Rm′ ∈ R′.

8: end while

9: end for

// The Modified Deferred Acceptance Algorithm.

10: Initialize Rn = R, ∀n ∈ N ; µ(K) = K , ∀K ∈ T ∪ R.

11: Remove all Rm yielding un|m(r∗n,m) < 0 from Rn, ∀n.

12: while ∃n ∈ N : µ(Tn) = Tn and Rn 6= ∅ do

13: for n = 1, 2, . . . , N do

14: if µ(Tn) = Tn and Rn 6= ∅ then

15: Tn finds its favorite Rm ∈ Rn and proposes (11).

16: Update Rn := Rn \ {Rm}.

17: end if

18: end for

19: for m = 1, 2, . . . ,M do

20: if Tm 6= ∅ then

21: Rm finds its favorite Tn ∈ Tm ∪ {µ(Rm)} using

(18) and (19).

22: if ūm|n(r
∗
n,m) ≥ 0 then

23: Set T ′
m = µ(Rm), and update µ(T ′

m) = T ′
m.

24: Update µ(Rm) = Tn, µ(Tn) = Rm.

25: end if

26: end if

27: end for

28: end while

this case using a modified version of Algorithm 1 which again

identifies an optimal matching.

C. A Matching Game with Energy Cooperation

Consider now that the transmitters are aware of the utility

functions of the receivers. This additional knowledge allows

them to tailor their proposals better to the needs of the

receivers. In this setup, we consider the additional incentive

of energy cooperation from the transmitters to their favorite

receiver in order to promote their proposals over others. Note

that this was not possible for the setting in Section III-B

since the transmitters could not compute the ideal proposal

for their favorite receiver, and therefore could not compete

with each other directly. We incorporate energy cooperation

into our model by modifying the utilities as

un|m(rn,m, pn,m) = λnrn,m −
σn
hn,m

(

22rn,m − 1
)

− σnpn,m

(20)

ūm|n(rn,m, pn,m) = λ̄mrn,m − σ̄m(cm2αmrn,m + βmrn,m

+ γm − pn,mhn,mηm) (21)



where pn,m is the amount of energy offered to Rm by Tn
averaged over the duration of the time slot for consistency

with other average quantities in our model.

For the receivers that receive multiple proposals, we employ

a Vickrey auction [17] between the proposing transmitters to

determine which one should be matched to the receiver. A

Vickrey auction is a second price sealed bid auction where

the bidder with the highest bid wins the auction, but pays the

second highest bid only. Due to the second price property,

the bidders are encouraged to bid their true valuations of the

auction item, here the receiver with multiple proposals [18].

Consequently, the transmitters bid the highest receiver utility

they can provide while ensuring that their own utilities are non-

negative. Since the winner has to provide the second highest

bid only, it can modify its bid and obtain a positive utility for

itself. Therefore, Vickrey auctions result in improved utilities

for the auctioneers without necessitating vanishing utilities for

the bidders.

Tn first uses (12) to find its favorite receiver among any

collection of receivers R′ ⊂ R, and similarly generates its

preference relation ≻n. Note that the transmitter utilities at

this point are the same as those in Section III-B since all

pm,n = 0 before the inter-transmitter competition by means

of a Vickrey auction ensues. Tn can next compute its bid to

its favorite receiver, say Rm, as

(r∗n,m, p
∗
n,m) = arg max

(rn,m,pn,m)≥0

ūm|n(rn,m, pn,m) (22a)

s.t. un|m(rn,m, pn,m) ≥ 0. (22b)

We solve (22) by first solving it in pn,m for any rn,m.

We observe that ūm|n(rn,m, pn,m) is increasing in pn,m for

a given rn,m and un|m(rn,m, pn,m) is decreasing in pn,m. In

other words, pn,m must be as large as possible while constraint

(22b) is satisfied. Therefore, we have

p∗n,m(rn,m) =
λnrn,m
σn

−
1

hn,m

(

22rn,m − 1
)

(23)

which guarantees that constraint (22b) is satisfied for any r∗n,m.

Problem (22) becomes

r∗n,m = arg max
rn,m≥0

ūm|n(rn,m, p
∗
n,m(rn,m)) (24)

which is a convex problem with a unique maximizer. Here,

we define

ψn,m ,
1

ln 2

(

λ̄m
σ̄m

− βm +
hn,mηmλn

σn

)

. (25)

The unique optimal solution of (24) is identified as the r∗n,m
value that satisfies

cmαm2αmr
∗
n,m + 2ηm22r

∗
n,m = ψn,m. (26)

In general, (26) is a nonlinear equation, in fact, an exponential

polynomial equation [19] which can be solved numerically.

Note that when αm is an integer, (26) reduces to a polynomial

equation. For the special case of αm = 0, i.e., linear processing

cost for the receivers, the solution of (26) is found as

r∗n,m =
1

2
log

(

ψn,m

2ηm

)

(27)

and for the special case of αm = 2, the solution of (26) is

found as

r∗n,m =
1

2
log

(

ψn,m

2(cm + ηm)

)

. (28)

This completes the characterization of all bids (r∗n,m, p
∗
n,m)

received by Rm. Suppose Rm has received proposals from all

Tn ∈ Tm ⊂ T . Rm then finds the best proposal as

(r∗n†,m, p
∗
n†,m) = arg max

(r∗
n,m

,p∗
n,m

) :

Tn∈Tm

ūm|n(r
∗
n,m, p

∗
n,m) (29)

and the runner-up as

(r∗n‡,m, p
∗
n‡,m) = arg max

(r∗
n,m

,p∗
n,m

) :

Tn∈Tm\{T
n†}

ūm|n(r
∗
n,m, p

∗
n,m) (30)

which are optimization problems with finite feasible sets.

Finally, Rm identifies Tn† as its favorite transmitter which

has to provide only ūm|n(r
∗
n‡,m

, p∗
n‡,m

), which is necessarily

less than ūm|n(r
∗
n†,m

, p∗
n†,m

). Thus, Tn† can lower p∗
n†,m

to

provide ūm|n(r
∗
n‡,m

, p∗
n‡,m

) only and obtain a positive utility

for itself as well.

In order to solve ({T ,R}, {≻n, ≻̄m}) for an optimal

matching in this case, we modify Algorithm 1 to incorpo-

rate the inter-transmitter competition, which we model as a

Vickrey auction, into our solution. The generation of prefer-

ence relations ≻n remains the same. What is different from

Algorithm 1 is that the transmitters must use (22) to compute

their proposals, or in this case, their bids, as opposed to (11).

In addition, the receivers identify their favorite among all the

bids they have received using (29) and (30) as opposed to (18)

and (19).

IV. NUMERICAL RESULTS

In this section, we present simulation results for the games

in Section III-B and Section III-C. We consider a simulation

setup of N transmitters and M receivers uniformly placed

on a 100 m × 100 m square with a 1 MHz band for each

orthogonal link, carrier frequency 900 MHz, noise density

10−19 W/Hz, and Rayleigh fading. Consequently, the mean

fading level between two nodes which are d m apart is

computed as −40 dB/d2 [20], [21]. For processing costs, we

assume cm = 5 mW, αm = 2 (bps)−1, βm = 5 mW/bps, and

γm = 50 mW for all receivers [15], [16], [22]. In addition, σn
and σ̄m are uniform in [0, 0.1] bps/W, ηm is uniform in [0, 1],
λn = 1, and λ̄m = 1 for all nodes. We average our results

over 1000 realizations of this setup.

Fig. 2 shows the sum rate of the network resulting from our

solution for the game in Section III-B divided by the number

of matched transmitters. Here, we vary N and M from 0 to

50, and redraw the curves for a direct application of DAA

without our modification. As can be seen, our modification
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Fig. 2. Average rate per matched transmitter versus N and M for the game
in Section III-B.

results in an improvement in the average rate of the network as

compared to vanilla DAA since our solution does not allow any

transmitter-receiver pairs to be matched with each other unless

said matching results in non-negative utilities for both nodes.

As we add more transmitters to the network, the receivers are

presented with a larger selection of proposals to choose from.

Likewise, the addition of more receivers into the network may

result in a new favorite receiver for each transmitter, improving

their best option. In other words, larger N and M yields more

options for both sides and better matches. As a result, the

average rate is increasing in the number of transmitters and

the number of receivers in the network.

We repeat this experiment for the game in Section III-C

with energy cooperation and present our findings in Fig. 3. We

observe similar phenomena for this case and note the larger

average rate values as compared to Fig. 2. This additional im-

provement is due to the competition between the transmitters

which results from the Vickrey auction we employ for this

case. The transmitters are more inclined to compromise their

own utilities so that they can propose better offers to their

favorite receivers, which yields an overall improvement in the

resulting rates.

Figs. 4 and 5 show the average number of proposals that

must be presented and considered before our solution con-

verges to an optimal matching for the games in Sections III-B

and III-C, respectively. Here, we normalize the number of

proposals by NM which is the maximum number of proposals

and thus corresponds to the worst case scenario. As can be

seen, our solution requires a smaller number of proposals

as compared to DAA since in our solution, the transmitters

automatically eliminate receivers which yield negative utilities

whereas they may propose to such receivers in DAA. We

observe that both our solution and DAA are efficient in the
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Fig. 3. Average rate per matched transmitter versus N and M for the game
in Section III-C.

sense that the addition of more receivers into the system

results in a lower number of proposals per receiver required

for convergence. Note that without normalization, the number

of proposals is increasing in both N and M since the nodes

may choose to explore the new options made available to

them by the new additions. Lastly, we observe that the game

in Section III-C with energy cooperation requires a smaller

number of proposals on average than the one in Section III-B

without energy cooperation. This is due to the fact that with

energy cooperation, the transmitters can propose better offers

to their favorite receivers. Hence, they are more likely to be

matched to their favorite receivers and do not need to propose

to their second favorite receivers and so on, which results in

a lower number of proposals required to converge to a stable

matching.

V. CONCLUSION

In this paper, we have considered a wireless ad hoc network

composed of N transmitters and M receivers. We have studied

a communication scenario where the transmitters collect data

which they can deliver to the receivers. We have taken into

account the energy consumption of the entire network by

modeling the transmission and decoding costs at the trans-

mitters and receivers appropriately, bearing in mind the fact

that energy is often not free which may influence the nodes’

decisions regarding their operation. We have formulated a

matching game between the transmitters and the receivers,

and provided analytical expressions for each node’s optimal

decision with respect to its individual utility. We have next

introduced another medium of competition by employing a

Vickrey auction among the transmitters. We have shown that

the transmitters can offer energy cooperation to the receivers

to obtain better matches. We have observed that energy coop-
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Fig. 4. The normalized number of proposals before an optimal matching is
found versus N for the game in Section III-B.

eration lets the transmitters provide additional incentive to the

receivers and results in larger rates for the network.

Future directions include many-to-one games, i.e., college

admission games for multiple access and broadcast scenarios,

and bidirectional energy transfer where the receivers can

transfer energy to the transmitters as well. In addition, it is left

as future work to extend our model to one with interference

between the transmitter-receiver pairs which is envisioned to

lower the rates, but also provide an additional source of energy

for the receivers.
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