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Abstract—In this paper, a single user channel is considered
with an energy harvesting transmitter that receives its energy
and data intermittently. The transmitter is equipped with a
finite battery as well as a finite data buffer. The throughput
maximization problem with a deadline is solved and the optimal
transmission policy is obtained. The optimization problem is
shown to yield a directional waterfilling solution with energy
pumps. An alternative algorithmic solution is also presented that
utilizes the recursive shortest path solution that was shown to
be optimal for infinite data buffers in earlier work. Numerical
results are provided to demonstrate the throughput performance
of optimal policies as well as to assess the impact of the finite
buffer on the throughput.

I. INTRODUCTION

Wireless communications devices that harvest their energy
intermittently from external sources enable extended network
lifetimes and green operations. Energy harvesting communi-
cations has been considered in a variety of set ups to date [1]–
[9]. Particularly related to this work are references [1]–[3], [6],
[10]. In [1], a single user energy harvesting channel is studied
with intermittent data arrivals, an infinite capacity battery and
and an infinite data buffer at the transmitter. In [2], throughput
maximization problem is solved for a single user set up with
an infinite backlog of data, an infinite capacity buffer, and
a finite capacity battery. Reference [3] provides a directional
waterfilling algorithm for identifying the optimal power policy.
Reference [10] considers the transmission completion time
minimization problem with finite data and energy storage. The
communication set up in [10] does not allow dropped packets
which sometimes results in an infeasible problem.

In this work, we solve the throughput maximization problem
for the energy harvesting single user channel with a transmitter
that has limited energy and data storage. The data transmission
policies allow the transmitter to drop some of the packets
in its data buffer if the future data arrivals are to cause an
overflow. We take two approaches to solve the throughput
maximization problem. First, we solve the optimization prob-
lem by transforming it to a suitable form which results in
a new variant of the directional waterfilling algorithm with
added energy pumps. We also provide an alternative recursive
solution by first assuming an infinite capacity buffer, and then
generalizing the result to any buffer capacity. We provide
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Fig. 1. The energy harvesting single user channel with a finite battery and a
finite buffer at the transmitter.

numerical results demonstrating how the data buffer capacity
impacts the optimal throughput.

II. SYSTEM MODEL

Consider a single user communication system with an
energy harvesting transmitter as in Fig. 1. The channel from
the transmitter to the receiver has rate g(p) with transmit power
p. We assume that g(p) is invertible, differentiable, strictly
concave and increasing in p, and satisfies g(0) = 0.

Energy is harvested at discrete time instants, and can be
expended for transmission immediately or stored for future
transmission in an energy storage device, i.e., a battery of
capacity Emax. If at any point during transmission the trans-
mitter receives more energy than it can store in its battery,
then the excess amount of energy is lost. The transmitter also
receives its data intermittently over the course of transmission.
The transmitter employs a data storage device, i.e., a data
buffer of capacity Bmax to store data for future transmission.
Packets that cannot be stored due to the finite capacity of
the buffer are dropped. We consider that all arrival times
and packet sizes for both energy and data arrivals are known
prior to the beginning of transmission, i.e., an offline set up.
Although energy and data packets may arrive at the same
time, not all energy packets have to be accompanied by a data
packet, and vice versa. We refer to the time interval between
two consecutive events, i.e., energy or data arrivals, as an
epoch. We consider communication with a deadline T , and
denote by N the number of epochs by deadline T . We denote
the amount of energy and the amount of data that arrive at
the beginning of the nth epoch by En and Bn, respectively.
Without loss of generality, we assume that En ≤ Emax and
Bn ≤ Bmax for all n = 1, 2, . . . , N since the extra amount of
energy (data) has to be lost (dropped) due to the finite battery
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Fig. 2. Energy and data arrivals, and the resulting epoch structure.

(buffer) at the transmitter. We denote the length of the nth
epoch by ln. An example of the epochs is depicted in Fig. 2.

III. THROUGHPUT MAXIMIZATION: A DIRECTIONAL
WATERFILLING ALGORITHM

The goal of this work is to find optimal transmission policies
for the energy harvesting single user channel which maximize
the throughput by deadline T . In general, this results in a
continuous optimization problem. It can be shown, however,
that [1, Lemma 5] applies to our setting and there always
exists an optimal transmission policy under which the trans-
mission power remains constant between any two consecutive
arrivals. Thus, we can focus our attention on piecewise linear
transmission policies, and solve

max
p,w,r,d≥0

N∑
i=1

liri (1a)

s.t.
n∑

i=1

(lipi + wi) ≤
n∑

i=1

Ei, (1b)

n∑
i=1

Ei −
n−1∑
i=1

(lipi + wi) ≤ Emax, (1c)

n∑
i=1

(liri + di) ≤
n∑

i=1

Bi, (1d)

n∑
i=1

Bi −
n−1∑
i=1

(liri + di) ≤ Bmax, (1e)

rn ≤ g(pn), ∀n = 1, 2, . . . , N, (1f)

where pn denotes the transmit power for the nth epoch, rn
denotes the rate achieved in the nth epoch, and wn and dn
are slack variables that denote the wasted energy and the
dropped packets at the transmitter in the nth epoch due to finite
Emax and Bmax, respectively. Bold face font denotes vectors,
e.g., p = (pn)n=1,2,...,N . Here, (1b) is the energy causality
constraint which ensures that only the harvested amount of
energy up to date can be spent for transmission. (1c) is the
battery constraint which states that no more than Emax units
of energy can be stored in the battery. Similar causality and
storage constraints are given for the data arrivals in (1d) and
(1e) to limit the feasible policies to those which do not transmit

data that has not yet arrived at the transmitter, and do not store
more than Bmax bits in the buffer. (1) is a convex problem.

Consider the following modification of (1) where we incor-
porate (1f) into the objective.

max
p,w,r,d≥0

N∑
i=1

li min{g(pi), ri} (2a)

s.t.
n∑

i=1

(lipi + wi) ≤
n∑

i=1

Ei, (2b)

n∑
i=1

Ei −
n−1∑
i=1

(lipi + wi) ≤ Emax, (2c)

n∑
i=1

(liri + di) ≤
n∑

i=1

Bi, (2d)

n∑
i=1

Bi −
n−1∑
i=1

(liri + di) ≤ Bmax, ∀n = 1, 2, . . . , N. (2e)

We observe that the transmit power scheduled for an epoch
constrains the rate for that epoch via (1f). However, the same
effect can be achieved by the minimization in the modified
objective of (2). If the solution of (2) schedules rn > g(pn)
for some n, then the actual achieved rate for epoch n will be
g(pn) due to this minimization, and the total amount of data
dropped by the transmitter will be ln(rn − g(pn)) + dn. Note
that for this set up, the original problem would schedule a
larger dn and rn = g(pn), and achieve the same throughput.
Thus, the optima of (1) and (2) are the same, and the optimal
solution of (2) can be modified to satisfy (1f) as described
above, so that it will also solve (1) optimally.

The modified problem (2) still has a concave objective,
and has a feasible region that is separable, i.e., (2b) and (2c)
are a function of pn and wn only, and (2d) and (2e) are a
function of rn and dn only. This separation allows us to use
block coordinate descent [11, §2.7] to solve (2) iteratively.
We use the superscript notation with brackets to denote the
iteration index, e.g., p[k] is the power vector p found in the
kth iteration. In the kth iteration, the updates are given by

(p[k],w[k]) =arg max
(p,w)≥0

N∑
i=1

li min{g(pi), r
[k−1]
i } (3a)

s.t.
n∑

i=1

(lipi + wi) ≤
n∑

i=1

Ei, (3b)

n∑
i=1

Ei −
n−1∑
i=1

(lipi + wi) ≤ Emax, (3c)

∀n = 1, 2, . . . , N,

(r[k],d[k]) =arg max
(r,d)≥0

N∑
i=1

li min{g(p
[k]
i ), ri} (4a)

s.t.
n∑

i=1

(liri + di) ≤
n∑

i=1

Bi, (4b)
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n∑
i=1

Bi −
n−1∑
i=1

(liri + di) ≤ Bmax, (4c)

∀n = 1, 2, . . . , N.

The above block coordinate descent algorithm requires a
separable feasible set as well as a strictly concave objective
[11, §2.7] for convergence to a unique solution. While the
feasible set of (2) is separable, the objective is not necessarily
strictly concave, but is merely concave. In order to satisfy this
requirement, we can add −ε1‖(p,w)− (p[k−1],w[k−1])‖2 for
some ε1 > 0 to the objective of (3) and optimize it over
(p,w). This way, the next solution is always the optimizer
that is the closest to the current solution; hence, (3) has a
unique optimizer. We can apply the same manipulation on (4)
by adding −ε2‖(r,d)− (r[k−1],d[k−1])‖2 for some ε2 > 0 to
the objective, and guarantee convergence as was done in [6].
Here, we leave (3) and (4) as given for brevity, and refer the
reader to [12] for a detailed analysis of convergence, stating
that the iterative algorithm provided by (3) and (4) converges
to the optimal power and data transmission policy for (2) (and
thus (1)).

In what follows, we identify the solutions to (3), which
allocates optimal power p and wasted energy w given r and
d, and (4), which allocates optimal rate r and dropped packets
d given p and w.

A. Solution of (3)
By computing the Lagrangian for (3), and differentiating it

with respect to pn, we can obtain the stationarity condition
on pn for all n = 1, 2, . . . , N . In order to simplify the
computations, we replace the objective of (3) by

∑N
i=1 lig(pi),

and include pn ≤ g−1(r
[k−1]
n ) as a constraint. We obtain

g′(pn) =

N∑
i=n

λi −
N∑

i=n+1

µi − κn + νn (5)

where g′(pn) = dg(pn)
dpn

, and λn, µn, νn, κn are Lagrange mul-

tipliers associated with constraints (3b), (3c), g(pn) ≤ r[k−1]
n ,

pn ≥ 0, respectively. From the complementary slackness
conditions, we have that νn = 0 whenever g(pn) < r

[k−1]
n . In

this case, there is sufficient data allocated by (4) in the previous
iteration; thus, the solution is the same as the directional
waterfilling solution found in [3] for an infinite backlog of data
and Bmax =∞. That is, we model the epochs as rectangular
bins (see Fig. 3) of width ln, and model the energy arrivals
as En units of water that are initially filled into the nth bin.
The water level in each bin denotes the power allocated for
the corresponding epoch. We consider taps between adjacent
bins which are right permeable, i.e., they allow water to flow
only from past epochs to future epochs due to (3b), and turn
off when the amount of water transferred to the next bin is
Emax due to (3c). An example is shown at the top of Fig. 3.

If νn > 0, then we have g(pn) = r
[k−1]
n . Notice that g′(pn)

is increasing in νn. Assuming an additive white Gaussian
noise (AWGN) channel with normalized noise variance and
channel gain for our analysis, we get g(p) = 1

2 log(1 +p) and

Fig. 3. Directional waterfilling for two set ups with N = 2. Top: The tap
allows water to flow to the second bin as long as the water level for the first
bin is higher, and the second bin is not full. Bottom: The initial water level
is higher in the second bin, so the tap is off. However, the maximum power
constraint is violated in the first bin, thus, some water is pumped to the second
bin until it is full, at which point the excess water is wasted.

g′(p) = 1/2
1+p . We see that a positive νn results in a decrease

in pn until g(pn) = r
[k−1]
n . In other words, the data allocated

by (4) in the previous iteration results in a maximum power of
g−1(r

[k−1]
n ) for the nth epoch. We interpret this phenomenon

by introducing water pumps and overflow protection bins to
the waterfilling solution. The water pump for the nth epoch
is inactive as long as pn ≤ g−1(r

[k−1]
n ). However, if this

constraint violated by the initial water levels, or the operation
of the right permeable taps, then the water pump is activated.
The water pump is responsible for bringing the water level
down to g−1(r

[k−1]
n ). In order to do this, it pumps water to

the next bin, and when the next bin is full, it pumps water
into the overflow protection bin. Here, the transfer of water to
an overflow protection bin models a positive wn, i.e., wasted
energy. An example is shown at the bottom of Fig. 3.

This completes the description of identifying the optimal p
and w for (3) using a directional waterfilling approach with
right permeable taps which turn off whenever the next bin
has Emax units of water, and pump water to the next bin or
to an overflow protection bin whenever the water level hits
g−1(r

[k−1]
n ).

B. Solution of (4)

Let us generate an equivalent problem to (4) by replacing
the objective with

∑N
i=1 liri, and including the additional con-

straint rn ≤ g(p
[k]
n ), n = 1, 2, . . . , N . With this modification,

(4) becomes a linear program (LP) which can be solved by
any LP solver. In order to gain more insights, we propose an
analytic solution and prove its optimality inductively.

We start by reiterating that (4) allocates optimal r and d

given p[k]
n computed by (3) in the same iteration. p[k]

n defines
a maximum throughput of lng(p

[k]
n ) for each epoch. If the

previous optimal solution to (4) has r[k−1]
n > g(p

[k]
n ), then in
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this iteration, a portion of the rate allocated for the nth epoch
must either be transferred to the next epoch, or must be lost
in the form of a positive d[k]

n if the amount of data that has
been transferred to the next epoch is Bmax. Consider the first
epoch with B1 units of data available in the data buffer, and
a maximum throughput of l1g(p

[k]
1 ). If B1 ≤ l1g(p

[k]
1 ), then

the optimal solution must allocate r[k]
1 = B1/l1 and d[k]

1 = 0.
Note that r[k]

1 > B1/l1 is infeasible since there is not enough
data, and r

[k]
1 < B1/l1 is inefficient since p

[k]
1 is not fully

utilized, and the remaining packets result in less free space
in the buffer for the next epoch. If B1 > l1g(p

[k]
1 ), then the

optimal solution must allocate r
[k]
1 = g(p

[k]
1 ) and leave the

remaining packets of size B1 − l1g(p
[k]
1 ) for the next epoch.

Note that r[k]
1 > g(p

[k]
1 ) is not feasible, and r

[k]
1 < g(p

[k]
1 ) is

again inefficient. We can treat the transferred data as additional
data that arrives at the beginning of the second epoch as

B2 := min{B2 +B1 − l1g(p
[k]
1 ), Bmax}. (6)

Clearly d
[k]
1 = max{B2 + B1 − l1g(p

[k]
1 ) − Bmax, 0}. The

optimality of r[k]
1 and d[k]

1 has now been established. Then, in
the nth epoch (n = 2, 3, . . . , N ), we can assume optimality
for the (n−1)th epoch, apply the same procedure, and update
Bn+1 in the same way as in (6). By induction, the optimality
of the procedure given above follows.

IV. THROUGHPUT MAXIMIZATION: AN ALTERNATIVE
ALGORITHM

In this section, we first relax (1) by setting Bmax = ∞,
and thus removing (1e). After identifying the optimal policies
for this special case, we tackle the general problem with a
finite Bmax. Our solution methodology for both cases is to
first propose a recursive solution and then show its optimality.
The solution in this section does not require a convex feasible
set, thus we set rn = g(pn) for all n = 1, 2, . . . , N to decrease
the dimension of the problem, resulting in the removal of (1f).

Reference [10] also proposes a recursive solution for the
transmission completion time minimization problem for the
same set up. However, feasible solutions are constrained to
those which can transmit all the data that arrives at the
transmitter. This restriction sometimes causes the problem to
be infeasible. For instance, consider a set up with N = 2,
B1 = B2 = Bmax, and E1 < l1g

−1(Bmax/l1). Here, the data
buffer is guaranteed to overflow at the beginning of the second
epoch. In this case, the algorithm proposed in [10] declares
that no solution exists. Here, since we allow the transmitter
to drop some of the packets in its buffer so as to handle such
infeasibilities, we can get the throughput maximizing solution.

A. Solution for an Infinite Data Buffer

Here, we set Bmax =∞ in (1) and solve it. With an infinite
capacity buffer, we have dn = 0 for all n = 1, 2, . . . , N since
the transmitter does not need to drop any packets.

Lemma 1: An optimal transmission policy may schedule
wn > 0 for some n only if the buffer is empty at the end of

the nth epoch, and the battery is full at the beginning of the
(n+ 1)th epoch.

Proof: The proof directly follows from the observation
that the transmitter should not waste any energy if it has more
data to send, or if there is enough room in its battery for energy
transfer to future epochs.

As a corollary to Lemma 1, we can conclude that the
problem in (1) can be separated into subproblems each of
which admits an optimal transmission policy with wn = 0,∀n.
Before we elaborate on the separation of the problem, suppose
for now that the transmitter has enough data in its buffer
throughout the duration of transmission that it never needs
to overflow the battery. In this case, we have wn = 0 for
all n = 1, 2, . . . , N . We can describe the set of feasible
transmission policies as a tunnel as in [2]. However, with data
arrivals at the transmitter, the upper wall of the tunnel will
be determined not only by (1b), but also by (1d). Let us now
replace (1b) and (1d) for all n = 1, 2, . . . , N by

n∑
i=1

lipi ≤ min

{
n∑

i=1

Ei,

(
n∑

i=1

li

)
g−1

(∑n
i=1Bi∑n
i=1 li

)}
. (7)

This replacement can be justified as follows. Suppose the
optimal transmission powers for the relaxed problem do not
change until the beginning of the (m + 1)th epoch, i.e.,
p∗1 = p∗2 = · · · = p∗m. Then, the total energy spent by
the end of the mth epoch cannot be greater than the energy
harvested by that point, which is ensured by the first term
in the minimization on the right hand side of (7). The total
energy spent by the end of the mth epoch also should not
be greater than (

∑m
i=1 li) g

−1
(∑m

i=1 Bi∑m
i=1 li

)
since this is the

minimum amount of energy sufficient to depart all the bits
that have arrived by the end of the mth epoch, and spending
any more energy is inefficient.

Consider the tightest string solution given in [2] which is
the optimal solution to (1) with Bmax = ∞, B1 = ∞, and
Bn = 0 for n = 2, 3, . . . , N . The tightest string analogy here
refers to the fact that for optimality, the expended energy curve
must be the shortest path between the beginning and the end
of the energy tunnel which is defined by an upper wall, i.e.,
the energy causality constraint (1b), and a lower wall, i.e.,
the battery constraint (1c). The shortest path is a piecewise
linear curve that changes its slope only at energy arrivals. This
change in the slope is in the positive direction if the battery
is empty just before the energy arrival, and in the negative
direction if the battery is full with the new energy arrival. See
[2] for a detailed analysis.

Now, consider the tightest string solution for the relaxed
problem (1) with an infinite capacity buffer, and an energy
tunnel whose lower wall is described by (1c) and upper wall
by (7). Note that (1e) is removed with Bmax = ∞. Suppose
again that this solution yields power values that are constant
up until the beginning of the (m+1)th epoch, i.e., p∗1 = p∗2 =
· · · = p∗m , p∗. Then, either one of (1c) and (7) must be active
at the end of the mth epoch. If (7) is active, then increasing
p∗ will either be infeasible, or inefficient due to not having
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Algorithm 1 Recursive algorithm for throughput maximiza-
tion with Bmax =∞.

1: Find the minimum m̂ such that (8) holds.
2: if m̂ exists then
3: Set wm̂ as in (9).
4: Update N = m̂ and continue. Rerun the algorithm for

epochs m̂+ 1, m̂+ 2, . . .
5: end if
6: Compute p̄n = min

{∑n
i=1 Ei∑n
i=1 li

, g−1
(∑n

i=1 Bi∑n
i=1 li

)}
for all

n = 1, 2, . . . , N .
7: Find m̃ = arg min

n=1,2,...,N
p̄n.

8: Find the minimum m such that p̄m̃
∑m

i=1 li <
∑m+1

i=1 Ei−
Emax. If no such m exists, then set m = m̃.

9: Set p∗n = p̄m for all n = 1, 2, . . . ,m.
10: Update indices as n := n −m for all n = m + 1,m +

2, . . . , N and go to Step 1.

enough data to fully utilize the expended energy. Decreasing
p∗ will be suboptimal as a result of the concavity of g(·). If
(1c) is active, then increasing p∗ will be suboptimal since g(·)
is concave, and decreasing it will be inefficient since some
energy will have to be wasted due to finite Emax. Therefore,
we have optimality for epochs 1, 2, . . . ,m.

For the remainder of the transmission, we can reindex
epochs as ñ = n−m,∀n = m+ 1,m+ 2, . . . , N , and apply
the procedure given above. This way, we can recursively find
the optimal power values for all epochs as was done in [1] for
an infinite capacity battery at the transmitter.

As a final step, we remove the assumption wn = 0 for all
n = 1, 2, . . . , N by invoking Lemma 1 and noting that the
two conditions in Lemma 1 on the battery and the buffer can
be satisfied only if the lower wall defined by (1c) exceeds the
new upper wall given in (7), i.e., for some epoch m̂, we have

m̂+1∑
i=1

Ei − Emax >

(
m̂∑
i=1

li

)
g−1

(∑m̂
i=1Bi∑m̂
i=1 li

)
. (8)

If (8) occurs at the end of any epoch m̂, then we can let the
transmitter lose the excess energy, i.e.,

wm̂ =

m̂+1∑
i=1

Ei − Emax −

(
m̂∑
i=1

li

)
g−1

(∑m̂
i=1Bi∑m̂
i=1 li

)
(9)

and start a new subproblem by reindexing the epochs as ñ =
n − m̂,∀n = m̂ + 1, m̂ + 2, . . . , N . The overall recursive
solution is given in Algorithm 1 where the optimal power
values are denoted by p∗n for all n = 1, 2, . . . , N .

B. Solution for a Finite Data Buffer

We can now solve (1) for the general set up with any Bmax.
A direct implication of the finite buffer capacity is that

lng(pn) ≤ Bmax (10)

for all n = 1, 2, . . . , N since the transmitter can start
each epoch with at most Bmax bits in its buffer. Hence,

Algorithm 2 Recursive algorithm for throughput maximiza-
tion with arbitrary Bmax.

1: Find the optimal solution to the relaxed problem using
Algorithm 1.

2: Find the maximum m such that p∗1 = p∗2 = · · · = p∗m.
3: Find m̄ using (11).
4: if m̄ exists then
5: Set p†n = p∗n for all n = 1, 2, . . . , m̄− 1.
6: Set p†m̄ = g−1

(
Bmax

lm̄

)
.

7: else
8: Set p†n = p∗n for all n = 1, 2, . . . ,m.
9: Set m̄ = m.

10: end if
11: Update Em̄+1 using (12).
12: Update indices as n := n − m̄ for all n = m̄ + 1, m̄ +

2, . . . , N and go to Step 1.

pn ≤ g−1(Bmax/ln) for all n = 1, 2, . . . , N . Note that not
all optimal transmission policies have to satisfy this for all
n = 1, 2, . . . , N , but there exists at least one which does. We
can find the solution in this case in a similar way as we did for
Bmax = ∞. Suppose we again have that the optimal powers
for the relaxed problem satisfy p∗1 = p∗2 = · · · = p∗m , p∗ for
some 1 ≤ m ≤ N . Let

m̄ = min

{
n : p∗n ≥ g−1

(
Bmax

ln

)
, 1 ≤ n ≤ m

}
. (11)

We know that at the end of the m̄th epoch, the transmitter
has an empty buffer. We also know that the m̄th epoch is
the first one at the end of which the transmitter runs out
of data. Then, no transmission policy can depart more bits
than

∑m̄−1
n=1 lnp

∗
n + Bmax which can be achieved by the

partial transmission policy
(
p∗1, p

∗
2, . . . , p

∗
m̄−1, g

−1
(

Bmax

lm̄

))
for epochs 1, 2, . . . , m̄. We know that p∗ ≥ g−1

(
Bmax

lm̄

)
since

we assumed that the tightest string for the relaxed problem
would start with constant rate transmission for m epochs, and
we had to lower the power in the m̄th epoch to make sure
no energy was wasted. Any convex combination of p∗ and
g−1

(
Bmax

lm̄

)
would result in dropped packets at the beginning

of the m̄th epoch since we would have to lower p∗ for the first
m̄ − 1 epochs. Increasing p∗ is also suboptimal as a direct
consequence of the concavity of the rate function. Therefore,
the partial transmission policy is optimal for the first m̄ epochs.
We can then update Em̄+1 as

Em̄+1 :=

[
m̄+1∑
n=1

En −
m̄−1∑
n=1

lnp
∗
n − lm̄g−1

(
Bmax

lm̄

)]∧
(12)

where [a]∧ = min{a,Emax}, and reindex the remaining
epochs as ñ = n − m̄,∀n = m̄ + 1, m̄ + 2, . . . , N . Fi-
nally, we can apply the procedure given above to epochs
ñ = 1, 2, . . . , N − m̄. The recursive solution for the general
case is given in Algorithm 2 where the optimal power values
are denoted by p†n for all n = 1, 2, . . . , N .
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Fig. 4. Throughput values achieved by the optimal transmission policy versus
those achieved by the suboptimal naı̈ve policy for varying peak harvest rates.

V. NUMERICAL RESULTS

For numerical results, we consider an AWGN channel
with unit power gain and unit variance noise at the receiver,
i.e., g(p) = 1

2 log (1 + p). The results for the performance
comparison simulations are given in Fig. 4. We set Emax = 5
J, Bmax = 0.5 kbits, and vary the peak energy harvest rate
at the transmitter from 0 J to 5 J. The peak data arrival rate
is set at 0.5 kbits. The curve labeled “Optimal policy” gives
throughput values achieved by our optimal solution. The curve
labeled “Lower-bound” gives throughput values achieved by
a naı̈ve policy which simply spends En units of energy in
the nth epoch, and sends min{lng(En/ln), Bn} bits of data.
We observe that the gap between the two curves widens as the
peak energy harvest rate is increased, pointing to the advantage
of computing the optimal transmission policy.

Fig. 5 shows the throughput values achieved by the optimal
transmission policy in the same set up, except the peak energy
harvest rate at the transmitter is fixed at 5 J, and Bmax is varied
from 0 kbit to 0.5 kbits. We observe that the impact of the
buffer size (Bmax) on the throughput is modest as compared
to that of the peak energy harvest rate, i.e., lowering the peak
energy harvest rate results in a steeper decrease in throughput
compared to that caused by decreasing the buffer size. Another
observation is that the throughput curve saturates at high
buffer size values, meaning that larger buffers do not improve
throughput indefinitely whereas high peak energy harvest rates
would continue improving the achieved throughput since g(p)
is increasing in p, provided that there is a sufficient amount
of data arriving at the transmitter. As a final remark, we note
that the required buffer size is much lower than the achieved
throughput, indicating that a relatively small buffer is sufficient
for an energy harvesting transmitter.

VI. CONCLUSION

In this paper, we have studied an energy harvesting transmit-
ter with a finite battery and a finite buffer. We have formulated
the throughput maximization problem for this set up, and
solved it by decoupling it into energy and data problems. We
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Fig. 5. Throughput by the optimal policy versus buffer size.

have identified a directional waterfilling solution with right
permeable taps, water pumps, and overflow protection bins
for the energy problem. We have also provided a second
characterization of the optimal solution based on recursively
applying the shortest path solution in [2]. We have observed
that, with this approach, the problem can be divided into
subproblems whenever the buffer is depleted. Future work
includes characterizing the impact of buffer sizes for multiple
energy harvesting node set ups on throughput.

REFERENCES

[1] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvest-
ing communication system,” IEEE Transactions on Communications,
vol. 60, no. 1, pp. 220–230, 2012.

[2] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for
battery limited energy harvesting nodes,” IEEE Transactions on Wireless
Communications, vol. 11, no. 3, pp. 1180–1189, 2012.

[3] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-
sion with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 8, pp. 1732 –1743, Sep. 2011.

[4] B. Varan, K. Tutuncuoglu, and A. Yener, “Energy harvesting commu-
nications with continuous energy arrivals,” in Proceedings of the 2014
Information Theory and Applications Workshop, ITA’14, Feb. 2014.

[5] C. Huang, R. Zhang, and S. Cui, “Throughput maximization for the
Gaussian relay channel with energy harvesting constraints,” IEEE Jour-
nal on Selected Areas in Communications, vol. 31, no. 8, pp. 1469–1479,
2013.

[6] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for
energy harvesting transmitters in an interference channel,” Journal of
Communications and Networks, vol. 14, no. 2, pp. 151 –161, 2012.

[7] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access
channel with energy harvesting transmitters,” Journal of Communica-
tions and Networks, vol. 14, no. 2, pp. 140–150, 2012.

[8] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy
harvesting rechargeable transmitter,” IEEE Transactions on Wireless
Communications, vol. 11, no. 2, pp. 571–583, 2012.

[9] B. Varan and A. Yener, “Multi-pair and multi-way communications
using energy harvesting nodes,” in Proceedings of the 47th Asilomar
Conference on Signals, Systems and Computers, Nov. 2013.

[10] M. Gregori and M. Payaro, “Energy-efficient transmission for wireless
energy harvesting nodes,” IEEE Transactions on Wireless Communica-
tions, vol. 12, no. 3, pp. 1244–1254, March 2013.

[11] D. P. Bertsekas, Nonlinear programming. Belmont, Mass: Athena
Scientific, 1999.

[12] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear Gauss–Seidel method under convex constraints,” Operations
Research Letters, vol. 26, no. 3, pp. 127–136, 2000.

Globecom 2014 - Communication Theory Symposium

1470


