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Abstract—In this paper, a two-hop channel is considered with energy

harvesting transmitter nodes. In particular, the offline throughput max-

imization problem is solved for a constant power relay, and a relay with
one energy arrival, in both cases assuming a finite buffer is available at

the relay for temporarily storing data received from the source. The

focus is on assessing the impact of this data buffer at the relay on
optimal transmission policies. The solution is found indirectly, by first

assuming that the relay has an infinite size buffer, and then proving that

an optimal policy exists that does not require any data buffer at the

relay, thus solving the problem regardless of the data buffer size at the
relay. Numerical results demonstrate that the proposed solution performs

significantly better than naı̈ve policies, and a constant relay rate limits

the average throughput as the peak energy harvest rate for the source
increases.

Index Terms—Energy harvesting nodes, two-hop channel, relay chan-

nel, throughput maximization, finite buffer.

I. INTRODUCTION

We consider a two-hop relay network with an energy harvesting

source node and a relay that has constant power or a fixed energy

budget. The data buffer at the relay is assumed to have a finite

capacity which introduces a new constraint on the feasible space of

transmission policies and renders the problem of throughput maxi-

mization challenging. We attack this problem by relaxing the finite-

buffer constraint and showing that this upper bound is achievable

when the relay has a buffer of any finite size including zero.

Energy harvesting has been studied in many channel settings

in the recent years. References [1] and [2] consider a single-user

communication system with energy harvesting and show that a

piecewise linear power policy is the optimal offline policy both when

the capacity of the battery at the source node is infinite and when it is

finite, for transmission completion time minimization and throughput

maximization. The extension to fading channels is considered in [3].

Multi-terminal models are studied in [4]–[8] including the multiple-

access channel, broadcast channel, interference channel and the relay

channel.

Of particular relevance to this work are references [9]–[12] which

study the two-hop channel with energy harvesting nodes. In [9], the

solution to the throughput maximization problem is given for a full-

duplex relay, and for the half-duplex case the solution is given for

one energy arrival at the source. In [10] and [11], the same problem

with a half-duplex relay is studied, properties of the optimal policy

are derived and the solution with two energy arrivals at the source

is given. In [12], a two-hop channel is studied with constraints on

the peak relay power and total energy that the relay spends. In all

of these works, the relay is assumed to have an infinite size buffer

in which it can store data until an opportune time arises to transmit

from an energy perspective.

In this paper, we consider a relay with finite buffer with the goal

of studying the impact of the buffer size on the optimum policy.
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Fig. 1: The two-hop channel with energy harvesting.

As it was observed in references [9]–[11], the half-duplex problem

with multiple energy arrivals at the nodes is challenging and remains

challenging with the buffer size constraint. We thus consider two

special cases for energy availability at the relay. Specifically, we

consider either a constant power relay or one that gets a singular

energy arrival, i.e., one with a fixed energy budget. The source node

is energy harvesting with an arbitrary number of energy arrivals.

We address the throughput maximization problem and first find the

relaxed solution for an infinite size buffer. Then, we prove that there

exits an optimal policy for the relaxed problem that does not require

a data buffer at the relay, thereby solving the problem regardless of

buffer size.

The remainder of the paper is organized as follows. In Section II,

we describe the system model. In Section III, we identify properties

of the optimal policy and describe the solutions with constant relay

power and single energy arrival at the relay. In Section IV, we

present numerical examples to evaluate the performance of the

proposed algorithm. We discuss our findings and conclude the paper

in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a Gaussian relay channel consisting of a source

node, a relay and a destination node, denoted by Ts, Tr and Td,

respectively (Fig. 1). The destination cannot hear the source directly,

thus communication is possible only through the relay. Let h1 and

h2 denote the power gain in the first hop, from Ts to Tr, and the

second hop, from Tr to Td, respectively. h1 and h2 are normalized

with respect to the noise variance at the respective receiver such that

the Gaussian noise at the relay and the destination has unit variance.

The source Ts harvests energy in an intermittent fashion from

external sources. The battery at the source is assumed to have an

infinite capacity. En denotes the amount of energy that arrives at the

source at the nth energy harvest. The energy available in the source’s

battery before transmission starts is treated as the first arrival and

this amount is denoted by E1. Communication takes place until a

deadline T and N denotes the number of energy arrivals until the

deadline. The time duration between the nth and (n + 1)th energy

arrivals is referred to as the nth epoch and its length is denoted
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by ln. sn denotes the time that the nth energy arrival occurs with

s1 = 0 and sn =
∑n−1

i=1
li, n = 2, 3, ..., N . We also set sN+1 = T

for convenience. All energy arrivals are assumed to be known non-

causally as in references [1]–[12].

For the energy availability at the relay, we consider two cases. In

the first case, we assume that the relay can maintain a constant power,

P , throughout the transmission. In the second case, we consider a

relay that receives E units of energy at the beginning of transmission.

The relay has a data buffer that it can use to store incoming data

that it will forward later. The data buffer can at most store Bmax

units of data. This introduces a new constraint on the feasible set of

transmission policies since any policy that allows more than Bmax

units of data in the relay buffer at any time should not be employed.

The relay in our model is a half-duplex node, so it cannot receive

and transmit simultaneously, i.e., ps(t)pr(t) = 0 where ps(t) and

pr(t) denote the instantaneous power values at time t ∈ [0, T ] for the

source and the relay, respectively. The instantaneous rates achieved by

these power values are C(h1ps(t)) and C(h2pr(t)) where C(x) =
1

2
log(1+x). The total data transmitted by time t is given by Rs(t) =

∫ t

0
C(h1ps(τ ))dτ for the source and Rr(t) =

∫ t

0
C(h2pr(τ )) dτ for

the relay. Similarly, the energy spent by time t is given by Es(t) =
∫ t

0
ps(τ ) dτ for the source and Er(t) =

∫ t

0
pr(τ ) dτ for the relay.

Considering all the constraints introduced by the system model (see

also [9]–[12]), the throughput maximization problem for a constant-

power relay is given by

max Rr(T ) (1a)

s.t. 0 ≤ Rs(t)−Rr(t) ≤ Bmax, (1b)

Es(t) ≤
∑

n:sn<t
En, (1c)

ps(t) ≥ 0, pr(t) ≥ 0, ps(t)pr(t) = 0, ∀t ∈ [0, T ]. (1d)

The throughput maximization problem for single energy arrival at

the relay is described by adding the constraint Er(T ) ≤ E to

optimization problem (1). Instead of directly solving (1) and its

counterpart with the relay of fixed energy budget, we will restate the

problems with discrete decision variables and relax the finite-buffer

constraint, which will provide upper bounds for the original problems.

We will then show that they are achievable regardless of buffer size.

In the next section, we restate (1) and identify some properties of

the solution of the relaxed problem that will help characterize the

solution of (1).

III. OPTIMAL POLICIES

A. Properties of the Optimal Policy for Bmax = ∞
Let us relax (1b), i.e., set Bmax = ∞, and identify the properties of

the optimal policy that solves this relaxed problem both with constant

relay power and single energy arrival at the relay. Some of these

properties have already been proved in [10] for a general energy

harvesting two-hop channel which we mention here for completeness.

These are: (i) in the optimal policy, the source or the relay should

keep its power constant in a single epoch whenever it transmits [10,

Lemma 1]; (ii) either the source or the relay should be transmitting

at any time during transmission [10, Lemma 3]; (iii) the power levels

of the source and the relay should form a nondecreasing sequence

[10, Lemma 4]; (iv) the source battery should be empty whenever

the source power changes [10, Lemma 5]; and (v) the source and the

relay should transmit the same amount data by the deadline T for

optimality [10, Lemma 8]. In the two special cases considered in this

paper, it is possible to identify additional properties as follows.

Lemma 1: For each feasible policy, there exists an equally well

performing feasible policy in which every epoch is composed of two

sub-epochs such that the source transmits in the first sub-epoch and

the relay transmits in the second one.

Proof: We can merge all time intervals in a single epoch in

which the source transmits in a sub-epoch and move this sub-epoch

to the beginning of the epoch. During the remainder of the epoch,

the relay transmits. Since the amount of energy spent by the source

is the same and energy arrives at the beginning of the epoch, (1c)

is not violated. The relay also uses the same amount of energy to

transmit the same amount of bits, but part of its transmission is

delayed without violating feasibility since Bmax = ∞.

Lemma 1 suggests that we define a new parameter ∆n, n =
1, 2, . . . , N that denotes the fraction of the nth epoch that the source

transmits. Then, the lengths of the source and relay sub-epochs in the

nth epoch are given as ln∆n and ln(1−∆n), respectively. Clearly,

0 ≤ ∆n ≤ 1, n = 1, 2, . . . , N , and if only the source (resp. relay)

transmits in the nth epoch, then ∆n = 1 (resp. 0).

With the properties of the optimal policy from [10] and Lemma 1

at hand, we can restate the relaxed version of (1) as

max
ps,n,pr,n,∆n

N
∑

n=1

ln
1−∆n

2
C(

h2pr,n
1−∆n

) (2a)

s.t. 0 ≤
n
∑

i=1

li

(

∆i

2
C(

h1ps,i
∆i

)− 1−∆i

2
C(

h2pr,i
1−∆i

)

)

, (2b)

n
∑

i=1

lips,i ≤
n
∑

i=1

Ei, (2c)

ps,n, pr,n ≥ 0, 0 ≤ ∆n ≤ 1, ∀n = 1, 2, . . . , N, (2d)

where ps,n and pr,n denote the average power values of the source

and the relay in the nth epoch. These power values are averaged over

the duration of the corresponding epoch in the sense that the source

and relay nodes actually transmit at constant powers
ps,n

∆n
and

pr,n

1−∆n

for ∆n and 1−∆n fractions of the epoch, respectively. For a relay

with a fixed energy budget, an additional constraint is required to

assure that the relay does not expend more energy than E, which we

can express as
∑N

n=1
lnpr,n ≤ E.

Lemma 2: For each feasible policy, there exists an equally well or

better performing feasible policy in which the relay buffer is empty

at the end of every epoch.

Proof: Suppose there exists a feasible policy in which the relay

buffer is not empty at the end of the first epoch. Then there exists

δ > 0 such that, if we swap a δ-long portion of the first source sub-

epoch with a δ-long portion of some relay sub-epoch in the future,

the relay empties its buffer at the end of the first epoch. This can be

done without violating data causality at the relay because we know

that in the original policy, the relay has to transmit the amount of data

in its buffer at s2 at a later time. Energy causality at the source is

also preserved since the new policy only delays source transmission

and the source has an infinite-capacity battery. One concern with the

new policy is that power levels may no longer stay constant within

an epoch, e.g., the relay may be transmitting with a larger power

during the second δ-long portion. However, since the rate in each

hop is concave in power, two different power levels at any node can

be equalized without changing the energy spent, and this last step

may even result in a larger throughput. Repeating this process for

epochs 2, . . . , N − 1 concludes the proof.

As a corollary to Lemma 2, we can deduce that the optimal

solutions of (2) and its fixed energy relay counterpart require that

the relay buffer be empty at sn for all n = 2, 3, . . . , N +1. In other

words, the source and the relay must transmit the same amount of
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data in each epoch, i.e.,

C̃(h1ps,n,∆n) = C̃(h2pr,n, 1−∆n), n = 1, 2, . . . , N, (3)

where C̃(x, y) = y

2
log(1+ x/y). (3) plays an important role in our

characterization of the optimal policy for (1).

B. Optimal Policy with Constant Power Relay

When the relay maintains constant power P , whenever it transmits,

it will have a rate R , C(h2P ). Consequently, (3) takes a simpler

form as

C̃(h1ps,n,∆n) = (1−∆n)R, n = 1, 2, . . . , N. (4)

We define function F : (0, 1) → (0,∞) given by F (∆) =
∆

h1
(2

1−∆

∆
2R−1). F is a continuous bijection whose domain (0, 1) is

an open subset of R, hence, by the invariance of domain theorem, F
is a homeomorphism, i.e., its inverse F−1 is continuous. Note that F
maps any ∆n ∈ (0, 1) to a ps,n that, together with ∆n, satisfies (4).

But F−1 is also a continuous bijection, therefore it can be used to

map any ps,n ∈ (0,∞) to a ∆n such that (4) is satisfied. We may also

have ps,n = 0 which is not covered by F−1; however it is obvious

by inspection that in order to satisfy (4) with ps,n = 0, we must have

∆n = 1. Then, as an extension of F−1, we define f : [0,∞) → (0, 1]
as f(p) = F−1(p) for p ∈ (0,∞) and f(0) = 1. f is a continuous

bijection since limp→0 F
−1(p) = 1. Then, f can be used to map

any source power ps,n to a fraction ∆n such that (4) is satisfied.

Also, the continuity of f allows us to use the bisection method as f
does not have a closed-form expression. Therefore, we can first solve

optimization problem (2) to find the optimal ps,n values, and then use

f to find the appropriate ∆n values for each epoch. In order to do this,

we define the effective rate g(p) , C̃(h1p, f(p)) = (1 − f(p))R.

The reason we refer to g as the effective rate is that the amount of

data transmitted from the source to the destination in the nth epoch

is exactly lng(ps,n) where ps,n is the average source power in the

nth epoch.

The effective rate g has some interesting properties that will lead

us to the optimal policy. First of all, it is clear that g(0) = 0. Also

g(p) is monotonically increasing in p. This follows from the fact

that f is a real-valued continuous bijection defined on an interval,

hence it is monotone. Since f(0) = 1 and limp→∞ f(p) = 0,

f is monotonically decreasing in p and g(p) = (1 − f(p))R is

monotonically increasing in p.

Lemma 3: g(p) is concave in p.

Proof: Let p1 and p2 be two power values, and let ∆i =
f(pi), i = 1, 2. Also let α ∈ [0, 1] and define ᾱ = 1 − α,

p = αp1 + ᾱp2 and ∆ = α∆1 + ᾱ∆2. Then,

r(α) , αC̃(p1,∆1) + ᾱC̃(p2,∆2) ≤ C̃(p,∆), (5)

due to the log-sum inequality. Also, from the definition of f ,

r(α) = α(1−∆1)R+ ᾱ(1−∆2)R = (1−∆)R. (6)

Then, we have C̃(p,∆) ≥ (1−∆)R and there exists ∆̃ ≤ ∆ such

that this inequality is satisfied with equality if we replace ∆ by ∆̃.

But, the new rate (1− ∆̃)R achieved by a convex combination of p1
and p2 is at least as large as (1−∆)R. Therefore, g(p) is concave

in p.

The properties of the effective rate given above make it possible

to reduce our system model to a single-user energy harvesting

channel where the achievable rate is given by g(p) where p is the

instantaneous power. Then, the optimal source power values, ps,n
can be found using the results of [1] where the optimal power

policy for a single-user channel is proved to be the tightest string

between the beginning and the end of the energy tunnel of the

source. After finding ps,n for all n, the optimal fraction values can be

found as ∆n = f(ps,n). Since ps,n and ∆n = f(ps,n) completely

characterize the optimal solution, the solution with constant relay

power is complete.

C. Optimal Policy with Single Energy Arrival at the Relay

When the relay has only one energy arrival, Lemma 2 still holds,

implying that we can concentrate on finding an optimal policy in

which the data buffer at the relay is empty at the end of each epoch.

Hence, (3) must be satisfied for all n = 1, 2, . . . , N , i.e., the source

and the relay must transmit the same amount of data in any epoch.

Similarly to the previous subsection, we can define the effective rate

g̃(ps,n) as the left-hand side of (3).

Lemma 4: g̃ is concave in the average source power ps,n.

Proof: Suppose we have an epoch of length l and two policies for

transmission in this epoch. The source and the relay allocate Es
1 and

Er
1 units of energy, respectively in the first policy, and similarly Es

2

and Er
2 units of energy in the second policy. Define the average source

power values as ps,1 = Es
1/l and ps,2 = Es

2/l. Let ∆1 and ∆2 be the

appropriate fraction values that satisfy (3). Let α ∈ [0, 1] be arbitrary.

Define ᾱ = 1− α, ps = αps,1 + ᾱps,2, ∆̄i = 1−∆i, i = 1, 2, and

∆ = α∆1 + ᾱ∆2. Then,

r̃(α) , αC̃(ps,1,∆1) + ᾱC̃(ps,2,∆2) ≤ C̃(ps,∆), (7)

due to the log-sum inequality. From (3), we also have that

r̃(α) = αC̃(Er
1/l, ∆̄1) + ᾱC̃(Er

2/l, ∆̄2)

≤ C̃((αEr
1 + ᾱEr

2)/l, 1−∆). (8)

Thus, by operating at a convex combination of source power values

ps,1 and ps,2, both sides of (3) are improved while keeping the energy

spent by the relay constant at αEr
1 + ᾱEr

2 . While ∆ may have to

be adjusted to balance the two sides of (3), the new rate achieved

by the convex combination of the two policies will never be lower

than the convex combination of the rates achieved by the two policies

individually.

It can similarly be argued that the effective rate g̃(ps,n) is monoton-

ically increasing in ps,n and g̃(0) = 0. Then, we can again consider

our model as a single-user channel and find the optimal source power

values ps,n using the results of [1]. Knowing the average source

power for each epoch, we are left to determine the relay power

values and appropriate fraction values for each epoch. Similarly to

the previous subsection, we can define a function f̃(pr,n; ps,n) that

is parameterized by the average source power ps,n and maps the

average relay power pr,n to the appropriate fraction ∆n such that

(3) is satisfied. It can be shown that f̃ is a continuous bijection; thus

the optimal pr,n values can be found by solving

max
pr,n

N
∑

n=1

ln
1− f̃(pr,n; ps,n)

2
log(1 + h2

pr,n

1− f̃(pr,n; ps,n)
)

s.t.

N
∑

n=1

lnpr,n ≤ E, pr,n ≥ 0, n = 1, 2, . . . , N. (9)

The solution of (9) can be found readily by writing the Karush-

Kuhn-Tucker (KKT) conditions, and is omitted due to limited space.

Having found the relay power values pr,n for each epoch, the function

f̃ can be used to find the optimal fraction values ∆n, and hence the

optimal policy since it is completely characterized by ps,n, pr,n, and

∆n, n = 1, 2, . . . , N .
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D. Optimal Policies with Buffer Size Constraints

We have so far found the optimal policy with Bmax = ∞ and

shown that it can be replaced with another policy where the relay

buffer is empty at the end of each epoch. This way, the required Bmax

is decreased to the maximum of the throughput values for each epoch.

We can further claim that the relay does not have to use its buffer

ever: Instead of pushing all relay transmission to the end of epochs,

the relay can forward messages as soon as it receives them. This

way, the source transmission of one symbol is immediately followed

by a relay transmission of the same symbol. The source and relay

power still remains constant within every epoch and the transmission

time of the source and relay in an epoch is the same; therefore

the throughput achieved remains unchanged. Energy causality at the

source node is not violated because the source uses the same amount

of energy and shifts its transmission towards the end of the epoch.

The relay also spends the same amount of energy, but it has to shift

its transmission back in time. This does not violate feasibility since,

in our model, the relay either has constant transmission power or only

one energy harvest. Thus, the optimal policies found in the previous

two subsections are optimal with any Bmax, except the source and

relay sub-epochs in an epoch has to be interleaved into each other

such that the relay forwards symbols as soon as it receives them.

IV. NUMERICAL RESULTS

In this section, we present simulation results to assess our solution.

Fig. 2 shows the average rate achieved by the optimal policy, along

with upper and lower bounds where P = 2, T = 1, h1 = h2 = 1.

The average rate is computed for peak harvest rates for the source

node varying from 0.1 to 2. The upper bound is found by assuming

that the source receives the same total amount of energy, but all at the

beginning of transmission. This way, the energy causality constraints

at the source are removed and since the source node is assumed

to have an infinite-capacity battery, the set of feasible policies

is enlarged. Therefore, the assumption of a non-energy harvesting

source yields an upper bound on the average rate achieved. The lower

bound is the case where the source does not have a battery to store

energy for future use. This new constraint significantly simplifies the

problem as the average source power for every epoch is immediately

available and does not require solution of an optimization problem.

But the new constraint also shrinks the feasible set; hence we get

a lower bound on the achievable average rate. As can be seen, the

average rate is concave and monotonically increasing in the peak

harvest rate for the source node. The average rates achieved by the

optimal policy are significantly higher than the lower bound. We

also observe that the average rate curve becomes flatter as the peak

harvest rate increases. This is due to the fact that, although larger

energy harvests at the source increases the average rate, the relay

rate is constant at R = 1

2
log(1 + h2P ) and it limits the end-to-end

rate achieved in each epoch.

V. DISCUSSION AND CONCLUSION

In this paper we studied a two-hop channel with an energy

harvesting source in two cases: first with a constant power relay and

also with a relay that has one energy arrival (harvest). We found the

optimal solutions for these two cases with the assumption that the

relay has an infinite-capacity data buffer. We then showed that these

optimal solutions do not actually require a data buffer at the relay.

We finally provided numerical results to observe the performance of

the optimal policy against upper and lower bounds.

With an energy harvesting relay with multiple energy arrivals, the

buffer size may affect the optimal policy and Lemma 2 no longer
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Fig. 2: Performance comparison of the optimal policy.

holds. As an example, suppose there are two arrivals at the relay:

one at s1 with little harvested energy and another one just before

the deadline T , with an amount of energy sufficient to transmit all

the data in the relay buffer by T . Since the relay receives most of

its energy near T , the relay would need to store data in its buffer

until the second arrival, and then transmit it before the deadline for

maximum throughput.
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