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Abstract—In this paper, we study two-way communication
scenarios with energy harvesting. In particular, we consider the
two-way and two-way relay channels with finite data storage. We
solve the throughput maximization problem with finite batteries
and finite data buffers. This entails iteratively solving an energy
problem, which distributes the available energy over the course of
the communication session, and a data problem, which schedules
how much data to send at each node over the course of the
communication session. We provide a directional waterfilling
interpretation to the energy problem with the addition of water
pumps and overflow protection bins. The data problem turns
out to be a linear program which we solve by forward induction.
We provide numerical results demonstrating the impact of the
battery and buffer sizes on the achieved throughput. We observe,
for communication scenarios of interest, that a relatively modest
size of data storage is sufficient to harness the performance
benefits of data buffering, i.e., to achieve the throughput values
without buffer size limitations.

I. INTRODUCTION

Energy harvesting nodes acquire their energy in an inter-

mittent fashion over the course of their operation [1]. Energy

harvesting communications has been studied in a variety

of models in order to assess the impact of the harvested

energy and its storage [1]–[10] on system performance. By

contrast, although wireless networks also receive their data

intermittently to a large extent, this aspect has not been studied

in depth for energy harvesting communications.

Prior work in energy harvesting communications dates back

to references [1] and [2] which study an energy harvesting

transmitter, and identify the optimal transmission policies.

References [3] and [4] derive waterfilling interpretations to

the optimal transmission policies for the fading channel and

the interference channel. Multi terminal networks including

the two-hop network, the multiple access channel, and the

two-way and multi-way relay channels are studied in [5]–

[9]. Reference [10] proposes a framework for throughput

maximization in a wireless network with energy harvesting

transmitters and receivers, and energy storage limitations, by

decoupling the throughput maximization problem into energy

efficiency and energy harvesting adaptation problems. While

these prior efforts assume infinite data storage at the nodes,

reference [11] is particularly relevant to our work in that it
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has provided the first energy harvesting model with finite data

buffers in the single user channel. In [11], the transmission

completion time minimization problem for an energy harvest-

ing transmitter is studied with finite data and energy storage,

and data arrivals. The communication scenario in [11] does

not allow dropped packets, an assumption we shall relax in

this paper.

In this work, we study the throughput maximization problem

for two-way energy harvesting communication systems with

finite data buffers, extending our recent work on the single

user channel [12] to a multi terminal scenario. We first study

sum throughput maximization for the bidirectional channel

composed of two energy harvesting half duplex transmitters.

We consider intermittent data arrivals at the transmitters as

well as intermittent energy arrivals. We solve the throughput

maximization problem by first decomposing it into an energy

problem and a data problem for each transmitter. We use

alternating maximization between these sub-problems which

converges to the optimal solution yielding the jointly optimal

power and data policies for each node. We identify a direc-

tional waterfilling interpretation for the optimal solution for

the energy problem, and propose a forward induction based

solution for the data problem.

Next, we add an energy harvesting relay between the two

transmitters, and solve the throughput maximization problem

with finite energy and finite data storage constraints for the

two-way relay channel. We show that this problem can also

be decomposed into the same sub-problems. We provide nu-

merical results demonstrating how the data buffer and battery

capacities impact the optimal throughput. We observe that

a modest size buffer is sufficient to achieve the optimal

throughput.

II. THROUGHPUT MAXIMIZATION FOR THE TWO-WAY

CHANNEL

A. System Model

Consider an additive white Gaussian noise (AWGN) two-

way channel with half duplex energy harvesting transmitters

T1 and T2 as shown in Fig. 1. Without loss of generality, the

AWGN variances and energy harvests are normalized such

that the instantaneous rate achieved with transmit power p
is C(p) , 1

2 log(1 + p) in each direction. The time interval

between any two consecutive energy or data arrivals is defined
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Fig. 1. The energy harvesting two-way channel with a finite battery and a
finite data buffer at each transmitter.

to be an epoch. We consider communication with a deadline

with N denoting the number of epochs by the deadline. In the

nth epoch, node Ti harvests Ei,n (≤ Ei,max) units of energy,

and receives Bi,n (≤ Bi,max) units of data at a constant rate.

Here, Ei,max and Bi,max denote the size of the battery and

the data buffer at node Ti, i = 1, 2.

B. Problem Statement and Solution

The throughput maximization problem for the half duplex

two-way channel can be expressed as

max
p,w,r,d≥0,
0≤∆≤1

N∑

i=1

li(r1,i + r2,i) (1a)

s.t.

n∑

i=1

(lipj,i + wj,i) ≤

n∑

i=1

Ej,i, (1b)

n∑

i=1

Ej,i −

n∑

i=1

(lipj,i + wj,i) ≤ Ej,max, (1c)

n∑

i=1

(lirj,i + dj,i) ≤
n∑

i=1

Bj,i, (1d)

n∑

i=1

Bj,i −

n∑

i=1

(lirj,i + dj,i) ≤ Bj,max, (1e)

r1,n ≤ ∆nC(
p1,n
∆n

), r2,n ≤ (1−∆n)C(
p2,n

1−∆n

), (1f)

∀j = 1, 2, n = 1, 2, . . . , N, (1g)

where pj,n, wj,n, rj,n, and dj,n denote the transmit power,

wasted energy, achieved rate, and dropped packets1 for node

Tj in the nth epoch, j = 1, 2, n = 1, 2, . . . , N . ∆n and 1−∆n

denote the fractions of the nth epoch reserved for node T1’s

transmission and node T2’s transmission, respectively. Bold

face notation is used to denote vectors of variables, e.g., p =
(p1,1, . . . , p1,N , p2,1, . . . , p2,N ), and ∆ = (∆1, . . . ,∆N ).

In (1), (1b) (cf. (1d)) and (1c) (cf. (1e)) express the energy

(cf. data) causality and the energy (cf. data) storage constraints,

respectively. Our approach to solve (1) is to decompose it into

smaller problems and solve each one of those. In order to do

this, we first define an inner problem over ∆n as

max
0≤∆n≤1

∆nC(
p1,n
∆n

) + (1−∆n)C(
p2,n

1−∆n

). (2)

1Unlike reference [11], we do not prohibit dropped packets for the purpose
of achieving optimal end-to-end throughput.

Recalling that C(p) is concave, we have that

∆nC(
p1,n
∆n

) + (1 −∆n)C(
p2,n

1−∆n

) ≤ C(p1,n + p2,n). (3)

That is, C(p1,n + p2,n) is an upper-bound on the objective of

(2) which can be achieved by setting ∆n = ∆∗
n ,

p1,n

p1,n+p2,n
.

Thus, we can find optimal ∆n for all n = 1, 2, . . . , N given all

the other decision variables. Let C∗
1,n(p1,n) = ∆∗

nC(p1,n/∆
∗
n)

and C∗
2,n(p2,n) = (1−∆∗

n)C(p2,n/(1−∆∗
n)). We have

max
p,w,r,d≥0

N∑

i=1

li(r1,i + r2,i) (4a)

s.t.

n∑

i=1

(lipj,i + wj,i) ≤

n∑

i=1

Ej,i, (4b)

n∑

i=1

Ej,i −

n∑

i=1

(lipj,i + wj,i) ≤ Ej,max, (4c)

n∑

i=1

(lirj,i + dj,i) ≤
n∑

i=1

Bj,i, (4d)

n∑

i=1

Bj,i −

n∑

i=1

(lirj,i + dj,i) ≤ Bj,max, (4e)

rj,n ≤ C∗
j,n(pj,n), ∀j = 1, 2, n = 1, 2, . . . , N. (4f)

Let us now replace the objective of (4) with

N∑

i=1

li(min{r1,i, C
∗
1,i(p1,i)} +min{r2,i, C

∗
2,i(p2,i)}). (5)

This yields an equivalent problem where constraint (4f) is

redundant. The remaining constraints (4b), (4c), (4d), and

(4e) are separable between (p,w) and (r,d). Moreover, each

constraint is separable between nodes T1 and T2. Thus, we

can solve (4) using alternating maximization [13, §2.7]. We

start with arbitrary feasible initial solutions (p
[0]
j ,w

[0]
j ) and

(r
[0]
j ,d

[0]
j ), j = 1, 2 where the iteration index is given in

the superscript and the user index is given in the subscript,

e.g., p
[0]
1 = (p

[0]
1,1, p

[0]
1,2, . . . , p

[0]
1,N ). In order to converge to the

optimal solution, we update the current solution by solving

(p
[k]
j ,w

[k]
j ) = arg max

(pj,wj)≥0

N∑

i=1

limin{r
[k−1]
j,i , C∗

j,i(pj,i)} (6a)

s.t.

n∑

i=1

(lipj,i + wj,i) ≤

n∑

i=1

Ej,i, (6b)

n∑

i=1

Ej,i −

n∑

i=1

(lipj,i + wj,i) ≤ Ej,max, (6c)

∀n = 1, 2, . . . , N, (6d)

for j = 1, 2, and

(r
[k]
j ,d

[k]
j ) = arg max

(rj ,dj)≥0

N∑

i=1

limin{rj,i, C
∗
j,i(p

[k]
j,i)} (7a)

s.t.

n∑

i=1

(lirj,i + dj,i) ≤

n∑

i=1

Bj,i, (7b)
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Fig. 2. Directional waterfilling with right permeable taps and pumps for the
energy problem for a set up with three epochs. Initial allocations are shown
at the top, and the optimal allocations are shown at the bottom.

n∑

i=1

Bj,i −
n∑

i=1

(lirj,i + dj,i) ≤ Bj,max, (7c)

∀n = 1, 2, . . . , N. (7d)

In order to solve (6), i.e., the energy problem, we derive

the stationarity condition on pn for all n = 1, 2, . . . , N .

The optimal solution of (6) admits a directional waterfilling

interpretation as follows. Whenever C∗
j,n(pj,n) < r

[k−1]
j,n , there

is sufficient data allocated by (7) in the previous iteration; thus,

the solution is the same as the directional waterfilling solution

of [3] for an infinite backlog of data and an infinite data buffer.

In other words, energy can flow only from past epochs to

future epochs via right permeable taps between the water bins

that signify the epochs. A tap turns off when the total amount

of energy (water) that has flown through it reaches Ej,max for

node Tj , j = 1, 2.

If there is not enough data to fully utilize the initial

amount of energy available in an epoch, then we must have

C∗
j,n(pj,n) = r

[k−1]
j,n . The optimality conditions imply that

pj,n is decreased until this condition is satisfied. That is, no

more than (C∗
j,n)

−1(r
[k−1]
j,n ) units of power are allowed in each

epoch. This means that the data allocated by (7) in the previous

iteration results in a maximum power of (C∗
j,n)

−1(r
[k−1]
j,n )

for epoch n. We interpret this phenomenon by introducing

water pumps and overflow protection bins to the waterfilling

solution. The water pump for the nth epoch is inactive as

long as pj,n ≤ (C∗
j,n)

−1(r
[k−1]
j,n ). However, if this constraint

is violated by the initial water levels, or the operation of the

right permeable taps, then the water pump is activated. The

water pump is responsible for bringing the water level down

to (C∗
j,n)

−1(r
[k−1]
j,n ). In order to do this, it pumps water to

the next bin. When the right permeable tap turns off since

the battery is full in the next epoch, it pumps water into

the overflow protection bin. Here, the transfer of water to

Algorithm 1 The proposed epoch-by-epoch solution for the

data problem for node Tj , j = 1, 2.

1: Initialize n = 1.

2: Optimize epoch n using

rj,n = min{Bj,n/ln, C
∗
j,n(p

[k]
j,n)}.

3: Determine how much data to drop using

dj,n = (Bj,n − lnC
∗
j,n(p

[k]
j,n)−Bj,max)

+.

4: Update the next data arrival using

Bj,n+1 := Bj,n+1 +min{Bj,n − lnC
∗
j,n(p

[k]
j,n), Bj,max}.

5: if n < N then

6: n := n+ 1.

7: go to 2.

8: else

9: return (rj ,dj).
10: end if

an overflow protection bin models a positive wn, i.e., wasted

energy. Note that this excess amount of energy is unable to

improve the objective due to the limitation on the available

data, thus the transmitter can afford to waste it.

An example is shown in Fig. 2 with three epochs. There is

not enough data in the first epoch, thus some water is pumped

to the second epoch by the water pump even though the water

level, i.e., the average power, is higher in the second epoch.

When the pump can no longer pump any water to the second

epoch, the remaining water is transferred into the overflow

protection bin.

For (7), i.e., the data problem, we propose an algorithmic

solution. The solution finds the optimal rj,n and dj,n values

on an epoch-by-epoch basis, starting with the first epoch,

and updating the next data arrival. With the updated data

arrival, the next epoch can be treated as the first arrival for

a subproblem that starts with the second epoch. The solution

is given in Algorithm 1 where (x)+ = max{x, 0}. The proof

of optimality is by induction, i.e., assuming optimality for the

past epochs, the algorithm optimizes the current epoch and

moves on to the next one.

With the optimal solutions to the energy and data problems

identified, the description of the optimal transmission policy

for a two-way channel is complete.

III. THROUGHPUT MAXIMIZATION FOR THE TWO-WAY

RELAY CHANNEL

A. System Model

Consider now an AWGN half duplex two-way relay channel

with energy harvesting transmitters T1 and T2 and an energy

harvesting relay T0 as in Fig. 3. The AWGN at any receiving

node is zero mean and unit variance. The power gain from

Ti to Tj is hij with h12 = h21 = 0, i.e., there is no direct

link between T1 and T2. Node Ti employs a finite battery of

capacity Ei,max, and transmitter Ti employs a finite data buffer

of capacity Bi,max. In the nth epoch, node Ti harvests Ei,n (≤
Ei,max) units of energy, and transmitter Ti receives Bi,n (≤
Bi,max) units of data at a constant rate. The relaying strategy

is chosen to be decode-and-forward for clarity of exposition.
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Fig. 3. The energy harvesting two-way relay channel with a finite battery at
each node and a finite data buffer at each transmitter.

B. Problem Statement and Solution

The throughput maximization problem for this set up is

max
p,w,r,d≥0,
0≤∆≤1

N∑

i=1

li(r1,i + r2,i) (8a)

s.t.

n∑

i=1

(lipj,i + wj,i) ≤

n∑

i=1

Ej,i, (8b)

n∑

i=1

Ej,i −

n∑

i=1

(lipj,i + wj,i) ≤ Ej,max, (8c)

n∑

i=1

(lirk,i + dk,i) ≤

n∑

i=1

Bk,i, (8d)

n∑

i=1

Bk,i −
n∑

i=1

(lirk,i + dk,i) ≤ Bk,max, (8e)

(r1,n, r2,n) ∈ R(p0,n, p1,n, p2,n,∆n), (8f)

∀j = 0, 1, 2, k = 1, 2, n = 1, 2, . . . , N (8g)

where

R(p0,n, p1,n, p2,n,∆n) = {(r1, r2) :

0 ≤ r1 ≤ min{∆nC(
h10p1,n
∆n

), (1 −∆n)C(
h02p0,n
1−∆n

)},

0 ≤ r2 ≤ min{∆nC(
h20p2,n
∆n

), (1 −∆n)C(
h01p0,n
1−∆n

)},

r1 + r2 ≤ ∆nC(
h10p1,n + h20p2,n

∆n

)} (9)

denotes the set of achievable rates given the transmit powers

at all three nodes [14]. Here, ∆n is the fraction of the nth

epoch scheduled for the multiple access phase where the two

transmitters transmit their messages to the relay.

In order to solve (8), we follow the same approach as we

did for the two-way channel, and eliminate ∆n as a decision

variable. The Karush-Kuhn-Tucker analysis of (8) yields that

there exists at least one optimal solution to (8) where r1,n +
r2,n = ∆nC((h10p1,n+h20p2,n)/∆n) for all n = 1, 2, . . . , N .

Hence, we define the best achievable sum rate given transmit

powers f(p0,n, p1,n, p2,n) equal to

max
r1,n,r2,n,
0≤∆n≤1

r1,n + r2,n (10a)

s.t. (r1,n, r2,n) ∈ R(p0,n, p1,n, p2,n,∆n), (10b)

r1,n + r2,n = ∆nC((h10p1,n + h20p2,n)/∆n). (10c)

We omit the details of the optimal solution of (10) due to

space limitations. The resulting best achievable sum rate is

f(p0,n, p1,n, p2,n) = min
∆∈D

∆C(
h10p1,n + h20p2,n

∆
) (11)

where D = {∆∗
1,∆

∗
2,∆

∗
3} is found by solving

∆∗
1C((h10p1,n + h20p2,n)/∆

∗
1) (12a)

= (1−∆∗
1)[C(

h01p0,n
1−∆∗

1

) + C(
h02p0,n
1−∆∗

1

)],

∆∗
2C(

h20p2,n
h10p1,n +∆∗

2

) = (1 −∆∗
2)C(

h02p0,n
1−∆∗

2

), (12b)

∆∗
3C(

h10p1,n
h20p2,n +∆∗

3

) = (1 −∆∗
3)C(

h01p0,n
1−∆∗

3

). (12c)

Equations (12) admit unique solutions that can be found

numerically. As a result, (8) becomes

max
p,w,r,d≥0

N∑

i=1

li(r1,i + r2,i) (13a)

s.t.

n∑

i=1

(lipj,i + wj,i) ≤
n∑

i=1

Ej,i, (13b)

n∑

i=1

Ej,i −

n∑

i=1

(lipj,i + wj,i) ≤ Ej,max, (13c)

n∑

i=1

(lirk,i + dk,i) ≤

n∑

i=1

Bk,i, (13d)

n∑

i=1

Bk,i −

n∑

i=1

(lirk,i + dk,i) ≤ Bk,max, (13e)

r1,n + r2,n ≤ f(p0,n, p1,n, p2,n), (13f)

∀j = 0, 1, 2, k = 1, 2, n = 1, 2, . . . , N. (13g)

We can now replace the objective of (13) with

N∑

i=1

limin{r1,i + r2,i, f(p0,i, p1,i, p2,i)} (14)

and remove constraint (13f). Now, the feasible region of (13)

is again separable between energy variables (p,w) and data

variables (r,d). Moreover, we can separate (13) between the

three nodes. Consequently, we obtain energy problems for all

nodes, and data problems for nodes T1 and T2. The solutions

of the resulting problems are the same as the waterfilling and

induction based solutions given in Section II-B.

IV. NUMERICAL RESULTS

We consider the two-way relay channel in our simulations

to investigate the interaction between the sizes of the two data

buffers at nodes T1 and T2, and their collective impact on

the achieved throughput. The results are shown in Fig. 4. The

peak energy harvest rates and the battery sizes are set at 50 mJ

for all nodes. The noise density at all nodes is 10−19 W/Hz,

and the power gain in all links is −110 dB. A bandwidth of

1 MHz is available for two-way communication, which takes
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Fig. 4. Throughput values achieved by the optimal transmission policy versus
varying buffer sizes at nodes T1 and T2.

place for 10 seconds. The buffer sizes are varied from 0 kbits

(no buffer) to 100 kbits for nodes T1 and T2. We observe that

the optimal throughput is saturated at rather modest values of

the buffer sizes for both nodes, yielding values as if the buffers

are unlimited. On average, 0.4 seconds of incoming data need

to be stored in the data buffers for optimal throughput. Note

that communication is possible without any data buffers since

the transmitters can send the data they receive in an epoch

within the same epoch. However, they are unable to save the

data for more opportune times. The existence of data buffers

thus enables throughput improvement.

Fig. 5 demonstrates the impact of the battery sizes at nodes

T1 and T2 on the achieved throughput. The simulation set up

is the same as the previous one, except the buffer sizes for

nodes T1 and T2 are set at 50 kbits. The battery sizes for

nodes T1 and T2 are varied from 0 mJ to 50 mJ. Similarly

to the previous result with varied buffer sizes, Fig. 5 offers

insights into choosing the battery sizes for optimal throughput

which saturates beyond certain battery sizes, here 50 mJ.

V. CONCLUSION

In this paper, we have studied throughput maximization

for the two-way channel and the two-way relay channel with

energy harvesting nodes. We have considered the realistic

case of finite capacity batteries as well as finite capacity data

buffers. We have shown that the throughput maximization

problems in either channel model can be decomposed into

an energy problem and a data problem, and subsequently can

be solved using alternating maximization. We have shown

that the energy problem admits a directional waterfilling

solution [3] with the addition of the new notions of water

pumps and overflow protection bins. We have solved the data

problem using forward induction where we identify optimal

data amounts to transmit on an epoch-by-epoch basis. We have

provided numerical results to verify our analytical findings.

In particular, we have observed that the optimal throughput

saturates as the buffer and battery sizes increase, and the
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Fig. 5. Throughput values achieved by the optimal transmission policy versus
varying battery sizes at nodes T1 and T2.

required buffer size is only a fraction of the amount of total

data the optimal throughput renders.
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