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Abstract—This paper proposes a communication framework
where meanings of transmitted codewords over a noisy channel
are explicitly taken into account. Furthermore, such commu-
nication takes place in the presence of an external entity, i.e.,
an agent, that can influence the receiver. The agent may be
adversarial or helpful, and its true nature is unknown to the
communicating parties. Actions taken by the agent are governed
by its nature to aim to improve/deteriorate the communication
performance. We characterize the optimal transmission policies
to minimize the end-to-end average semantic error, that we define
as the expected error between meanings of intended and recov-
ered messages, under the uncertainty of agent’s true intentions.
To do so, we first formulate the communication problem as a
Bayesian game, and investigate the conditions under which a
Bayesian Nash equilibrium exists. Next, we consider a dynamic
communication scenario in which parties take actions sequen-
tially, forming beliefs about the other party. By formulating this
setting as a sequential game, we investigate the structure of the
belief system and strategy profiles at equilibrium. Our results
indicate that word semantics are instrumental in assessing com-
munication performance when messages carry meanings, and
optimal communication strategies are strongly influenced by the
communicating parties’ beliefs.

Index Terms—Semantic communication, transmit codeword
assignment, side information, game theory, Bayesian games,
social influence.

I. INTRODUCTION

PERFORMANCE criteria in conventional communication
systems are based on error rates that are agnostic to the

semantics of communicated messages. In fact, communica-
tion protocols that operate in the physical layer do not take
into account the difference between the meanings of transmit-
ted and recovered messages at all, but rather are concerned
with the engineering problem of reliably communicating
sequences of bits [3]. Emergent networks, e.g., the Internet of

Manuscript received January 28, 2018; revised July 7, 2018; accepted
September 12, 2018. Date of publication September 28, 2018; date of current
version December 21, 2018. Part of the work in Sections I–V-B of this paper
was presented at the IEEE International Conference on Pervasive Computing
and Communications (PerCom’14), Workshop on Information Quality and
Quality of Service for Pervasive Computing, March 2014, [1] and IEEE
International Conference on Communications (ICC’16), May 2016 [2]. This
research is sponsored in part by the U.S. Army Research Laboratory under
the Network Science Collaborative Technology Alliance, Agreement Number
W911NF-09-2-0053. The associate editor coordinating the review of this
paper and approving it for publication was A. B. MacKenzie. (Corresponding
author: Başak Güler.)
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Things (IoT) paradigm, enable advanced connectivity between
humans and machines [4], [5], where interaction occurs
between parties of diverse backgrounds, interests, and infer-
ence capabilities. For such systems, reliable communication
implies that the intended meaning of the messages is preserved
at reception. In effect, these networks allow interaction at a
level so that the communicating parties can form social rela-
tionships [6]. These factors motivate a new approach that
molds physical and application layer metrics into one, i.e.,
a novel performance criterion that takes into account the
meanings of the communicated messages, as well as utilizing
this measure in a setting that abstracts the impact of social
influence.

This paper introduces an approach in which the semantic
content of the messages to be communicated over a noisy
channel is taken into account in optimizing the performance
of a communication system. Consider the following motivat-
ing example. In a conventional communication system, errors
between semantically similar words, such as car and automo-
bile, are treated equally as semantically distant words, such
as car and computer. On the other hand, the meaning of car
is much closer to automobile than computer. In reality, if one
wishes to transmit the binary sequence corresponding to the
message car, and if the channel errors prevent its recovery, it
would be much better if the erroneous received sequence were
decoded as automobile as compared to computer. We study
mechanisms to achieve this, i.e., how to reliably communicate
the meanings of messages through a noisy channel. To do so,
we propose a novel performance metric that measures how
accurately the meanings of messages are recovered. We view
the semantic error caused by the noisy channel as the distance
between the meanings of transmitted and received messages.
This is in contrast with declaring an error when a message
other than the original is recovered regardless of its meaning.
Our semantic error measure is based on the notion of semantic
similarity, which quantifies the distance between the mean-
ings of two words [7]–[10], for instance, synonyms incur very
small if any semantic error. Semantic similarity measures are
widely used in natural language processing, artificial intelli-
gence, computational linguistics, and information retrieval. By
minimizing a semantic error measure based on the dissimilar-
ity of word meanings, we determine the optimal transmission
policies to best preserve the meanings of recovered messages.

In addition to establishing the semantic error metric for
communication performance, we model the impact of social
influence on how the messages are interpreted by considering
an external influential entity, i.e., an agent, in our communica-
tion network. This agent can influence the receiver, in particu-
lar, how it decodes the received signals, by providing side, e.g.,
context, information. The exact nature of the agent, whether
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adversarial or helpful, is unknown to the communicating par-
ties, and is treated as a random variable. An adversarial agent,
for instance, would target causing errors in message recovery,
while a helpful one would act to facilitate effective communi-
cation. Hence, it is beneficial to tailor the transmission policies
to take into account the possible intentions of the agent.

We model the interaction between the communicating par-
ties and the agent by utilizing game theory, in particular, as
a Bayesian game [11], [12]. Bayesian games consider static
games with incomplete information due to uncertainty about
the characteristics of one or more players. The objective of
each player, i.e., its payoff function, is determined by its
characteristics. Bayesian games can be extended to model
dynamic scenarios, in which players take actions sequentially
in multiple rounds. Games of this type are called sequen-
tial games with incomplete information. The sequential game
has perfect information if the actions taken by each player
are observed by all other players, otherwise it has imperfect
information [12].

Bayesian games have been useful in modeling a diverse
range of problems in communication networks in which
interacting parties have incomplete information regarding var-
ious network parameters [13]–[22]. In [13], Bayesian games
have been leveraged in network intrusion detection, for
modeling the interaction between defending and attacking par-
ties. References [14] and [15] utilize Bayesian games in the
context of dynamic spectrum access between primary and
secondary users, to identify the optimal spectrum monitoring
strategies for detecting potential thievery of spectral resources
by the secondary user. Wireless spectrum utilization is inves-
tigated in [16] in which a Bayesian game is designed to
model the interaction between selfish communicating parties
that operate in the same frequency band, in which the par-
ties have incomplete information about the channel conditions
of one another. The time-invariant channel setup considered
in [16] is extended in [17] to take into account channel varia-
tions as well as channel estimation errors. In [18], a Bayesian
game is formulated to study resource allocation in a fading
multiple access channel, where the communicating parties aim
to maximize their average achievable rates with incomplete
information regarding the fading channel gains. Reference [19]
applies the Bayesian game model to the downlink power allo-
cation scenario in a two-tier heterogeneous cellular network, in
which the macrocell base station has incomplete information
about the channel between the femtocell base station and the
femtocell user. Bayesian games have also found applications
in signal processing for communications [21] and in adap-
tive multi-agent sensing scenarios [22]. In a different line of
work, Bayesian games have been incorporated to design robust
distributed wireless communication protocols in the presence
of jammers, in which the interacting parties have incomplete
information about the network conditions, such as the iden-
tities of other users, traffic dynamics, or characteristics of
the physical channel, e.g., channel gain or noise [23]–[25],
or whether the jammer is physically present or absent [26].
Reference [27] utilizes a Bayesian game to model an under-
water acoustic sensor network in which nodes communicate
in the presence of an adversary, and incomplete information

results from the uncertainty about the nodes’ exact position.
A cognitive radio network is considered in [28] in which
the power allocation strategies are studied for the secondary
user to meet a minimum signal-to-interference-plus-noise ratio
(SINR), in the presence of a jammer. In this model, the
interaction between the secondary user and the jammer is mod-
eled as a Bayesian game with power budget constraints and
incomplete information regarding the channel gains.

We view the semantic communication problem with
social influence as a game with incomplete information,
played between the encoder/decoder and the agent. The
encoder/decoder pair wishes to minimize the average semantic
error between the meanings of transmitted and recovered mes-
sages. The agent depending on its nature may either act to aid
or work against this goal. For the static (Bayesian) scenario in
which both sides take their actions simultaneously, we inves-
tigate the conditions under which a pure strategy Bayesian
Nash equilibrium exists, and characterize the mixed strategy
Bayesian Nash equilibrium. After showing that finding the
encoding and decoding strategies to minimize the average
semantic error is NP-hard, we propose two algorithms based
on simulated annealing and alternating optimization.

We next extend the communication scenario into a dynamic
one, in which the agent and the communicating parties can
take actions sequentially. We demonstrate a sequential equi-
librium under which the agent signals its true nature to the
communicating parties, by always choosing separate actions
for when it is adversarial or helpful. In our numerical studies,
we determine the equilibrium strategies as well as the struc-
ture of the encoding and decoding functions that minimize the
average semantic error.

Our results confirm that judicious transmission policies can
significantly reduce the semantic errors that occur between
the meanings of intended and recovered words. In addition,
optimal strategies are greatly influenced by the belief of the
interacting parties about the true nature of the influential entity.
To this end, transmission policies depend on the bias of the
interacting parties, i.e., whether the individual is believed to
be adversarial or helpful.

The remainder of the paper is organized as follows. In
Section II, we overview the notion of semantic similarity.
Section III introduces our system model. The Bayesian game
formulation is described in Section IV. Section V analyzes
the Nash equilibrium. Section VI studies the structure of
the optimal encoding and decoding strategies. The dynamic
communication game model is introduced in Section VII.
Numerical results are provided in Section VIII. The paper is
concluded in Section IX.

II. SEMANTIC SIMILARITY: A BRIEF OVERVIEW

Words can take different meanings in different contexts. A
concept refers to the specific meaning that a word takes in
a certain context. For instance, the word nickel may refer to
a five-cent coin or a chemical substance. Semantic relations
between different concepts are often represented by using word
taxonomies [29], such as the WordNet taxonomy illustrated
in Fig. 1a. Semantic similarity quantifies how similar two
concepts are [7]–[10]. Word similarity quantifies the semantic
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Fig. 1. (a) A word taxonomy fragment from [7]. Concepts are related to
each other using an is-a relationship, for instance, dime is a coin. The same
word may appear at several places in the taxonomy as instances of differ-
ent concepts, such as nickel appearing under coin (thus taking the meaning
of a five-cent coin) versus chemical substance. (b) Examples of edge-based
similarity values between various words.

similarity between a pair of words, with synonyms having the
highest value. Word similarity measures are often based on a
word taxonomy, or statistics from a large set of texts, i.e., a
text corpus [7]–[10]. The main semantic similarity metrics are
node-based similarity and edge-based similarity.

Node-based similarity between two concepts is measured by
the information content of their lowest common subsumer [7].
A lowest common subsumer refers to the concept that has
the shortest distance from the two. For example, coin and
money are both subsumers of nickel and dime, but coin is
lower subsumer than money. The information content of a
concept is inversely proportional to its empirical frequency
in the corpus. That is, concepts that appear less frequently in
text have a higher information content. Edge-based similarity
utilizes the geometric distance between two nodes in the word
taxonomy to find the semantic similarity between two con-
cepts [9]. This measure is inversely proportional to the length
of the shortest path between two concepts. Similarity between
two concepts increases as the path connecting the two nodes
becomes shorter. Similarity between two words is defined as
the maximum of all similarity values between the concepts cor-
responding to them. Fig. 1b presents examples of edge-based
similarity values between various words evaluated using the
NLTK language processing package [30].

III. SYSTEM MODEL

Notation: In the following, uppercase letters represent ran-
dom variables, whereas lowercase letters correspond to their
realizations. We use x = (x1, . . . , xn) for a vector of length
n ∈ Z

+. X represents a set with cardinality |X | and X n is the
n-fold Cartesian product of X . E[ · ] denotes the expectation
operation.

We consider the communication scenario in Fig. 2a. In this
scenario, the encoder observes a message (word) w from a

Fig. 2. (a) Semantic communication channel. (b) Players of the Bayesian
game formulation.

finite set W with probability p(W = w). It then maps w to
a channel input x = (x1, . . . , xn) using an encoding function
g : W → X (n), where X (n) ⊆ X n and X is a finite alphabet.
The set of all such encoding functions is denoted by G. A noisy
channel exists between the encoder and the decoder, which is
characterized by the conditional probability p(Y = y|X = x).
The channel output y = (y1, . . . , yn ) is a vector of length n
from the set Y(n) such that Y(n) ⊆ Yn where Y is a finite
alphabet.

The agent’s true nature, which could be either adversarial
or helpful, is characterized by a random variable Θ governed
by the probability,

p(Θ = θ) =
{

α if θ = a
1 − α if θ = h (1)

for some 0 < α < 1, where θ = a if the agent is adversarial
and θ = h if the agent is helpful. We note that α can take
any value between (0,1), hence comes from an infinite set.
However, its value is fixed and is known by both the agent
and the encoder/decoder pair. Accordingly, the encoder and
the decoder know the distribution in (1), but do not know
the actual realization θ, i.e., the true nature of the agent.
It is assumed that α is a parameter that can be estimated
via various information sources, such as by monitoring the
data on the past behavior of the agent, or gathering informa-
tion from different applications on its activity patterns. The
agent can take actions to influence how the decoder perceives
the received information. The chosen action depends on the
agent’s true nature, i.e., adversarial or helpful. In particular, the
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agent draws a random variable p(Q |W ,Θ = θ) from a finite
set P . Each element of P identifies a conditional probability
distribution over the set of contexts Q for each w ∈ W , so that∑

q∈Q
p(Q = q |W = w ,Θ = θ) = 1, (2)

where p(Q = q |W = w ,Θ = θ) ≥ 0 for all q ∈ Q. The
decoder then observes a context q governed by the probability
p(Q = q |W = w ,Θ = θ). That is, the context information
observed by the decoder is affected by the distribution chosen
by the agent. In that sense, the agent can influence the
decoder by controlling the distribution p(Q |W ,Θ = θ). As
an example, consider a communication scenario in which the
encoder and decoder are smart devices deployed with sensors
to monitor their environment. Suppose that the agent can place
the decoder in one of the following two environments, an
underwater environment vs. a desert environment. Depending
on the environment it is placed in, the decoder will take
different measurements and will have a different view of
the context in which the communication is taking place. For
instance, the animal and plant habitat in an underwater envi-
ronment is different than that of a desert environment. This
may in turn lead to different interpretations of the received
message.

Lastly, we assume that the words observed by the
encoder are independent from the true nature of the
agent, i.e.,

p(W = w |Θ = θ) = p(W = w). (3)

The decoder recovers a word ŵ ∈ W from the channel
output y and context q using a decoding function h : Y(n) ×
Q → W . The set of all valid decoding functions is denoted
as H. The channel output, when conditioned on the channel
input, is independent from the rest of the random variables in
the model, i.e., we have that Y− X − WQΘ form a Markov
chain,

p(Y = y|X = x,W = w ,Q = q ,Θ = θ)
= p(Y = y|X = x) (4)

where x = g(w). The sets G, H, and P are finite.
We define the semantic distance between two words as,

d(w , ŵ) = 1 − sim(w , ŵ), w , ŵ ∈ W, (5)

where 0 ≤ sim(w , ŵ) ≤ 1 denotes the semantic similarity
between w and ŵ . Given Θ = θ, we define the aver-
age semantic error corresponding to (g , h) ∈ G × H and
p(Q |W ,Θ = θ) ∈ P as,

Dθ((g , h), p(Q |W ,Θ = θ))

=
∑

w∈W,q∈Q,y∈Y(n)

p(W = w ,Q = q ,Y = y|Θ = θ)d(w , h(y, q))

(6)

=
∑

w∈W,q∈Q,y∈Y(n)

∑
x∈X (n)

p(W =w ,Q =q ,Y=y,X=x|Θ=θ)

× d(w , h(y, q)) (7)

=
∑

w∈W,q∈Q,y∈Y(n)

∑
x∈X (n)

p(Y=y|X=x,W=w ,Q =q ,Θ=θ)

× p(X=x|W =w ,Q =q ,Θ = θ)p(Q =q ,W =w |Θ = θ)
× d(w , h(y, q)) (8)

=
∑

w∈W,q∈Q,y∈Y(n):
x=g(w)

p(Y=y|X=x,W =w ,Q =q ,Θ=θ)

× p(Q =q |W =w ,Θ=θ)p(W =w |Θ=θ)d(w , h(y,q))
(9)

=
∑

w∈W,q∈Q,y∈Y(n):
x=g(w)

p(Y = y|X = x)p(Q = q |W = w ,Θ = θ)

× p(W = w)d(w , h(y, q)) (10)

where (8) follows from the chain rule of probability, (9) holds
since p(X = x|W = w ,Q = q ,Θ = θ) = 1 if and only if
x = g(w) for the deterministic encoding function g , and (10)
follows from (3) and (4).

IV. BAYESIAN GAME FORMULATION

In this section, we describe our game-theoretic formula-
tion for the communication model introduced in Section III.
Consider a two-player static Bayesian game. Player 1 is the
system designer who selects the encoding and decoding proto-
cols. Player 2 represents the agent. An illustration of the two
players is depicted in Fig. 2b. One can think of players 1 and
2 as an abstraction of the following communication scenario.
Player 1 wishes to design a system to transmit information
about the traffic status in one location to a user. The user has
access to a sensor, e.g., camera, whose measurements can be
utilized while interpreting the received information. Player 2
controls the location and the settings of the camera, which
allows her to affect how the measurements are interpreted by
the user. As such, the communication performance depends
on the characteristic of player 2, i.e., whether it is adversarial
or helpful.

The uncertainty about a player’s true nature is termed in
the game theory literature as its type [31]. We adopt the same
terminology in the sequel. Player 1 has a single (fixed) type
that is known by both parties. Player 2 belongs to one of
two possible types, adversary, denoted by Θ = a, or helpful,
denoted by Θ = h. The uncertainty about the type of player 2
is characterized by the probability p(Θ = θ) from (1). The
type of player 2 is known only by itself.

The strategy set of player 1 consists of all pairs of encoding
and decoding functions (g , h) ∈ G × H, and is denoted by
S1 � G × H. We represent the strategy chosen by player 1
by s1 ∈ S1. The strategy set of player 2 consists of all the
elements in P and is denoted as S2 � P . We represent the
strategy chosen by player 2 by s2(Θ) ∈ S2 given its type
Θ ∈ {a, h}. That is, player 2 follows the strategy s2(a) if it
is adversarial and s2(h) if it is helpful.

We next introduce the payoff functions of the two play-
ers. Player 1 wants to choose the encoding and decoding
strategy that minimize the average semantic error from (10).
Accordingly, we define the payoff function of player 1 as,

u1(s1, s2(Θ),Θ) =
{
−Da(s1, s2(a)) if Θ = a
−Dh(s1, s2(h)) if Θ = h (11)
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where s1 ∈ S1, s2(Θ) ∈ S2 for Θ ∈ {a, h}, and
Dθ(s1, s2(θ)) is as defined in (10). Player 1 wishes to
maximize its expected payoff

E[u1(s1, s2(Θ),Θ)]

= −
∑

θ∈{a,h}
p(Θ = θ)Dθ(s1, s2(θ)), (12)

= −αDa(s1, s2(a)) − (1 − α)Dh(s1, s2(h)) (13)

where the expectation is taken over the distribution of the types
of the agent.

The payoff function of player 2 depends on its type.
Specifically, if player 2 is adversarial (helpful), it wishes to
maximize (minimize) the average semantic error from (10).
The payoff function for player 2 is then defined as,

u2(s1, s2(Θ),Θ) =
{

Da(s1, s2(a)) if Θ = a
−Dh(s1, s2(h)) if Θ = h (14)

The two players choose their strategies independently before
communication starts. We consider a non-cooperative game in
which each player wishes to maximize its individual payoff.
Both players are rational.

V. BAYESIAN NASH EQUILIBRIUM

A. Pure Strategy Nash Equilibrium

This section identifies sufficient conditions for the existence
of a pure strategy Bayesian Nash equilibrium. Specifically, we
let (s∗1 , s∗2 (a), s∗2 (h)) denote a pure strategy Bayesian Nash
equilibrium, where the equilibrium conditions are given by,

−αDa(s∗1 , s∗2 (a)) − (1 − α)Dh(s∗1 , s∗2 (h))
≥ −αDa(s1, s∗2 (a)) − (1 − α)Dh(s1, s∗2 (h)), ∀s1 ∈ S1

(15)

Da(s∗1 , s∗2 (a)) ≥ Da(s∗1 , s2(a)), ∀s2(a) ∈ S2, (16)

− Dh(s∗1 , s∗2 (h)) ≥ −Dh(s∗1 , s2(h)), ∀s2(h) ∈ S2 (17)

where s∗1 ∈ S1 is player 1’s equilibrium strategy, s∗2 (a) ∈ S2

is player 2’s equilibrium strategy if she is adversarial, and
s∗2 (h) ∈ S2 is player 2’s equilibrium strategy if she is helpful.
Conditions (15)-(17) ensure that both players play their best
responses against each other at equilibrium. Specifically, (15)
ensures that player 1 selects the encoding/decoding function
that maximizes (13), whereas (16) and (17) ensure that the
agent chooses the strategy that maximizes (14) when it is
adversarial or helpful, respectively.

In the following, we identify two pure strategy Bayesian
Nash equilibriums that occur when α ≤ α and α ≥ ᾱ, respec-
tively, for some thresholds α ≤ ᾱ. Theorem 1 shows that if
the likelihood of the agent being a helpful one is sufficiently
high (α ≤ α), the equilibrium policies are the same as the
setup in which the agent is indeed helpful. Theorem 2 shows
that if the likelihood of the agent being an adversarial one
is sufficiently high (α ≥ ᾱ), the equilibrium policies are the
same as the setup in which the agent is indeed adversarial.

We first demonstrate a pure strategy Bayesian Nash equilib-
rium for α ≤ α and show that the encoding/decoding strategy
at equilibrium is the same as one that would be selected if the
agent was known to be helpful.

Theorem 1: Define (s∗1 , s∗2 (a), s∗2 (h)) such that

s∗1 = arg min
s1∈S1

Dh(s1, s∗2 (h)), (18)

s∗2 (a) = arg max
s2(a)∈S2

Da(s∗1 , s2(a)), (19)

s∗2 (h) = arg min
s2(h)∈S2

Dh(s∗1 , s2(h)). (20)

Then, (s∗1 , s∗2 (a), s∗2 (h)) denotes a pure strategy Bayesian
Nash equilibrium whenever the following conditions are
satisfied:

i) α ≤ α for some α ≤ min
s1∈S1:s1 �=s∗

1
β(s1)>0,κ(s1)>0

β(s1)

κ(s1)
, (21)

ii) If β(s1) = 0 for some s1 ∈ S1 with s1 �= s∗1 , then κ(s1) ≤ 0,

(22)

where β(s1) = Dh(s1, s∗2 (h)) − Dh(s∗1 , s∗2 (h)) and κ(s1) =
β(s1) + Da(s∗1 , s∗2 (a)) − Da(s1, s∗2 (a)).

Proof: We prove this result by showing that whenever (21)
and (22) hold, (s∗1 , s∗2 (a), s∗2 (h)) satisfies the equilibrium con-
ditions (15)-(17). Using (13), we first find player 1’s expected
payoff if it follows the strategy s1 ∈ S1 while player 2 plays
s∗2 (a) if adversarial and s∗2 (h) if helpful,

− αDa(s1, s∗2 (a)) − (1 − α)Dh(s1, s∗2 (h)). (23)

To prove that s∗1 is player 1’s best response, it remains to show
for all s1 ∈ S1 that,

−αDa(s∗1 , s∗2 (a)) − (1 − α)Dh(s∗1 , s∗2 (h))
− (−αDa(s1, s∗2 (a)) − (1 − α)Dh(s1, s∗2 (h)))

= β(s1) − ακ(s1) ≥ 0. (24)

For s1 = s∗1 , (24) holds by definition. For s1 �= s∗1 , if
β(s1) > 0 and κ(s1) > 0, we have β(s1) ≥ ακ(s1) from (21),
hence (24) holds. If instead β(s1) = 0, we have from (22)
that (24) again holds. From (18), we observe that

Dh(s∗1 , s∗2 (h)) ≤ Dh(s1, s∗2 (h)) (25)

and therefore β(s1) ≥ 0 for all s1 ∈ S1. Hence, the only
remaining case we need to investigate is when β(s1) > 0,
κ(s1) ≤ 0, which also satisfies (24) since α > 0.

Next, we find from (14) that if player 2 is adversarial,

Da(s∗1 , s∗2 (a)) = max
s2(a)∈P

Da(s∗1 , s2(a)) ≥ Da(s∗1 , s2(a))

(26)

for all s2(a) ∈ P , hence (16) is satisfied. If instead player 2
is helpful, we find from (14) that,

− Dh(s∗1 , s∗2 (h)) = − min
s2(h)∈P

Dh(s∗1 , s2(h))

≥ −Dh(s∗1 , s2(h)) (27)

for all s2(h) ∈ P , hence (17) is also satisfied.
We have now shown that s∗1 is player 1’s best response

against player 2’s strategies s∗2 (a) and s∗2 (h), where player 2
plays s∗2 (a) if adversarial and s∗2 (h) if helpful. At the same
time, s∗2 (a) and s∗2 (h) are player 2’s best response against
player 1’s strategy s∗1 , for when player 2 is adversarial
or helpful, respectively. As a result, (s∗1 , s∗2 (a), s∗2 (h))
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from (18)–(20) is a pure strategy Bayesian Nash
equilibrium.

Next, we identify a pure strategy Bayesian Nash equilibrium
when α ≥ ᾱ and show that the encoding/decoding strategy at
equilibrium is the same as one that would be selected if the
agent was known to be adversarial.

Theorem 2: Define (s∗1 , s∗2 (a), s∗2 (h)) such that

s∗1 = arg min
s1∈S1

Da(s1, s∗2 (a)), (28)

s∗2 (a) = arg max
s2(a)∈S2

Da(s∗1 , s2(a)), (29)

s∗2 (h) = arg min
s2(h)∈S2

Dh(s∗1 , s2(h)). (30)

Then, (s∗1 , s∗2 (a), s∗2 (h)) denotes a pure strategy Bayesian
Nash equilibrium if

α ≥ ᾱ for some ᾱ ≥ max
s1∈S1:s1 �=s∗1

β(s1)<0,κ(s1)<0

β(s1)
κ(s1)

(31)

where β(s1) = Dh(s1, s∗2 (h)) − Dh(s∗1 , s∗2 (h)) and κ(s1) =
β(s1) + Da(s∗1 , s∗2 (a)) − Da(s1, s∗2 (a)).

Proof: The proof follows the same lines as (23)-(27). We ini-
tially show that s∗1 is player 1’s best response by demonstrating
that it satisfies (24). For any s1 �= s∗1 , if β(s1) < 0, κ(s1) < 0,
we have ακ(s1) ≤ β(s1) from (31), therefore (24) holds. Next,
we note that

κ(s1) = β(s1) − (Da(s1, s∗2 (a)) − D(s∗1 , s∗2 (a))) ≤ β(s1)
(32)

since Da(s1, s∗2 (a)) ≥ Da(s∗1 , s∗2 (a)) for all s1 ∈ S1

from (28). As a result, we only need to inspect the follow-
ing remaining cases: i) β(s1) > 0, κ(s1) > 0, ii) β(s1) > 0,
κ(s1) = 0, iii) β(s1) = 0, κ(s1) < 0, iv) β(s1) = 0, κ(s1) = 0,
v) β(s1) > 0, κ(s1) < 0. We first observe that (24) holds for
i) due to (32) and

ακ(s1) ≤ κ(s1) ≤ β(s1) for 0 < α < 1. (33)

We next observe that (24) also holds for ii), iii), iv) and v)
as α > 0. As a result, (s∗1 , s∗2 (a), s∗2 (h)) is a pure strategy
Bayesian Nash equilibrium.

Remark 1: It is useful to note that the results in Theorems 1
and 2 follow a convex combination argument, as the agent is
either a minimizer or a maximizer, the monotone behavior of
the equilibrium policies are preserved while the prior on the
agent’s type changes, until certain thresholds are reached.

B. Mixed Strategy Nash Equilibrium

For the semantic communication game, a mixed strategy
Bayesian Nash equilibrium always exists, as both players have
a finite set of types and strategies [31], [32]. In this section, we
characterize the structure of mixed strategies at equilibrium.
We first define φ ∈ Δ(S1) as a mixed strategy for player 1,
where Δ(S1) is the set of all probability distributions over
S1. Here φ assigns a probability to each s1 ∈ S1 and we
denote this probability by φ(s1). Accordingly, φ(s1) ≥ 0 for
all s1 ∈ S1 and

∑
s1∈S1

φ(s1) = 1. Given Θ = θ, we next
define φθ ∈ Δ(S2) as a mixed strategy for player 2 whose

type is θ ∈ {a, h}. Again, Δ(S2) is the set of all probability
distributions over S2. That is, φθ assigns a probability to
each element s2(θ) ∈ S2 and we denote this probability by
φθ(s2(θ)). Accordingly, φθ(s2(θ)) ≥ 0 for all s2(θ) ∈ S2, and∑

s2(θ)∈S2
φθ(s2(θ)) = 1.

At equilibrium, each player again wishes to maximize its
expected payoff. For player 2, this expectation is over the dis-
tributions indicated by the mixed strategies. For player 1, the
expectation is now over both the possible types of player 2
and the mixed strategies. Accordingly, (φ∗, φ∗

a , φ∗
h) is a mixed

strategy Bayesian Nash equilibrium if

φ∗ = arg min
φ1∈Δ(S1)

(
α

∑
s1∈S1

∑
s2(a)∈S2

φ(s1)φ∗
a(s2(a))

× Da(s1, s2(a), a)) +(1−α)
∑

s1∈S1

∑
s2(h)∈S2

φ(s1)φ∗
h(s2(h))

× Dh(s1, s2(h), h)
)
, (34)

φ∗
a = arg max

φa∈Δ(S2)

∑
s1∈S1

∑
s2(a)∈S2

φ∗(s1)φa(s2(a))

× Da(s1, s2(a), a), (35)

φ∗
h = arg min

φh∈Δ(S2)

∑
s1∈S1

∑
s2(h)∈S2

φ∗(s1)φh(s2(h))

× Dh(s1, s2(h), h). (36)

The conventional route to compute (34)-(36) is for each
player to find the strategy that makes the other player indiffer-
ent to each one of their pure strategies. It is useful to note that
the computational complexity of this problem requires care-
ful consideration, and various algorithms have been proposed
to address this challenge [33], [34]. The interpretations as
to why players would adopt mixed strategies is an ongo-
ing debate in game theory, common views include treating
mixed strategies at equilibrium as the steady state of a game
that is played repeatedly, or interpreting mixed strategies as
a result of small variations in the payoffs of the players. We
refer the reader to [31, Sec. 3.2] for a detailed discussion on
this topic.

VI. ENCODING AND DECODING STRATEGIES FOR

MINIMUM SEMANTIC ERROR

In this section, we fix the strategy of player 2 by letting
|P| = 1, and focus on the encoding/decoding functions that
minimize the average semantic error from (10) for a given
distribution between the words and contexts. We utilize in this
section the following notation

p(Q |W ) � p(Q |W ,Θ = a) = p(Q |W ,Θ = h) (37)

to represent the unique element in P . By using (37), we
represent the average semantic error from (10) for this
setting as,

D((g , h), p(Q |W ))
� Da((g , h), p(Q |W ,Θ = a)) (38)

= Dh((g , h), p(Q |W ,Θ = h)) (39)
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Algorithm 1 Alternating Minimization
1: Initialize g and h to arbitrary elements of G and H, respectively.
2: Dold := ∞; Dnew := D((g, h), p(Q |W )).
3: while Dold − Dnew > ε
4: Dold := Dnew

5: for all q ∈ Q and y ∈ Y(n) � Optimal decoding function for fixed
encoding function.

6: Initialize ŵ to an arbitrary element of W , compute fd (q, y, ŵ)
from (43).

7: for all w ′ ∈ W
8: Compute fd (q, y,w ′) from (43).
9: if (43) is false then ŵ := w ′.

10: Record h(y, q) = ŵ .
11: for all w ∈ W � Optimal encoding function for fixed decoding

function.
12: Initialize x to an arbitrary element of X (n), compute fe (w , x)

from (45).
13: for all x′ ∈ X (n)

14: Compute fe (w , x′) from (45).
15: if (45) is false then x := x′.
16: Record g(w) = x.
17: Calculate D((g, h), p(Q |W )) from (40) and set Dnew =

D((g, h), p(Q |W )).
18: return g and h

=
∑

w∈W,q∈Q,y∈Y(n):
x=g(w)

p(Y = y|X = x)

× p(Q = q |W = w)p(W = w)d(w , h(y, q)). (40)

The optimal encoding/decoding function pair (g∗, h∗) is
given by

(g∗, h∗) = min
(g,h)∈G×H

D((g , h), p(Q |W )). (41)

To find the optimal decoding rule for a fixed encoding function
g , one needs to find h ∈ H that minimizes (40),

D((g , h), p(Q |W ))

=
∑
q∈Q

p(Q = q)
∑

y∈Y(n)

∑
w∈W:
x=g(w)

p(W = w |Q = q)

× p(Y = y|X = x)d(w , h(y, q)), (42)

where p(Q = q) =
∑

w∈W p(Q = q |W = w)p(W = w)
and p(W = w |Q = q) = p(Q=q|W =w)p(W=w)

p(Q=q)
. From (42),

the optimal decoding rule can be determined as follows. For
each q ∈ Q and y ∈ Y(n), assign h(y, q) = ŵ if

fd (q , y, ŵ) ≤ fd
(
q , y,w ′)

=
∑

w∈W:x=g(w)

p(W = w |Q = q)

× p(Y = y|X = x)d
(
w ,w ′) (43)

for all w ′ ∈ W . Similarly, to find the optimal encoding rule
for a fixed decoding function h, one needs to find g ∈ G that
minimizes (40),

D((g , h), p(Q |W ))

=
∑

w∈W
p(W = w)

∑
q∈Q,y∈Y(n):

x=g(w)

p(Q = q |W = w)

× p(Y = y|X = x)d(w , h(y, q)), (44)

Algorithm 2 Simulated Annealing
1: Choose an initial state by assigning g and h to an arbitrary element of G

and H. Calculate D((g, h), p(Q |W )) from (40).
2: Initialize the melting temperature Tm and the freezing temperature Tf .
3: Initialize the maximum number of iterations Nmax .
4: T := Tm .
5: N:=1.
6: while T > Tf or N < Nmax
7: N:=N+1
8: gtemp := g ; htemp := h .
9: Generate a Bernoulli random variable K ∼ Bern(1/2).

10: if K = 1 then Pick w ∈ W uniformly at random, assign gtemp(w)

to a new random codeword from X (n).
11: else Choose q ∈ Q and y ∈ Y(n) uniformly at random, set

htemp(y, q) to a random word from W . � Perturb state.

12: Calculate D((gtemp , htemp), p(Q |W )) from (40).
13: ΔD := D((gtemp , htemp), p(Q |W )) − D((g, h), p(Q |W ))
14: if ΔD < 0 then g := gtemp ; h := htemp
15: else
16: (g := gtemp ; h := htemp) with probability e−ΔD/T

17: Reduce temperature.
18: return g and h

leading to the encoding rule g(w) = x if

fe(w , x) ≤ fe
(
w , x′

)
=

∑
q∈Q,y∈Y(n):

x′=g(w)

p(Q = q |W = w)p
(
Y = y|X = x′

)

× d(w , h(y, q)) (45)

for all x′ ∈ X (n).
Finding the encoding/decoding functions that minimize the

average semantic error is NP-hard, the details of which is pro-
vided in Appendix A. We propose two algorithms in the sequel
to address the computational intensity. Algorithm 1 is based
on alternating optimization with an error tolerance ε > 0.
Starting from a random initial assignment of the encoding and
decoding functions, the algorithm iterates between two steps
until convergence. In one step, the optimal decoding function
is determined from (43) by fixing the encoding function. In
the subsequent step, the optimal encoding function is deter-
mined via (45) by fixing the decoding function. Since the
average semantic error is non-increasing at each iteration, and
is bounded from below by zero, the algorithm converges, it
may, however, converge to a local optimum. Algorithm 2 is a
probabilistic metaheuristic based on simulated annealing [35],
an effective approximate method to reduce the complexity
in a large search space for combinatorial problems [36]–
[38]. Its main idea is to, starting from an initial state, i.e.,
encoder/decoder assignment, perturb the state at each round
by modifying the assignment. The new assignment is kept if
it performs better than the old one, otherwise, is kept with a
probability depending on a temperature parameter, which is
reduced gradually, making the fluctuations less random as the
algorithm progresses. The algorithm stops when the tempera-
ture reaches a minimum. The performance comparisons of the
two algorithms are detailed in Section VIII.

VII. DYNAMIC COMMUNICATION GAME

We now consider the dynamic communication scenario
where the encoder/decoder pair (player 1) and the agent
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(player 2) take actions sequentially. Specifically, at one round
the agent takes an action, observed by the encoder/decoder
pair. In the subsequent round, the encoder/decoder pair takes
an action. The actions chosen by the encoder/decoder pair can-
not be observed by the agent, hence the agent is oblivious
to the selected encoding/decoding strategy. The true nature
of the agent, adversarial or helpful, is again unknown to the
encoder/decoder pair, hence the game has incomplete informa-
tion [12]. Since the actions of some players cannot be observed
others, the game also has imperfect information [12].

In the dynamic game, care must be taken to address the
dimensionality of the strategy spaces of the players. The num-
ber of possible encoding strategies for player 1, for instance, is
exponential in the number of words to be encoded. To this end,
we consider two possible actions for player 2. The first action
induces a distribution under which every context is equally
likely given each word, i.e., the agent selects a random variable
p(Q |W ,Θ = θ) such that p(Q = q |W = w ,Θ = θ) = 1

|Q|
for every w ∈ W and q ∈ Q. As such, this action prevents the
decoder from using context information while decoding. The
second action, on the other hand, induces a distribution that
enables the decoder to achieve a better decoding performance
by using context information. Formally, we let S2 = P =
{pB , pG} denote the strategy set for player 2, where pB and
pG corresponds to the former (bad) and latter (good) type of
distribution.

For the actions of player 1, we consider two encoding
strategies. The first one is a robust encoding strategy that
minimizes the average semantic error against a bad distribu-
tion, i.e., pB , by assigning each pair of words with different
meanings to a different codeword. Hence, errors that may be
caused at the decoder are solely due to channel noise, and
the decoder does not need to rely on context information
for decoding. The second one is an encoding strategy for
a good distribution, i.e., pG , which assigns the words that
have a low chance of appearing in the same context to the
same codeword. This encoding strategy, while relying heavily
on context information for decoding, can provide robustness
against channel noise by using fewer codewords with greater
Hamming distance between them. For each encoding strategy,
we fix the decoding function to be the minimum semantic
error decoder in (43). We represent the actions of player 1
by S1 = {gci , gca}, where gci refers to the former, i.e.,
context-independent, encoding strategy, while gca is the latter,
i.e., context-aided, encoding strategy.

The average semantic error is then evaluated from (10).
Given Θ = θ, we denote the semantic error by Dθ(gci , pB )
when player 2 picks a bad distribution and player 1 picks
a context-independent encoding function, Dθ(gci , pG) when
player 2 picks a good distribution but player 1 picks a context-
independent encoding function, Dθ(gca , pG) when player 2
picks a good distribution and player 1 picks a context-aided
encoding function, and Dθ(gca , pB ) when player 2 picks a
bad distribution and player 1 picks a context-aided encoding
function. We require for θ ∈ {a, h},

Dθ(gca , pB ) ≥ Dθ(gci , pB ) ≥ Dθ(gci , pG) ≥ Dθ(gca , pG)
(46)

Fig. 3. Dynamic communication game model. Dashed lines represent the
information sets of player 1 (encoder/decoder pair). Resulting payoffs are
denoted by blue and red for players 1 and 2, respectively.

to ensure that it is better to use a context-independent encoding
strategy against a bad distribution, and to use a context-aided
encoding against a good distribution. If player 2 picks a good
distribution, it is better to use a context-aided encoding strat-
egy than a context-independent one. Both players have a finite
number of actions. Lastly, we assume that both players remem-
ber their past actions and observations, i.e., the game has
perfect recall [31, Sec. 11.1].

At the outset, the distinction between incomplete and imper-
fect information is for convenience, as the two problems
are motivated by different scenarios. Incomplete information
represents the scenarios in which the characteristics (objec-
tives/types) of one or more players are unknown to the other
players. Imperfect information represents scenarios in which
the actions taken by one or more players cannot be observed
by others. Harsanyi [11] showed that this distinction is rather
artificial, as the former can always be transformed to the latter.
To do so, one introduces a new player called the nature. The
nature’s actions consist of choosing a type for each player.
Each player can only observe the type chosen for itself, but
not the types chosen for others. Due to the fact that players
cannot observe all of the actions taken by the nature, the game
has imperfect information. This is now the standard technique
for analyzing games with incomplete information [12], [39].
Accordingly, we also transform our game using Harsanyi
transformation, by introducing another player, nature, that
selects the type of player 2. Player 1 cannot observe the actions
of nature. This game is illustrated in Fig. 3. Points connected
by a dashed line, called an information set, cannot be dis-
tinguished by the current player. For instance {v3, v5} is an
information set for player 1 in Fig. 3, and player 1 cannot
distinguish between states v3 and v5 while taking an action.
Instead, player 1 forms beliefs about the current state of the
game and updates them at each round after observing the
actions taken by player 2.

As shown in Section VIII-C, Nash equilibrium for such
games may lead to equilibrium strategies for which the actions
taken off the equilibrium path are not rational. Instead, a
refinement of Nash equilibrium, known as sequential equilib-
rium, is used for analyzing sequential games with imperfect
information [40]. Every sequential equilibrium is also a Nash
equilibrium. In addition, sequential equilibrium ensures that:
i) at each information set, the current player takes the best,
i.e., sequentially rational, strategy, ii) strategies are consistent
with the beliefs the players hold.
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Fig. 4. Dynamic communication game model. Information sets of player 1
(encoder/decoder pair) and player 2 (agent) are represented by blue and red
dashed lines, respectively.

We next formally state these necessary conditions, referring
to [12], [31], and [40] for details. Let σ denote a behavioral
strategy, which, at each information set, assigns a probabil-
ity distribution to the set of available actions for the current
player. It specifies the probability that the current player takes
a specific action if the game is at one of the nodes belonging
to the information set. We define σi as the behavioral strategy
of player i = 1, 2 and σ = (σ1, σ2). If player i takes an action
at information set I, σi (k |I) is the probability that she takes
action k.

We define a belief system μ to represent the beliefs the
players holds about the current state of the game at each infor-
mation set. As such, μI(v) is the probability that the player
taking an action at information set I believes the game is
currently at node v ∈ I, such that

∑
v∈I

μI(v) = 1 for all I. (47)

The strategy profile σ combined with a belief system μ is
referred to as an assessment (σ, μ).

Suppose player i takes an action at information set I. Define
σt
k as the product of the probabilities governed by the behavior

strategy σ from node k to node t. Let TI denote the set of all
terminal nodes that can be reached from I, and ui (t) denote
the payoff user i receives at node t ∈ TI . We then define the
expected payoff for player i at I by

E[ui (σ|I, μ)] =
∑
v∈I

μI(v)
∑
t∈TI

σt
vui (t), (48)

where the expectation is based on the probabilities defined by
the belief system μ as well as the behavior strategy σ.

Definition 1 (Sequential Rationality [12]): An assessment
(σ, μ) is sequentially rational if, at every information set I,
the expected payoff for the current player i satisfies

E[ui (σ|I, μ)] ≥ E
[
ui

(
σ′
i , σ−i |I, μ

)]
(49)

for any alternative strategy σ′
i of player i, under the belief

system μ.
One can prove the optimality of (49) by comparing, at each

information set, only the one-step behavioral strategy of the
current user, by fixing her strategy at all other information
sets [41]. We let Pσ(v) be the probability that a node v is
reached in the game under strategy σ, which is given by the
product of the behavioral strategies and nature’s moves on the
path from the root node to node v. Then, under strategy σ, an

information set I is reached with probability

Pσ(I) =
∑
v∈I

Pσ(v). (50)

Definition 2 (Consistency) [12]: Denote by Σ0 the set of
all behavioral strategies σ that assigns a strictly positive prob-
ability to every action at each information set. Define Φ0

as the set of all assessments (σ, μ) such that σ ∈ Σ0, and
μ is uniquely defined by the strategy σ from Bayes rule
μ(v) = Pσ(v)/Pσ(I), where I is such that v ∈ I. An
assessment (σ, μ) is consistent whenever

(σ, μ) = lim
n→∞

(
σ(n), μ(n)

)
(51)

for some sequence of assessments (σ(n), μ(n)) ∈ Φ0.
Definition 3 (Sequential Equilibrium) [12], [40]: An

assessment (σ, μ) is a sequential equilibrium if it is consistent
and sequentially rational.

Proposition 1: The dynamic semantic communication
game has a sequential equilibrium.

This proposition immediately follows from the fact that
every finite sequential game with imperfect information and
perfect recall has a sequential equilibrium [40]. We note that
Fig. 3 demonstrates a signaling game, in which the action
chosen by a player signals its type to the other party [12].
Equilibrium structures in such games are often classified as:
a separating equilibrium if different types of player 1 always
chooses different actions, allowing player 2 to perfectly infer
its type; a pooling equilibrium if player 1 always chooses the
same action irrespective of its type, thus hiding its type from
player 2; a hybrid equilibrium in which player 1 randomizes
between its actions. It can be shown that the unique equilib-
rium for the game in Fig. 3 is a separating equilibrium in which
the agent always chooses a bad distribution if adversarial, and
a good distribution if helpful. The game in Fig. 3 allows each
player to take a single action. Fig. 4 shows a larger game,
where players again take actions one after the other, but they
take two actions in total instead of one. Specifically, this larger
game corresponds to the scenario in which the game in (3) is
played twice. For space considerations, we only focus on the
larger game in Fig. 4, and show that a similar separating nature
exists in the actions of the agent. Accordingly, we assume that
the payoffs received in Fig. 4 is the summation of the pay-
offs received at these two stages. For larger games, one can
approximate sequential equilibrium via the quantal response
equilibrium using [42], [43]. In the sequel, we demonstrate a
sequential equilibrium for Fig. 4.

Proposition 2: Consider an assessment (σ, μ) with a behav-
ioral strategy σ = {σ1, σ2} such that

σ1(gca |I)

=

⎧⎪⎪⎨
⎪⎪⎩

0 for I ∈ {{v4, v6}, {v16, v24}, {v18, v26}, {v20, v28},
{v22, v30}}

1 for I ∈ {{v3, v5}, {v15, v23}, {v17, v25}, {v19, v27},
{v21, v29}}

(52)

σ2(pG |I)

=

{
0 for I ∈ {{v1}, {v7, v8}, {v9, v10}}
1 for I ∈ {{v2}, {v11, v12}, {v13, v14}} (53)
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where σ1(gci |I) = 1 − σ1(gca |I) and σ2(pB |I) = 1 −
σ2(pG |I), and a belief system

μ(vi )

=

⎧⎪⎪⎨
⎪⎪⎩

1 for i = 1, 2, 4, 5, 7, 10, 11, 14, 20, 22, 23, 25
0 for i = 3, 6, 8, 9, 12, 13, 15, 17, 28, 30
α for i = 16, 18, 19, 21
1 − α for i = 24, 26, 27, 29

(54)

The assessment (σ, μ) is a sequential equilibrium.
Proof: The proof is provided in Appendix B.
The equilibrium in Proposition 2 suggests that adversarial

and helpful agents always choose separate types of actions.
An adversarial agent always chooses a bad distribution so that
for each word, every context will be equally likely, whereas
a helpful agent always chooses a good distribution. Against
a bad distribution, the encoder always chooses a context-
independent encoding, one which assigns each pair of words
with different meanings to distinct codewords, irrespective of
the belief it holds about the true nature of the agent. Against a
good distribution, the encoder always chooses a context-aided
encoding and leverage context information by assigning the
words that have a small chance of occurring under the same
context to the same codeword. We note, however, that this
equilibrium structure depends on how the payoffs for the two
parties are defined. For instance, if the payoffs were defined
with respect to the average semantic error received at the last
stage of the game instead of the sum of the errors at every
round, then an adversarial player 2 might prefer to hide its
nature by taking helpful actions until the last round.

VIII. NUMERICAL RESULTS

We consider a binary symmetric channel (BSC) with a
crossover probability of ρ, i.e., the abstraction of binary com-
munication over an additive white Gaussian (AWGN) channel
with bit error probability ρ, between the encoder and the
decoder. We focus on fixed length binary vectors of length
n for the channel input and outputs, leading to the channel
transition probability

p(Y = y|X = x) = ρl(y,x)(1 − ρ)n−l(y,x), (55)

where l(y, x) is the Hamming distance between y and x. We
consider a set of two contexts Q = {q1, q2}. We select the
words for our evaluations from a benchmark word set used
in the semantic similarity literature [44], and let p(W =
w) = 1/|W| for all w ∈ W . We use the edge-based seman-
tic similarity from Section II, illustrated in Fig. 1b. This is
a corpus-independent similarity measure which allows us to
avoid biasing our results in favor of a specific corpus.

A. Base Model With |P| = 1

We initially study the structure of the encoding/decoding
functions from Section VI by letting |P| = 1 and fixing the
conditional distribution between the contexts and words. We
then study how Algorithms 1 and 2 perform in practice, by
comparing them with an exhaustive search method that tra-
verses over all the possible encoding/decoding functions to

TABLE I
AVERAGE SEMANTIC ERROR COMPARISONS

find the optimal assignments for the set of words,

W = {car, automobile,bird, crane}, (56)

where we set the remaining parameters as n = 3 and X (n) =
Y(n) = {0, 1} × {0, 1} × {0, 1}.

We consider two contexts such that,

q1 = things originating from non-living beings,

and

q2 = things originating from living beings.

Accordingly, we let

p(Q = q1|W = w) =

⎧⎨
⎩

1 if w = car, automobile
0 if w = bird
0.5 if w = crane

(57)

noting that p(Q = q2|W = w) = 1 − p(Q = q1|W = w),
and crane is meaningful in both contexts, where it takes the
meaning of an object that lifts and moves heavy objects in con-
text q1, and a large bird with a signature long neck in context
q2 [29]. The same does not apply for the remaining words,
however. For instance, car and automobile are irrelevant in
context q2, whereas bird is irrelevant in context q1.

We provide the semantic error values evaluated from
Algorithms 1 and 2 in Table I, compared with exhaustive
search results. The parameters used in the implementation
of Algorithm 2 are Tm = 10, Tf = 2.5 × 10−8 and
Nmax = 50000. Table I indicates that Algorithm 2 performs
close to exhaustive search. The performance of Algorithm 1,
on the other hand, is inferior to both exhaustive search
and Algorithm 2 as ρ grows larger. This result hints that
Algorithm 2 is a better candidate than Algorithm 1 for evaluat-
ing the semantic error minimizing encoder/decoders for larger
sets, for which exhaustive search is intractable. As such, we
utilize Algorithm 2 in the sequel to determine the encoding
and decoding policies for the following larger set of words,

W = {car, automobile, gem, jewel, coast, shore, stove, food,

fruit, bird, forest, monk, brother, magician, crane,

journey, voyage, furnace, noon, midday}, (58)

where we let p(Q = q1|W = w) = 1 for w ∈{gem, jewel,
coast, shore, stove, journey, voyage, furnace, noon, midday}
and p(Q = q2|W = w) = 1 for w ∈{food, fruit, forest, monk,
brother, magician}. We select n = 4 and X (n) = Y(n) =
{0, 1}4.

Semantic error values are as shown in Table I. Table II
presents the corresponding encoding function, i.e., codeword
assignments, for ρ ∈ {0.001, 0.01, 0.1, 0.2}. We observe
from Table II that semantically closer words, such as car and
automobile, are assigned to close codewords, as well as gem
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TABLE II
ENCODING FUNCTION (g(w)) FROM ALGORITHM 2 FOR w ∈ W

and jewel or noon and midday. Several semantically distant
words are also assigned to the same codeword, such as car
and brother when ρ = 0.001 or magician and voyage when
ρ = 0.1. Since these words never occur in the same con-
text, the decoder can use the context information to distinguish
them. Upon comparing the completion time of Algorithm 2 for
|W| = 20 in Table I with exhaustive search when ρ = 0.2, we
have observed that Algorithm 2 takes 1609 sec to complete,
whereas exhaustive search could not terminate in a reasonable
time frame.

Our results show that, to minimize error between the mean-
ings of the recovered words, one should assign semantically
closer words, i.e., words that are closer to each other in
meaning, to closer codewords, those with a smaller Hamming
distance. In that sense, words that are closer in meaning should
be assigned to codewords that are confusable due to the noisy
channel conditions.

B. Bayesian Game

We next implement the Bayesian game from Section IV by
letting ρ = 0.1, n = 3, X (n) = {000, 001, 110, 101, 111} and
Y(n) = {0, 1}3. To reduce the dimensionality of the strategy
spaces, for each given (pure) encoding strategy, we fix the
decoder to the minimum error decoder described in (43). The
coder now has to decide on the probability distribution only
over the encoding functions, instead of both the encoder and
the decoder, i.e., s∗(g , h) = s∗(g). We evaluate the mixed
strategy Bayesian Nash equilibrium by using the game theory
tool Gambit [42].

We initially focus on the set of words from (56), and con-
sider a context set Q = {q1, q2}. For the agent, we define a
strategy set S2 = {pB , pG} as follows. Given Θ = θ, if the
agent takes the action s2(θ) = pB , the induced conditional
probability between the words and contexts is

p(Q = q1|W = w ,Θ = θ) = 0.5 ∀w ∈ W, (59)

TABLE III
NASH EQUILIBRIUM (NE) STRATEGIES FOR THE CODER AND THE

AGENT WHEN α = 0.9 AND α = 0.1 FOR |W| = 4

whereas if the agent takes the action s2(θ) = pG , the induced
probability is

p(Q = q1|W = w , Θ = θ) =

⎧⎨
⎩

1 if w = car, automobile

0 if w = bird

0.5 if w = crane

(60)

Hence, under strategy pB , contexts are uniformly distributed
for each word, and the decoder cannot use context information
to distinguish between any pair of words.

Table III demonstrates the evaluated equilibrium points for
α = 0.9 and α = 0.1. In our results, we have observed 12
and 4 Nash equilibrium points for α = 0.9 and α = 0.1,
respectively. Each point corresponds to a pure strategy Nash
equilibrium. The agent’s equilibrium strategy is s∗2 (a) if adver-
sarial and s∗2 (h) if helpful. The coder’s equilibrium strategy
is s∗1 = g(w) where g(w) is the encoding function given
in Table III. We observe that at equilibrium, synonyms car
and automobile are assigned to the same codeword. When the
agent is believed to be helpful, i.e., α = 0.1, bird is assigned
the same codeword with car and automobile. Since under the
helpful agent’s strategy bird never occurs in the same con-
text with car and automobile, the decoder can use the context
information to distinguish them. On the other hand, when the
agent is believed to be adversarial, i.e., α = 0.9, car, bird, and
crane are all assigned to distinct codewords, since under an
adversarial agent’s strategy the decoder cannot use the con-
text information to distinguish the words. In this case, the
Hamming distance between car and bird is greater than the
distance between bird and crane.

C. Dynamic Game

We implement the dynamic game in Fig. 4 from Section VII
for the set of words from (56) with α = 0.2, ρ = 0.1, n = 3,
X (n) = {000, 001, 110, 101, 111} and Y(n) = {0, 1}3. For
the agent’s actions, we let pB and pG as defined in (60). For
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Fig. 5. Mixed strategy Nash equilibrium of the dynamic game.

the actions of the coder, we define the context-independent
encoding function gci and the context-aided encoding function
gca as,

gci (w) =

⎧⎨
⎩

000 if w = {car, automobile}
110 if w = {bird}
111 if w = {crane}

gca(w) =

⎧⎨
⎩

000 if w = {car, automobile}
000 if w = {bird}
111 if w = {crane}

and note that gci assigns each word with a different mean-
ing to a different codeword, whereas in gca , we observe that
the decoder cannot immediately distinguish bird from car or
automobile, since they are assigned to the same codeword, and
extra information is required to distinguish them. By using (43)
to determine the corresponding decoding functions, we evalu-
ate the average semantic error values in (46) using (10), from
which we find that

Dθ(gca , pB ) = 0.2260 > Dθ(gci , pB ) = 0.0877
> Dθ(gci , pG) = 0.0433 > Dθ(gca , pG) = 0.023. (61)

We then evaluate the mixed strategy Nash equilibrium of the
dynamic game via a Linear Complementarity Program (LCP)
using Gambit [34]. The equilibrium strategies are given in
Fig. 5, where the edge labels indicate the probability that the
corresponding action is played. The right (left) branch cor-
responds to the action gca (gci ) for the coder and pG (pB )
for the agent, respectively. It can be observed from the edges
taken with probability 1/2 that the strategies off the equilibrium
path are not necessarily rational. Unlike sequential equilib-
rium, these strategies are irrational if the player ever reaches
to these states.

IX. CONCLUSION

We have considered the transmission of a source that car-
ries a meaning through a noisy channel. An external entity can
influence the decoder, whose true characteristic, e.g., friend
or foe, is unknown to the communicating parties. We have
formulated the semantic communication problem both as a
static Bayesian game, for which we identified the Bayesian
Nash equilibria, and as a dynamic game with imperfect infor-
mation, for which we characterized a sequential equilibrium.
Our results show that semantics-aware transmission schemes

improve communication performance of intended meanings
even in the presence of influencing agents with potentially
adversarial actions. We note that in current communication
systems such as LTE, content is strictly separated from the
communication layer. The proposed semantic error measure is
a new paradigm for designing future networks where commu-
nication may take place between humans and smart devices,
such as smart home assistants or IoT devices. Unlike tradi-
tional communication systems, in these emerging networks,
understanding the semantic content of the messages is not
only performed by humans, but also by these smart devices.
As a result, semantic inference is a direct part of the commu-
nication problem. Our goal in this paper has been to define
a semantic error measure as a first step for integrating the
semantic inference and physical communication problems. By
integrating these two problems via the use of a semantic error
measure, one may design messages carefully to save system
resources and avoid transmitting irrelevant information. As this
is an emerging area, there are several interesting future direc-
tions. One challenge is the complexity of the optimal encoding
and decoding functions as the number of words increase.
Accordingly, one may choose to replace words with sen-
tences/phrases and measure the semantic similarity between
sentences instead of words to scale up the system. Another
interesting future direction is to take into account manipulation
in the decoded message or false information, which is not con-
sidered in the current model. This includes considering more
general scenarios with more capable agents, who can alter the
content of decoded messages as well as influencing both the
encoder and the decoder, with various malicious goals. Lastly,
the estimation of the parameter α from past behavior patterns
is an important future direction.

APPENDIX A

PROOF OF NP-HARDNESS OF THE

COMMUNICATION PROBLEM

To prove the NP-hardness of the semantic communication
problem, we need to show that there exists an NP-complete
problem that is reducible to it in polynomial time. In the fol-
lowing, we show that there exists a polynomial-time transfor-
mation that reduces the quadratic assignment problem (QAP),
which is known to be NP-complete [45], [46], to the semantic
communication problem. The rationale behind this transforma-
tion is to show that, if one had a polynomial time algorithm
to solve the semantic communication problem, then one could
solve any QAP in polynomial time, by first transforming it to
the semantic communication problem in polynomial time. This
demonstrates that the semantic communication problem is at
least as hard as QAP. Since QAP is known to be NP-complete,
semantic communication problem is NP-hard.

Definition 4 (QAP [45]): Define a one-to-one function
π : W → L where L = {1, . . . , |L|} with |L| ≥ |W|, non-
negative integer costs γ(w ,w ′) and distances r(π(w), π(w ′))
for w ,w ′ ∈ W , and a bound K ∈ Z

+. The QAP finds whether
there exists a π such that∑

w ,w ′∈W,w �=w ′
γ
(
w ,w ′)r(

π(w), π(w ′)
)
≤ K . (62)
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We follow the terminology from [45], and refer to [47] for
generalizations. We let p(Y = y|X = g(w)) denote p(Y =
y|X = x) where x = g(w). Consider the decision form of the
semantic communication problem from (40), i.e., given Dmax ,
whether there exists g : W → X (n) and h : Y(n) ×Q → W
such that,∑

w∈W,q∈Q,y∈Y(n):
h(y,q) �=w

p(Y = y|X = g(w))p(Q = q ,W = w)

× d(w , h(y, q)) ≤ Dmax , (63)

by using the fact that d(w , h(y, q)) = 0 whenever w =
h(y, q), and note that solving (63) is no harder than mini-
mizing (40) [45]. By showing that (63) is NP-complete, we
can prove that finding the encoding and decoding functions
that minimize (40) is NP-hard.

Consider the following transformation that can be performed
in polynomial time. Let X = Y = {0, 1}. Consider some
n ∈ Z

+ such that 2n ≥ |L|, and a set S ⊆ {0, 1}n such
that |S| = |L|. Let X (n) = Y(n) = S. Set Q = {q} so that
|Q| = 1. Define for all y ∈ Y(n) and w ∈ W ,

p(Y = y|X = g(w)) = 1/|L|, (64)

and

p(W = w ,Q = q) = 1/|W|. (65)

Lastly, define for any w ∈ W and y ∈ Y(n),

d(w , h(y, q))

=

⎧⎪⎨
⎪⎩

γ(w ,h(y,q))r(π(w),π(h(y,q)))
(|W|2+1)Kτ

if w �= h(y, q), (w , y) ∈ F
0 if w = h(y, q)OR(w �= h(y, q), (w , y) ∈ R)

1 if w �= h(y, q), (w , y) /∈ F ∪R
(66)

where τ ≥ 1 is a normalization factor τ =
maxw ,w ′∈W,w �=w ′ γ(w ,w ′)r(π(w), π(w ′)),

F = {(w , y) : i) w ∈ W, y ∈ S ,

ii) y = g(w) for some w ∈ W,

iii) ∀w ∈ W, h(g(w), q) = w ,

iv) ∀w ′ ∈ W,w ′ �= w ⇒ g(w) �= g
(
w ′),

v) ∀y′ ∈ Y(n), y �= y′ ⇒ h(y, q) �= h
(
y′, q

)}
, (67)

and R = {(w , y) : i) w ∈ W, y ∈ S, ii) y �= g(w)
for all w ∈ W}, noting that F ∩ R = ∅. Lastly, let
Dmax = 1

τ |L||W|(|W|2+1)
. The transformed problem can be

stated as follows. Determine whether there exist g : W → S
and h : S → W such that∑

w∈W

∑
y∈S:h(y,q) �=w

1
|L||W|d(w , h(y, q))

≤ 1
|L||W|(|W|2 + 1)τ

, (68)

with d(w , h(y, q)) from (66). We next show that (62) has a
solution if and only if (68) has one.

(⇒) For the only if part, suppose (62) has a solution. Set

g(w) = π(w) (69)

for all w ∈ W . For a given y ∈ S, let

h(y, q) = w if y = π(w) for some w , (70)

otherwise, set h(y, q) = w to an arbitrary w ∈ W . We note
that for this assignment, (w , y) ∈ F ∪ R for all (w , y) such
that w ∈ W , y ∈ S and w �= h(y, q). The left hand side
of (68) becomes

∑
w∈W

∑
y∈S:h(y,q) �=w

1
|L||W|d(w , h(y, q))

=
∑

w∈W

∑
y:(w ,y)∈F ,h(y,q) �=w

1
|L||W|

1
(|W|2 + 1)K τ

γ(w , h(y, q))r(π(w), π(h(y, q))) (71)

=
∑

w∈W

∑
w ′∈W,w ′ �=w

1
|L||W|

1
(|W|2 + 1)K τ

γ
(
w ,w ′)r(

π(w), π
(
w ′))

≤ 1
|L||W|(|W|2 + 1)τ

, (72)

(71) holds since (w , y) ∈ F ∪ R for all w ∈ W and y ∈
S for the assignments from (69) and (70); (71) holds since
d(w , h(y, q)) = 0 whenever y ∈ R as given in (66); (72)
holds from (69), (70), the fact that π is one-to-one, and (62).
Therefore, (68) has a solution.

(⇐) For the if part, suppose (68) has a solution. First,
we show by contradiction that for any (g , h) that solve (68),
(w , y) ∈ F ∪ R for all w ∈ W , y ∈ S with w �= h(y, q).
Suppose ∃(w ′, y′) with w ′ ∈ W , y′ ∈ S, and w ′ �= h(y′, q),
but (w ′, y′) /∈ F ∪R. Then, the left hand side of (68) is

∑
w∈W

∑
y∈S:h(y,q) �=w

1
|L||W|d(w , h(y, q))

≥
d
(
w ′, h

(
y′, q

))
|L||W|

≥ 1
|L||W|

>
1

|L||W|(|W|2 + 1)τ
(73)

from (66) and the fact that τ ≥ 1, which leads to a contra-
diction. Therefore, for any g and h that solve (68), one has
(w , y) ∈ F ∪R for all w ∈ W , y ∈ S with w �= h(y, q).

Next, we show by contradiction that g is one-to-one if it is
a solution of (68). Suppose g is not one-to-one, i.e., there exist
w ,w ′ ∈ W such that w �= w ′ but g(w) = g(w ′). Then, ∃ y ∈
S with p(Y = y|X = g(w)) = p(Y = y|X = g(w ′)) > 0
from (64), where h(y, q) �= w or h(y, q) �= w ′. Without loss
of generality, let h(y, q) �= w ′. Then, (w ′, y) leads to (73) and
causes in a contradiction. Hence, g is one-to-one. Then, we
can let ∀w ∈ W ,

π(w) = g(w), (74)

and compute the left hand side of (62),∑
w ,w ′∈W,w �=w ′

γ(w ,w ′)r(π(w), π(w ′))
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=
∑

w∈W

∑
y:(w ,y)∈F,h(y,q)�=w

γ(w , h(y, q))r(π(w), π(h(y, q)))

(75)

=
∑

w∈W

∑
y:(w ,y)∈F,h(y,q)�=w

(
|W|2 + 1

)
K τd(w , h(y, q))

(76)

=
∑

w∈W

∑
y∈S:h(y,q)�=w

(
|W|2 + 1

)
K τd(w , h(y, q)) ≤ K

(77)

where we use the fact that (w , y) ∈ F ∪ R for all w ∈ W ,
y ∈ S with w �= h(y, q), and therefore (w , g(w ′)) ∈ F for all
w ,w ′ ∈ W with w �= h(g(w ′), q), since by definition of R,
(w , g(w ′)) /∈ R for all w ,w ′ ∈ W . Note that if (w , g(w ′)) ∈
F for some w ,w ′ ∈ W , then h(g(w ′), q) = w ′, and as a
result, (w , g(w ′)) ∈ F for all w ,w ′ ∈ W with w �= w ′.
Observe also that if (w , y) ∈ F for some w ∈ W , y ∈ S,
then y = g(w ′) for some w ′ ∈ W . Therefore, (w , y) ∈ F
if and only if y = g(w ′) for some w ′ ∈ W such that w �=
w ′, from which, (75) follows, since π(w) = g(w) from (74).
Then, (76) follows from (66), whereas (77) is from (68) and
that (w , y) ∈ F ∪R for all w ∈ W , y ∈ S with w �= h(y, q).
Hence, (62) has a solution.

Lastly, we note that (63) is in NP since a nondeterministic
algorithm need only guess a (g , h) pair and check in polyno-
mial time whether (63) is satisfied. Hence, deciding whether
there exist encoding/decoding functions whose average seman-
tic error is below a threshold is NP-complete. It then follows
that finding the semantic-error minimizing encoder/decoder is
NP-hard.

APPENDIX B

PROOF OF PROPOSITION 2

We first show that (σ, μ) is consistent and sequentially
rational, then invoke Definition 3.

(Consistency) Define a behavioral strategy σ(n) such that,

σ
(n)
1 (gca |I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n+1 for I ∈ {{v4, v6}, {v16, v24} ,

{v18, v26}, {v20, v28}, {v22, v30}}
n

n+1 for I ∈ {{v3, v5}, {v15, v23} ,

{v17, v25}, {v19, v27}, {v21, v29}}
(78)

and

σ
(n)
2 (pG |I) =

{
1

n+1 for I ∈ {{v1}, {v7, v8}, {v9, v10}}
n

n+1 for I ∈ {{v2}, {v11, v12}, {v13, v14}}
(79)

Since 0 < 1
n+1 < 1 and 0 < n

n+1 < 1 for all n ≥ 1, we have
that σ(n) ∈ Σ0 where Σ0 is as defined in Definition 2.

Let μ(n) =
(
μ(n)(v1), . . . , μ(n)(v30)

)
denote the beliefs

obtained from σ(n) via the Bayes rule from Definition 2. For
the first round, beliefs of player 2 satisfy,

μ(n)(v1) = μ(n)(v2) = 1 ∀n. (80)

For the second round, beliefs of player 1 satisfy,

μ(n)(v3) =
ασ

(n)
2 (pG |{v1})

ασ
(n)
2 (pG |{v1}) + (1 − α)σ

(n)
2 (pG |{v2})

=
α

α + (1 − α)n

n→∞−−−−→ 0 (81)

μ(n)(v4) =
α
(
1 − σ

(n)
2 (pG |{v1})

)

α
(
1 − σ

(n)
2 (pG |{v1})

)
+ (1 − α)

(
1 − σ

(n)
2 (pG |{v2})

)

=
α

α +
(1−α)

n

n→∞−−−−→ 1 (82)

where μ(n)(v5) = 1 − μ(n)(v3)
n→∞−−−−→ 1 and μ(n)(v6) =

1 − μ(n)(v4)
n→∞−−−−→ 0. For the third round, beliefs of player

2 satisfy,

μ(n)(v7) = μ(n)(v11) = σ
(n)
1 (gca |{v3, v5}) =

n

n + 1

n→∞−−−−→ 1

(83)

μ(n)(v9) = μ(n)(v13) = σ
(n)
1 (gca |{v4, v6}) =

1

n + 1

n→∞−−−−→ 0

(84)

where μ(n)(v8) = 1 − μ(n)(v7)
n→∞−−−−→ 0 and μ(n)(v10) =

1 − μ(n)(v9)
n→∞−−−−→ 1 and similarly μ(n)(v12) =

1 − μ(n)(v11)
n→∞−−−−→ 0 and μ(n)(v14) = 1 −

μ(n)(v13)
n→∞−−−−→ 1. For the last round, beliefs of player 2

satisfy (85)-(86), as shown at the top of the next page,
and that μ(n)(v23) = 1 − μ(n)(v15)

n→∞−−−−→ 1. From
a similar analysis, it follows for the remaining points
that,

μ(n)(v16) = 1 − μ(n)(v24) =
αn2

αn2 + (1 − α)n2
n→∞−−−−→ α

(87)

μ(n)(v17) = 1 − μ(n)(v25) =
α

α + (1 − α)n2
n→∞−−−−→ 0

(88)

μ(n)(v18) = μ(n)(v19) = 1 − μ(n)(v26) = 1 − μ(n)(v27)

=
αn

αn + (1 − α)n
n→∞−−−−→ α (89)

μ(n)(v20) = 1 − μ(n)(v28) =
αn2

αn2 + (1 − α)
n→∞−−−−→ 1

(90)

μ(n)(v21) = 1 − μ(n)(v29) =
αn2

αn2 + (1 − α)n2
n→∞−−−−→ α

(91)

μ(n)(v22) = 1 − μ(n)(v30) =
αn3

αn3 + (1 − α)n
n→∞−−−−→ 1

(92)

Combining (78)-(79) with (80)-(92), we observe that
(σ(n), μ(n)) → (σ, μ) as n → ∞ where (σ, μ) is as defined
in (52)-(54). Hence, the assessment (σ, μ) is consistent.

(Sequential rationality): To show that the assessment (σ, μ)
is sequentially rational, at each information set, we find the
strategy that satisfies (49) for the current player by fixing
his/her strategy at all other information sets, as well as the
strategy of the other player.
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μ(n)(v15) =
ασ

(n)
2 (pG |{v1})σ(n)

1 (gca |{v3, v5})σ(n)
2 (pG |{v7, v8})

σ
(n)
1 (gca |{v3, v5})

(
ασ

(n)
2 (pG |{v1})σ(n)

2 (pG |{v7, v8}) + (1 − α)σ(n)
2 (pG |{v2})σ(n)

2 (pG |{v11, v12})
) (85)

=
αn

αn + (1 − α)n3
n→∞−−−−→ 0 (86)

At information set I = {v1}, the expected payoff for
player 2 becomes

E[u2(σ|{v1}, μ)]

=
{

Da(gca , pG) + Da(gci , pB ) if σ2(pG |{v1}) = 1
2Da(gci , pB ) if σ2(pB |{v1}) = 1

(93)

and since Da(gci , pB ) ≥ Da(gca , pG) from (46), we con-
clude that σ2(pB |{v1}) = 1. At information set I = {v2},
the expected payoff for player 2 is

E[u2(σ|{v2}, μ)]

=
{
−2Dh(gca , pG) if σ2(pG |{v2}) = 1
−Dh(gci , pB ) − Dh(gca , pG) if σ2(pB |{v2}) = 1

(94)

and since Dh(gci , pB ) ≥ Dh(gca , pG) from (46), we con-
clude that σ2(pG |{v2}) = 1. At information set I = {v3, v5},
player 1 has expected payoff

E[u1(σ|{v3, v5}, μ)]

=

⎧⎪⎪⎨
⎪⎪⎩

μ(v3)(−Da(gca , pG) − Da(gci , pB )) + (1 − μ(v3))
(−Dh(gca , pG) − Dh(gca , pG))ifσ1(gca |{v3, v5}) = 1
μ(v3)(−Da(gci , pG) − Da(gci , pB )) + (1 − μ(v3))
(−Dh(gci , pG) − Dh(gca , pG))ifσ1(gci |{v3, v5}) = 1

leading to σ1(gca |{v3, v5}) = 1 as Dθ(gci , pG) ≥
Dθ(gca , pG) for θ ∈ {a, h} from (46). From a similar anal-
ysis, we find that σ1(gci |{v4, v6}) = 1 using Dθ(gca , pB ) ≥
Dθ(gci , pB ).

At information set I = {v7, v8}, player 2 has expected
payoff

E[u2(σ|{v7, v8}, μ)]

=

⎧⎪⎪⎨
⎪⎪⎩

μ(v7)(Da(gca , pG) + Da(gca , pG)) + (1 − μ(v7))
(Da(gci , pG) + Da(gca , pG))ifσ2(pG |{v7, v8}) = 1
μ(v7)(Da(gca , pG) + Da(gci , pB )) + (1 − μ(v7))
(Da(gci , pG) + Da(gci , pB ))ifσ2(pB |{v7, v8}) = 1

from which we find that σ2(pB |{v7, v8}) = 1 as
Da(gci , pB ) ≥ Da(gca , pG) from (46). From similar steps,
we find that σ2(pB |{v9, v10}) = 1 and σ2(pG |{v11, v12}) =
σ2(pG |{v13, v14}) = 1 using Dθ(gci , pB ) ≥ Dθ(gca , pG) for
θ ∈ {a, h}.

At information set I = {v15, v23}, player 1 has expected
payoff

E[u1(σ|{v15, v23}, μ)]

=

⎧⎪⎪⎨
⎪⎪⎩

−μ(v15)(Da(gca , pG) + Da(gca , pG)) − (1 − μ(v15))
(Dh(gca , pG) + Dh(gca , pG))ifσ1(gca |{v15, v23}) = 1
−μ(v15)(Da(gca , pG) + Da(gci , pG)) − (1 − μ(v15))
(Dh(gca , pG) + Dh(gci , pG))ifσ1(gci |{v15, v23}) = 1

leading to σ1(gca |{v15, v23}) = 1 as Dθ(gci , pG) ≥
Dθ(gca , pG) from (46). From a similar anal-
ysis, one can find that, σ1(gci |I) = 1 for
I ∈ {{v16, v24}, {v18, v26}, {v20, v28}, {v22, v30}} and
σ1(gca |I) = 1 for I ∈ {{v17, v25}, {v19, v27},
{v21, v29}, {v21, v29}}. Hence, (σ, μ) is sequentially rational
using Definition 1. It then follows from Definition 3 that
(σ, μ) is a sequential equilibrium.
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