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Abstract—Conventional performance criteria for communica-
tion networks do not take into account the semantics of the
data to be communicated. For example, (word) error rates treat
errors between semantically similar words (car and automobile)
and semantically distant words (car and computer) equally. In
reality, the meaning of the message is distorted much less when
automobile is recovered instead of computer when the intended
message is car. In order to correctly address the performance of a
semantic system, a new performance criterion is necessary that
takes into account the semantic similarities between recovered
words. We study in this paper the index assignment problem
with a source that produces semantic messages to develop a
better understanding of how their meanings affect the semantic
error performance in a noisy communication network, and in
particular for networks with queries. To this end, we utilize the
semantic distances based on lexical taxonomies as a distortion
measure in a communication system. Our findings indicate the
need for development of semantics-aware physical systems that
allow for better integration of human factors and intelligence
within complex systems design.

I. INTRODUCTION

Semantic interactions between sources, humans, computers
or web resources, play an important role in the design of in-
telligent systems. To this end, the question of how to interpret
the semantic contents in order to improve the communication
performance is one that is worth raising.

A source in a communication system generates as many
codewords as the number of distinct symbols in the input
alphabet. In the absence of channel noise, the ordering of
codewords is irrelevant to error performance. However, in a
noisy channel, a binary codeword has different chances of
being recovered as each one of the other codewords. Index
assignment provides a structured mapping between source
symbols and codewords to improve the error resilience of a
communication link.

An early example of index assignment is Gray mapping [1]
in which two successive codewords differ by one bit. Index
assignment has been extensively studied in the field of vector
quantization and channel optimized source quantizers [2]—[4]
to determine the optimal mapping from a continuous source to
a binary vector quantizer for a noisy channel. We introduce in
this paper a semantic distortion based communication network
and develop an index assignment scheme to minimize the
average semantic distortion in presence of channel noise. We
utilize the semantic similarities defined in a lexical database
[5]-[7] to quantify the semantic error probabilities, and design
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a codebook in which codewords that are likely to be confused
by the receiver to represent semantically close concepts.
Changing the order of the codewords does not effect the
physical characteristics of the network such as bit error rates.
However, it may have significant impact on the semantic
errors that occur between the meanings of the intended and
recovered messages. By judicious selection of the codewords,
words with higher semantic similarity values in between can
be mapped to codewords with short Hamming distances.
Therefore, when the wrong index is received due to channel
noise, the recovered word will likely be semantically similar
to the intended word. We focus on similarity measures defined
over WordNet taxonomies [8].

We illustrate this idea with the following example. A source
wants to convey a semantic message, such as a reply to an
inquiry, to a destination using a finite language. Each word
in the language is indexed using a mapping known by both
parties. The source transmits the binary representation of the
index corresponding to the intended word. Each bit has a
fixed cross-over, i.e., bit error probability due to transmission
through the noisy channel. Suppose the source wants to
transmit the message “A car is approaching.” but due to the
channel noise it may be recovered by the destination as “A
person is approaching.” or “A vehicle is approaching.” Our
aim is to design the binary codewords such that, in case of
a channel error, each word has a higher probability of being
recovered as a semantically similar word such as car being
recovered as vehicle instead of person. Although in both cases
the conventional bit error probability is the same, the recovered
words in the second case have closer meanings, which we refer
to as a smaller semantic distance.

We show that structured assignment of codeword indices
improves semantic error performance in noisy channels. Our
scheme is independent of the code structure for any fixed rate
coding and can also be combined with forward error correc-
tion. Our approach may prove useful in understanding the
relations between physical layer communication and semantic
aspects of messages that appear in emerging composite, e.g.,
social and tactical networks. The remainder of the paper is
organized as follows: In Section II, we present the similarity
measures. Section III introduces the system model and se-
mantic index assignment, followed by the numerical results in
Section IV. The paper is concluded in Section V.

II. SEMANTIC SIMILARITY

Semantic similarity measures how similar two concepts are.
A concept refers to the meaning of a word or a group of
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Fig. 1. WordNet taxonomy fragment, [7].

words that exist in a dictionary (corpus) and has a specific
meaning in a context. Semantic relations between concepts
are often presented by using taxonomies. In that sense, the
same word may appear in several places in the taxonomy as
the instances of different concepts. Several semantic similar-
ity/distance measures have been formulated in the literature
and compared with human experimental results [5].

Word similarity quantifies the semantic similarity between
a pair of words, with synonyms having the highest value.
It is widely used for applications of artificial intelligence,
natural language processing and information retrieval. Many
well known word similarity measures are based on a thesaurus
such as WordNet [8] or statistics from a large corpus [S]-[7],
[9] and most semantic applications rely on taxonomy-based
measures. A fragment of a WordNet taxonomy used in [5] is
presented in Fig. 1. Two main approaches exist for quantifying
semantic similarity: node-based and edge-based measures. The
node-based similarity measure is introduced in [5] as follows:

sim(w;, w;) = max[sim(ci, )] (1

where ¢; and c¢; range over the set of concepts in the taxonomy

that are senses of words w; and w;, respectively. A single word

may have several senses representing different concepts, and

may appear in different places in the taxonomy. The notion

sim(c;, c;) defines the similarity between two concepts:
max

max [log(p(c))] @

where S(c;,¢;) is the set of concepts subsuming both ¢;
and c;. This measure is based on the information content
of lowest common subsumer. A lowest common subsumer in
a taxonomy is the concept with shortest distance from two
given concepts. For example, animal and mammal are both
subsumers of cat and dog, but mammal is lower subsumer than
animal. The node-based measure proposed in [6] considers
the information content of the lowest common subsumer and
the two concepts simultaneously. The edge-based approach
[9] utilizes the distance between two nodes in the taxonomy
to evaluate the semantic similarity. The hybrid method in
[7] takes into account various aspects of the nodes in the
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Fig. 2. Semantic Communication Model.

taxonomy tree such as information content, depth, degree
distribution, and path length.

III. SYSTEM MODEL

The semantic communication model we consider consists of
a semantic source-destination pair as in Fig. 2. The semantic
source chooses words from a finite language, each word defin-
ing a distinct source symbol. We consider a set VW of words
W = {wi,...,w)yy}. Each source symbol is assigned an
index number i € Z where Z = {1,2,...,|Z|} is the set of all
indices. The source transmits the binary representation of the
index of the intended word through a noisy channel. We define
the mapping between the binary representation of the indices
and the source symbols by the operation 7 (-) : W — {0,1}"
where n = log (|Z]), assuming the size of the index set is an
integer power of two as often used in practical models. We
assume a binary symmetric channel (BSC) with fixed cross-
over probability of 5. Upon completion of transmission of
the binary bit stream, the destination decodes the received
binary bit stream to recover the correct word. This is done
by an inverse index assignment 7~ !(-). We address in this
paper finding the optimal mapping between |Z| indices and
|[W)| words to minimize the average semantic distance between
recovered words. We note that semantic index assignment
(STA) is not necessarily a bijective operation between words
and binary codewords, as we show in Section III-B when we
discuss index assignment for networks with queries.

A. Semantic Index Assignment

In this section, we assume that each word is assigned to a
distinct index, or equally to its binary representation, |Z| =
|[W)|. Therefore, the number of bits required for the binary
representation of indices is log(|Z|) = log(|W|) = n. The
source conveys an intended word w; € W by transmitting the
assigned binary codeword 7(w;) to the destination through a
noisy channel. For a given index assignment 7(-), the average
semantic distortion of the network can be expressed as follows:

W] W)

D(m) = p(wi) Y plr(w))m(wi)d(wi,wy) ()
i=1 j=1

where |W)| is the cardinality of W, p(w;) is the probability of
word w;, and d(w;,w;) is the semantic distortion between



words w; and w;. The probability of receiving the wrong
codeword 7(w;) for a given m(w;) due to channel errors is:
p(r(w;)|m(w;)) = (1 — B)n—hm(ws),m(wi) ghlm(ws),m(ws))

)
where h(m(w;), m(w;)) denotes the Hamming distance be-
tween the binary codewords assigned to w; and w;. We
utilize the normalized semantic similarity measures [6], [7]
for evaluating the semantic distortion between any two words:

d(w;, wj) =1 — sim(w;, w;) ®)
where sim(w;,w;) € [0,1] is the normalized semantic sim-
ilarity between two words w; and w;. When comparing two
concepts, (5) is modified by sim(c;, ¢;).

The problem we address is to minimize the average total
semantic distortion via index assignment:

Topt = argmin  D(7) (6)

in which the distance measure defined in (5) serves to model
the semantic distortion between any pair of words. Semantic
index assignment (6) is NP-complete, due to the fact that index
assignment is a quadratic assignment problem (QAP), which
is NP-complete [10]. The QAP nature of the problem in (6)
is preserved while using semantic distances.

B. Networks with Semantic Queries

In this section, we investigate the optimal indexing
scheme for networks with queries, when the sender is
replying to a query made by the other party by using the
semantic message set introduced in the previous section.
We assume that each query has a limited number of
meaningful answers which is a subset of all possible replies.
As an immediate example, consider a finite set of words

W = {car,room,vehicle, automobile, cat, table, school }.
The first person makes the inquiry “What is the moving
object approaching the building?” while knowing

that the meaningful answers for the given query are
{car, cat,vehicle,automobile}, and that the words
{table,room, school} are irrelevant and hence can be
ignored. We assume that the inquiries are chosen from a
predetermined set Q known to both parties in advance. Our
aim is to utilize the semantic relationships between the words
and the queries for index assignment by using the minimum
number of codewords. To this end, we start by constructing
a characteristic graph [11] that captures the word-query
relations. Let G = (W, E) be a graph on W) vertices. We
define an edge (w;,w;) € E if the following conditions are
satisfied simultaneously for a given query ¢ € Q:

i) P(wi,q), P(wj,q) > 0. @)

1) w; and w; are not synonyms of each other.  (8)

where P(w;, ¢) represents the membership condition whether
the word w; is a meaningful reply to inquiry ¢. That is,
P(w;,q) > 0 if w; is a useful reply to inquiry g whereas
P(w;, q) = 0 if it is not. Accordingly, each edge represents a
pair of words that correspond to distinct meaningful answers
for some query and therefore need to be distinguished.

Consider the worst-case zero-error transmission of the set
of words W when the word-query relations are given by
the characteristic graph G = (W, E). It follows from [11]
that the minimum number of codewords required is the chro-
matic number g of G. Denote the color c¢(w;) of word
w; by the mapping ¢ : W — C where C is the set of
colors C = {1,...,xg}. Similarly, binary representations of
color indices are mapped to the words through the function
7 : W — {0,1}" where n = [log(x¢)] and 7(w;) #
m(wj), Y(w;, w;) € E. That is, each word is given a codeword
equal to the binary representation of the color assigned to it.

This problem has two key aspects: achieving a valid x¢g
coloring, i.e., partitioning the source space, and achieving
minimum semantic distortion by codeword assignment. We
note that this problem differs from the index assignment prob-
lem considered in the previous section as the assigned binary
codewords are no longer distinct. In effect, the solution to this
problem requires joint graph coloring and index assignment,
which we formulate as a multi-objective optimization problem
in the sequel. In order to determine a valid y g coloring of the
characteristic graph, we utilize the following function:

flo=">

(wiyw;)EE
w;,wj €W

Lc(wi)y=c(w;)} (Wi, w;) )

and I{c(w,)=c(w;)}y : WxW — {0,1} is an indicator function:

1 if  clw;) = c(w;

Hequy=e(u)y (Wi, wj) = {0 | )o.w. )
That is, each edge with the same color at both ends incur a cost
of 1. It follows that c is a valid coloring if and only if f(c) = 0.
The above problem is equal to assigning [log(x¢)] binary
codewords to VW words while preserving the edge relationships
specified by the conditions in (7) and (8) such that no adjacent
vertices receive the same codeword. Hence, the first objective
function can be formulated as follows:

fm = >

(wi,w;)EE
Wi, W ew

(10)

L (wi)=r(w))} (Wi, wy) (11)

where Iir(w,)=r(w;)} : WxW — {0, 1}M1ee(xa)l is given as:
1 if

I{”’T(wi):ﬂ'(w]’)} (wi7 ’LUj) = {0
The second objective function is defined to find an index
assignment to minimize the average semantic distortion caused
by the channel for a given coloring. We define the expected
semantic distortion of a given index assignment 7 as follows:

>

(wiyw;)EE
wi,w; €W

m(w;) = m(w;)

12)

D(m) = p(wi)p(m(wy) |7 (w;))d(wi, wy) — (13)

where 7(w;) is the binary representation for the index of w;:

p(r(wj)|m(w;) = (1-p) Mog(xa)1—hr(w;),m(ws) ghir(w;),m(w:))

(14)
We note that the receiver can distinguish any two words that
are assigned the same codeword by merely using its own in-
quiry and the conditions in (7)-(8). That is, for each color class,



Algorithm 1 Semantic Index Assignment

Algorithm 2 Joint Graph Coloring and Index Assignment

1. Choose an initial state for the index assignment 7 randomly.
2. Define the melting temperature 7}, and the freezing
temperature 7.

3. Initialize the initial temperature 1" = T,.

4. Calculate the semantic distortion D(7) for state .

5. until T < T or a stable state is reached do

6 Choose another state 7’ as a perturbation of state 7
by interchanging two randomly chosen components.

7. Calculate the average semantic distortion D(7’) for
state 7.

8. Let AD = D(r') — D(r).

9. if AD < 0 then

10. Set m = 7',

11. else

12. Set m = 7’ with probability e=4P/7.
13. Lower the temperature.

13. end

14. end

there is at most one meaningful answer for each query given
that the answers are not synonyms of each other, in which
case the receiver can infer the same meaning from both words
with no semantic errors. Thus, semantic distortion between
words belonging to the same color class, hence assigned the
same binary codeword need not be considered in the average
semantic distortion calculation. Semantic index assignment for
networks with queries is a constrained optimization problem:

Topt =argmin  D(m)
st.  f(m)=0

Semantic index assignment for networks with queries is NP-
complete. Due to space concerns, we only outline that both
graph coloring and QAP, which are both known to be NP-
complete, can be reduced to index assignment with queries. As
(15) is NP-complete, exact search methods become impractical
as the word space becomes larger. To overcome this problem,
we define a weighted multi-objective optimization problem to
find the index assignment for the minimum semantic distortion
X¢ coloring of the characteristic graph:

15)

(16)

where o; and a9 are the weights assigned to each function
to control its relative importance. In the following section
we propose a simulated annealing technique for tackling this
multi-criterion optimization problem in practical scenarios.

Topt = argmin  «ay f(m) + axD(m)

C. Simulated Annealing for Semantic Index Assignment

The computational complexity of a QAP grows significantly
when the set of words grows large, as observed in many
semantic applications. Hence, effective approximate methods
are proposed in the literature to reduce the complexity in a
large search space. We utilize the simulated annealing method
[12] which has proved useful for the study of combinatorial
problems in addition to index assignment [2], [3], [13].

Simulated annealing is a technique that mimics the physical
process of annealing which involves heating a material to

1. Construct the characteristic graph G = (W, E).

2. Choose an initial coloring, though not necessarily a valid
one, by assigning each vertex (word) a codeword from the
set {0,1}"™ where n = [log(xc)], uniformly at random.

. Define melting and freezing temperatures, 15, and T’.

. Set the initial temperature to T = T,.

. Calculate the cost function f(7) using (11).

. Determine the semantic distortion D(7) from (13).

. Let ¢(7) = a1 f(7) + aaD(m).

.until T < T or a stable state is reached do

Choose another state 7" by randomly assigning a

new binary codeword to a random vertex.

10. Let A¢ = ¢(m) — ¢(n')

= on(f(m) = f(x')) + a2 (D(w) — D(x"))

11. if A¢ < 0 then

XN AW

12. Set = 7',

13. else

14. Set 7 = 7’ with probability e~ >*/7.
15. Reduce the temperature.

16. end

17. end

its melting point and then slowly cooling it to form crystals
at a minimum energy state. The algorithm defines a melting
temperature set to a high value at the beginning of the process
to provide a high degree of randomness allowing almost all
perturbations. As the temperature is decreased, new pertur-
bations are accepted with diminishingly small probabilities,
which continues until a sufficiently small temperature, called
the freezing temperature, is achieved.

Steps of simulated annealing for the problem considered in
Section III-A is provided in Algorithm 1, where each word is
assigned a distinct binary bit stream. The new state at each step
is achieved by perturbing the current state, and all the states
are permutations of one another. However, Section III-B allows
multiple words to be mapped to the same binary codeword,
and thus the final state, i.e., final assignment, is not necessarily
a permutation of the initial state. Thus, a different approach
is required in Algorithm 2 for updating the assignments at
each step, for which a random vertex of the characteristic
graph is assigned a random binary codeword to allow greater
flexibility for the states traversed. Simulated annealing has
been shown to converge in probability to the global minimum
on the condition that the melting temperature 7;,, is sufficiently
large and the cooling schedule is sufficiently slow [14].

IV. NUMERICAL ANALYSIS

This section provides the performance evaluations of the
semantic index assignment technique proposed in Sections
II-A, III-B, and III-C. Initially, we consider the following
set of V| = 16 words chosen from the set of words
studied in the semantic similarity literature [5]-[7] W =
{wi,wa,...,wig} = {car, monk, noon, automobile, wizard,
lad, midday, jewel, magician, fruit, journey, voyage, food,
brother, gem, boy}. We here note that although the origi-
nal set contains 28 words, we used 16 words to ensure a
valid binary number for n = log(|VV|). Semantic similarities



TABLE I
PARAMETERS USED IN ALGORITHMS | AND 2.

Tm 10

Ty 25x 101

Jéj 0.001

(<31 0.7

a9 0.3

W] 8,16
Max. iteration 50000

TABLE II

IMPLEMENTATION OF ALGORITHM 1.

Words Initial Assignment | Final Assignment
w1 4> car 1101 0100
wo <> monk 0111 1010
w3 <> noon 1100 1001
w4 < automobile 1111 0000
ws <> wizard 1001 1111
we <> lad 0011 0111
w7 <> midday 0110 1101
wg < jewel 1011 0101
wg > magician 1010 1011
w1 <> fruit 1110 0010
w11 <> journey 0000 1000
w12 4> voyage 1000 1100
w13 <> food 0010 0011
w14 <> brother 0101 1110
w15 <> gem 0100 0001
w16 <> boy 0001 0110

between any two words are evaluated by the JWS (Java
WordNet::Similarity) tool [15]. We use the hybrid semantic
similarity measure from [7] with the BNC (British National
Corpus). Semantic distortions are calculated from (5).
Algorithm 1 is implemented for the given word set and
semantic similarities by using the parameters in Table 1. Since
|[W| = 16, we use 4 bits to represent each codeword, assigned
to a unique word. The initial and final assignments of the
codewords from the implementation of Algorithm 1 are pre-
sented in Table II. We observe from the final assignment that
semantically similar words, as suggested by the human exper-
iment results in [5], such as {automobile, car}, {jewel, gem},
{journey, voyage}, {midday, noon}, {boy, lad}, are assigned
to closer codewords in terms of their relative Hamming
distances. We evaluate the performance of simulated annealing
in terms of the minimum semantic distortion achieved with
respect to the channel crossover probabilities in Fig. 3. In
particular, we compare the simulated annealing algorithm
with the lower bounds obtained by SDP relaxations [4]. For
comparison purposes, we also provide performance results for
the following set of smaller dimension W = {car, monk, au-
tomobile, lad, jewel, brother, jam, boy}, Assignments leading
to the best and worst-case performance can be computed by
exhaustive search on this set as presented in Fig 3, in which
the optimal values and the upper bound are given in terms of
the minimum and maximum average semantic distortion. We
consider the joint coloring and index assignment problem from
Section III-B. Throughout the analysis, the following set of
words are assigned to the vertices of an undirected graph with
the given order: W = {ws,ws, w3, wy, ws, we, wy, wg} =
{car, person, office, automobile, woman, building, vehi-

0.9
0.8}
IWI=16 words
0.7f
0.6
0.5
E
a
0.4
0.3}
0.2r —&— SDP lower bound
—+H— Global minimum (exhaustive search)
0.1f —*— Simulated annealing 1
y —V— Upper bound (exhaustive search)
... 1 L L L L | | |
0 0.05 0.1 015 02 025 03 035 04 045 05
B
Fig. 3. Average semantic distortion vs. channel crossover probability.

cle, school}. We assume that the queries are chosen from
the set Q@ = {q1,q2} with the first query given as
q1 <> What is the moving object approaching the building?
for which the meaningful set of answers are given by the
set Ay = {car, person, vehicle, woman, automobile}, though
we note that the queries and the meaningful set of answers
are to be defined according to the network interests, which
may have different structures in different network models. For
the second query, we choose qo <+ Where is Bob working at?
with the set of meaningful answers given as Ay = {office,
school, building}. We then construct a characteristic graph
G = (V,E) in Fig. 4 with the vertex set V = W and by
using the edge relations from (7) and (8). Note that no edge
exits between the synonyms car and automobile.

It can be observed from Fig. 4 that the chromatic number
x¢ of G is 4. Consider the subgraph induced by the vertices
{car, person, woman, vehicle}. This subgraph is a complete
graph, therefore at least 4 colors are required for a valid
coloring. Observe that automobile can be assigned the same
color as car without violating other edge conditions, as the set
{automobile, car, person, woman, vehicle} forms the largest
connected component of G. The minimum number of bits
required for each binary codeword follows from the chromatic
number as log(xa) = 2.

We then implement Algorithm 2 using the characteristic
graph G with the initial codeword assignments given in Fig.
1. The parameters used in the algorithm are provided in
Table I. We use the cooling schedule from [2]. The final
codeword assignments are presented in Fig. 6. A closer
look at the final codewords gives the following relationships
between the subsets of W and the codewords: 00 < {person,
office}, 01 < {car, automobile}, 10 < {school, woman},
11 < {vehicle, building}. Note that semantically similar
words car and vehicle are assigned to codewords 01 and 11,
with a single bit difference between them. Similarly, person
and woman are assigned close codewords 00 and 10. Syn-
onyms car and automobile are assigned the same codeword.
The algorithm traverses over various valid colorings given
in Table III. Although being valid, none of these colorings
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Fig. 5. Initial index assignment for the network with queries.

are final as the algorithm seeks the coloring with the best
distortion performance. This is the key factor that makes index
assignment for networks with queries challenging, as it cannot
be tackled by applying graph coloring and index assignment
stages separately. The actual number of valid colorings passed
through depend on the system parameters such as the cooling
schedule and the freezing temperature. Judicious design of
codewords helps to reduce the semantic distortion in noisy
and unreliable channel conditions.

V. CONCLUSION

We have considered the index assignment problem in a
query network with semantic sources. We have utilized seman-
tic similarities defined over lexical taxonomies to formulate
the semantic distortion between any two words. We have
constructed the semantic index assignment problem to achieve
minimum average semantic distortion in a noisy communi-
cation environment. Future direction is to achieve a unified
semantic transmission model with multiple interacting sources.
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