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Abstract—Online social communities often exhibit complex
relationship structures, ranging from close friends to political
rivals. As a result, persons are influenced by their friends and
foes differently. Future network applications can benefit from
integrating these structural differences in propagation schemes
through socially aware sensors. In this paper, we introduce a
propagation model for such social sensor networks with positive
and negative relationship types. We tackle two main scenarios
based on this model. The first one is to minimize the end-to-end
propagation cost of influencing a target person in favor of an
idea by utilizing sensor observations about the relationship types
in the underlying social graph. The propagation cost is incurred
by social and physical network dynamics such as propagation
delay, frequency of interaction, the strength of friendship/foe
ties or the impact factor of the propagating idea. We next
extend this problem by incorporating the impact of message
deterioration and ignorance, and by limiting the number of
persons influenced against the idea before reaching the target.
Second, we study the propagation problem while minimizing the
number of negatively influenced persons on the path, and provide
extensions to elaborate on the impact of network parameters. We
demonstrate our results in both an artificially created network
and the Epinions signed network topology. Our results show that
judicious propagation schemes lead to a significant reduction
in the average cost and complexity of network propagation
compared to naı̈ve myopic algorithms.

Index Terms—Socially aware physical systems, network prop-
agation for social media, social networks, signed networks,
recommender systems.

I. INTRODUCTION

Social media has become the primary platform for the
spread of information, due to the recent proliferation of smart
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mobile phones, tablets and computers [1]. Social relationships
and their impact on information flow [2] have been studied in
various works, such as connecting people with trust scores [3],
identifying the users that maximize the spread of influence [4],
or utilizing social relationships in software design for assisting
recommender systems [5].

Relationship types in online social groups range from like-
minded friends to ideological foes. In contrast, conventional
social network analysis often treats all relations as friendly.
Accordingly, various works have recently emphasized the
importance of integrating multiple relationship types in social
networks [6]–[10]. Identifying positive and negative relation-
ship types in human communities dates back to balance and
status theories in social psychology [11], [12], which provide
a graph-theoretic characterization of balanced structures in
social communities. Signed links are also utilized in social
media to represent the positive and negative relationships in
human interactions [13], in which the evolution of the link
structures is studied to explore the underlying tendencies of
user behavior. Predicting positive and negative relationships
in online network data is considered in reference [14] from
a machine-learning framework, in which certain consistencies
are observed in the relationship patterns. Key seeds are iden-
tified in a signed network for short and long term influence
maximization in [9] through random diffusion of information
[15]. Reference [10] studies community detection in a signed
social network. Bluetooth-enabled mobile phones are used in
[16] as wearable sensors for measuring information access
to infer social patterns and relationships between persons
using proximity, time, and location data. Human interactions
are inspected in [17] through social sensors that can detect
conversational dynamics automatically. Their real-time speech
extracting capability can detect social signals like interest and
excitement and capture the amount of influence one person
has on another [18]. Recent studies also point out effective
directions for turning an unsigned network to a signed one by
predicting the positive and negative social ties [19]–[21]. We
presume that the relationship type between two persons can
be identified by extracting information from various interac-
tion forms such as shared messages, photos and videos. An
ideological ally or a foe can be identified by learning one’s
own ideological standing from the shared or favored media
content.

In this paper, we study a signed social network in which
relationships are modeled by positive or negative signs as
illustrated in Fig. 1. A positive sign refers to a like-minded
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neighbor whereas a negative sign represents a neighbor with
an opposite world view. We propose to utilize socially aware
sensors, which can gather and process data available in social
media, for the prediction of friendship versus antagonistic
relationship types. Link prediction can be achieved through
various data types, such as textual data obtained from the
posts and comments in online communities, visual data from
the photos shared in a social event, or audio recordings of
social conversations [22], [23]. Incorporating social sensors is
essential in the design of network propagation schemes that
are aware of, learn from and adapt to the structural differences
in human relations. Context-aware wireless sensors are used
in [24] from mobile phones with access to online published
content and creates social links. Wireless social sensors are
utilized in [25] to understand social behaviors and detect the
collective behavior patterns on bird communities. A novel
application is introduced in [26] for using classifiers that
execute partly on sensor-enabled mobile phones and partly on
backend servers to construct a personal sensing system.

Our methods are based on the property that individuals are
influenced by their friends and foes differently [27], which
is known as the principle of homophily [28]. In particular,
persons tend to agree with others who are ideologically similar,
and oppose to the ideas that come from their ideological
foes [29]. As an example, consider an online voting process
between two candidates (candidate A and candidate B) with
opposite world views. Concurrently, a recommender in social
media is suggesting one of the two candidates to the individ-
uals based on the preceding votes and friendship structures.
Assume that such a person, Alice, has two neighbors Bob and
Eve. Bob has the same world interpretation with Alice, in
other words is an ideological ally, whereas Eve has an opposite
world view. The recommender, who can observe the individual
votes, makes suggestions of type “Bob supports candidate B,
do you want to vote for B, too?” Suppose that both Bob
and Eve are known by the recommender to support candidate
B, and that this information is still unknown to Alice. The
recommender can then make one of the two suggestions to
Alice, “Bob supports candidate B, do you want to vote for B,
too?” or “Eve supports candidate B, do you want to vote for
B, too?”. In case the first suggestion is made, Alice is likely
to support candidate B as Bob is an ideological ally. On the
other hand, if Alice sees that Eve supports candidate B as in
the latter, she will have a negative opinion about the candidate
as she considers Eve as an ideological foe. In effect, the two
different recommendations have the possibility of influencing
Alice in two opposite directions. To this end, it is essential for
the recommendation system to make judicious suggestions by
taking into account the interpersonal relationship types.

We posit that persons take sides in favor of or against an
idea, product, candidate, or opinion, based on the information
made available to them [30]. While an idea is propagating
through the network, one has a tendency to like it if it is
supported by a like-minded friend, one that is ideologically
similar or share similar interests. On the other hand, a negative
relationship or an antagonistic world view may cause one to
act with caution to the idea promoted by the neighbor. The
interesting case occurs when a neighbor with an opposite

world view is against an idea. In such a situation, one has a
tendency to go against the neighbor, which results in a positive
disposition towards the original idea. While this may appear
far-fetched at first glance, it fits well with many observations
on various occasions, including the historical details of the
European alliances before World War I [31], [32].

Modern applications of our work involve situations that arise
out of differing ideas, interpretation of situations, acts, groups,
events, or activities, that are led by social media. These include
promoting a candidate in a voting process, civil unrest events,
conflicts between pro and anti-government groups, recurring
incidents of radical acts such as terrorism and violence, or
simply rooting for/against a product, sports team etc. The
biases of individuals are often observed through the posts
shared or pages liked enabled by the growing use of social
media. Persons whose tendencies are in disagreement can be
represented by a negative link, whereas persons with similar
tendencies can be considered to have a positive link. The posts
from a large number of social sensors often go through a
filtering process in modern applications before making their
way to our newsfeed, or the suggestions section. The central
entity who performs the filtering process can control whose
posts, acts, or choices are prioritized. Judicious selection of
these posts can in turn affect the alignment of a target entity
towards a particular act, such as a particular candidate in a
voting process, a particular action in a civil event, or to a
certain opinion about a situation.

We presume that a social link incurs a cost of propagation,
which incorporates a number of social and physical factors
such as the propagation delay, interaction frequency, friend-
ship/foe tie strength, or the power of the propagating idea. In
doing so, we establish the optimal policies through a policy-
free measurement metric. The right metric is often a weighted
combination of multiple social and physical conditions and
depends on the specific network goal. To this end, it is required
to integrate the intended performance metric with a sensor
network capable of providing accurate information in a timely
manner. As an example, one physical metric we address in this
study is the end-to-end delay, which is important for providing
the fastest network experience to the user. As such, we study
minimizing the end-to-end propagation cost to influence a
target node in favor of an idea. This represents the fastest
policy that influences a target node positively when the cost
metric is the propagation delay. The network provider can then
accompany these policies with routing schemes with different
design goals as required. We expect our study to be useful
for network applications in which social relationships cause a
significant impact on influence structures.

The proposed scheme applies, including but not limited to,
situations open to interpretation, as well as conflicts and crises,
the management of which requires a high level of situational
awareness. Effectively, such events strongly indicate the need
for designing intelligent systems for achieving situational
awareness, in which leveraging influence structures in network
propagation schemes takes a significant part.

The remainder of the paper is organized as follows: In
Section II, we introduce the system model. We present the
influence propagation scheme in Section III. We extend the
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Fig. 1. Signed links in a signed social network.

propagation model to account for message deterioration and
ignorance in Section IV. Section V investigates how to control
the number of negatively influenced users. We elaborate on
minimizing the negative influence in Section VI. Section
VII and Section VIII generalize the propagation schemes to
cyclic graphs. Numerical results are given in Section IX. We
conclude the paper in Section X.

II. SOCIAL NETWORK MODEL

In this section, we represent the social network with a
directed acyclic graph G = (V,E) with |V | nodes. A directed
edge exists between nodes u and v if (u, v) ∈ E. The
tuple (ux, uy) represents the coordinates of a node u ∈ V .
In the sequel, we refer to a node by its index and its
coordinates interchangeably. The edge (u, v) is labeled with
a sign su,v ∈ {−1, 1} that stands for the relationship type
between u and v, which reflects the attitude of one person
towards another.

Initially, the source node is activated by an external cue
such as a news article, an event, an advertising campaign or a
political discussion. This node then passes the information to
its neighbor which results in a positive or negative influence.
The propagation continues until the message reaches the target
node. This model can alternatively be used to characterize
a recommendation network, in which a recommender makes
suggestions to subscribed users, based on the previous choices
of their neighbors. Therefore, a person is likely to be positively
influenced by the recommender if the previous neighbor is a
friend and is supporting the idea (candidate, product), whereas
if the previous contact is an enemy, the person is likely to
oppose the idea (candidate, product). Optimal propagation
policies with such social structures necessitate the utilization
of socially aware sensor networks that have the ability to
predict relationship types and make judicious decisions. Unlike
conventional routing schemes, these sensors should be able
to gather and process both social data measurements such

as neighbors with a friendship relation versus ideological
foes and physical measurements such as the frequency of
interaction or the strength of the propagation channel between
the neighbors.

The cost of influence propagation between two nodes
is expressed by a nonnegative weight. An example is the
propagation delay which captures both social and physical
environmental factors. From a physical perspective, it assesses
the QoS (quality of service) of multi-hop sensor networks,
which depends on various quantities such as the bandwidth,
load, and physical distance between the travelled links. From
a social perspective, it quantifies the impact of one person’s
actions on influencing another person, in which a smaller delay
refers to a quicker response. From yet another perspective, the
delay may represent the frequency of interaction between the
two persons/sensors.

We focus on a social network with possibly asymmetric
connectivities (acquaintances), in which establishing a direct
link to the destination can be less than prevalent, and at times
this may not be an option. For example, the destination could
be a public figure known or followed by a large community
such as a politician or an author. We note, however, that the
incentives for propagating an idea will be different for various
scenarios, and in case the source can connect directly to the
destination with little effort, it may be beneficial to do so.
We provide a formal definition of the influence propagation
problem in the sequel.

III. SOCIALLY CONSTRAINED MINIMUM-COST
PROPAGATION

Our focus in this section is on influence propagation with
minimum expected end-to-end cost. We represent the source
and destination nodes with uo and ud, respectively. Our aim
is to determine the path and policy with minimum total cost
for positively influencing the destination (target person). The
propagation cost from u to v is given by du,v ≥ 0. The sign of
the influence between u and v is given by su,v . We represent
the set of all possible paths from the source to the destination
by P . Then the minimum-cost positive influence propagation
problem is given by:

min
P∈P

∑
u,v: (u,v)∈P

du,v

s.t.
∏

u,v: (u,v)∈P

su,v = +1 (1)

in which the objective function represents the total cost of path
P . The multiplicative constraint guarantees that the target node
is positively influenced. Note that (1) is a dynamic program
that can be solved with backward induction. We label the node
indices in such a way that for every edge (u, v) ∈ E, u ≤ v,
by noting that such an ordering is feasible for any directed
acyclic graph [33].

We posit that the cost du,v can be utilized to model the
degree of alignment, namely positivity or negativity, between
two persons. For instance, consider a system in which the
cost du,v is the delay between u initiating an action and
its neighbor v reacting to it. If two persons are strongly
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Algorithm 1 Backward Induction Dynamic Programming for
Minimum-Cost Influence Propagation

1. Initialize su,v and du,v for every link (u, v) ∈ E.
2. Set the boundary conditions from (4) and (5).
3. Starting from the destination node ud,

update the value functions at each node u using
S(u, 0) = min

v:(u,v)∈E
{du,v + δ(su,v − 1)S(v, 0)

+ δ(su,v + 1)S(v, 1)}
S(u, 1) = min

v:(u,v)∈E
{du,v + δ(su,v − 1)S(v, 1)

+ δ(su,v + 1)S(v, 0)}.
5. Calculate the minimum end-to-end cost S(uo, 0)

upon reaching the source node uo.
6. Starting from uo, determine the optimal decisions
π(u), ∀u ∈ V recursively.

7. Determine the optimal path using π(u).

aligned, either positive or negative, one would expect the
reaction time to be low, whereas it may take longer to draw
a neighbor’s attention who is only weakly aligned, as it may
require multiple initiatives, messages, posts, or tweets.

The arguments of the problem are the node label u ∈ V and
the parity variable z ∈ {0, 1}. The case z = 0 indicates that
the parity from node u to the destination node is even, i.e.,
the product of the signs from u to the destination is equal to
+1. Similarly, z = 1 refers to an odd parity, i.e., the product
of the signs from u to the destination is given by −1. Optimal
value function S(u, z) quantifies the minimum total cost of
the optimal path from node u to the destination. The optimal
policy function π(u) defines the optimal decision taken at u
which specifies the index of the node to be chosen next. The
relations for the even and odd parity paths from node u to the
destination are given as follows:

S(u, 0) = min
v:(u,v)∈E

{du,v + δ(su,v − 1)S(v, 0)

+ δ(su,v + 1)S(v, 1)} (2)
S(u, 1) = min

v:(u,v)∈E
{du,v + δ(su,v − 1)S(v, 1)

+ δ(su,v + 1)S(v, 0)} (3)

in which S(u, 0) is the even and S(u, 1) is the odd parity path.
The delta function is given by δ(0) = 1 and δ(x) = 0 for all
x 6= 0. S(uo, 0) is the minimum total cost for influencing
the target (destination) node positively. Lastly, we state the
boundary conditions as follows:

i) S(ud, 0) = 0, S(ud, 1) =∞ (4)
ii) Any direction with no edge has infinite cost. (5)

The pseudo code of the backward induction algorithm that
solves (1) is given in Algorithm 1.

IV. PROPAGATION IN THE PRESENCE OF MESSAGE
DETERIORATION AND IGNORANCE

A propagating idea often distorts as it is repeated, which
is known as the “Telephone” effect [34]. As such, individual

Algorithm 2 Minimum-Cost Influence Propagation in the
Presence of Message Deterioration and Ignorance

1. Initialize su,v and du,v(ku,v) for each message age
ku,v = 1, . . . ,K, for every (u, v) ∈ E.

2. Assign the boundary conditions from
S(ud, k, 0) = 0, S(ud, k, 1) =∞, k = 1, . . . ,K.

3. Going backwards from the destination ud, find
the value functions S(u, k, z) at each u, k, z from
S(u, k, z) = min

v
E[du,v(k)]

+ pu,v(k)(c̄v+δ(su,v−1)S(v, 1, z)

+ δ(su,v + 1)S(v, 1, z̄))

+ (1− pu,v(k)) min{δ(su,v − 1)S(v, k + 1, z)

+ δ(su,v + 1)S(v, k + 1, z̄), δ(su,v − 1)S(v, 1, z)

+ δ(su,v + 1)S(v, 1, z̄) + cv}.
5. When the source node uo is reached, calculate the

minimum cost S(uo, 1, 0).
6. Determine the optimal decisions starting from the

source.
7. Find the optimal path through the optimal decisions.

interpretations or subjective priority assessments may alter the
content of the message, news, or an idea, propagating in the
social network.

We now elaborate on how to quantify the impact of message
freshness on influence propagation, by allowing the nodes to
ignore an incoming message based on the strength of the
link and message freshness. If a node ignores a message,
the recommender has to refresh the message to reactivate
the node with an additional cost, which can be achieved by
an advertisement or a promotion. The recommender can also
activate a node with a cost even if it is not ignored, solely for
refreshing the message. Our problem is now to determine the
optimal path with minimum expected cost and the activation
sequence, which corresponds to the set of nodes to activate
even in the case of no ignorance. We note that if a node
ignores a message, which may or may not happen, reactivation
is necessary.

In order to reflect the impact of message deterioration and
ignorance on network propagation, we incorporate message
freshness and the possibility that persons may choose to ignore
each other. Specifically, we represent message freshness by the
age of a message, k, which is the number of nodes the message
has passed through since the last activation. An activation
sets the message age to 1. It is required if a node ignores
its neighbor. In this case, the cost of activating node u is c̄u.
In case the message is not ignored, the recommender may still
choose to activate a node to reset the age to 1 and increase
the impact of the message; however, there is a cost cu for
activating node u. The maximum message age is K which,
when exceeded, requires the next node on the path to be
activated.

We denote the cost from node u to node v for a message
of age ku,v by the random variable du,v(ku,v). The tendency
of ignoring a message increases at each node as the message
age increases. The probability that node v will ignore node u,
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when a message of age ku,v is conveyed from u to v, is given
by pu,v(ku,v).

The ignorance probability pu,v can be used to define the
degree of connectivity between two persons. An intermittent
connection or a weak tie can be represented by a large pu,v ,
whereas smaller values can be used for stronger ties.

We presume that the nodes know the message age, which
could be included in the message when necessary, in all other
applications it can be set to 1. It could also measure how much
the message loses its effectiveness, as it passes through hops.
For example, in the first hop, the person could be very eager
about the message, but when it passes through other nodes,
it may lose some of its content, quality, and the remaining
persons may lose their interest in it accordingly.

The minimum expected cost can be determined as the
solution of the following problem:

min
P∈P,
au,v

∑
(u,v)∈P

{
E[du,v(ku,v)] + cv δ(au,v − 1)(1− pu,v(ku,v))

+ c̄v pu,v(ku,v)
}

s.t.
∏

(u,v)∈P

su,v = 1, (6)

au,v ∈ {0, 1}, ∀(u, v) ∈ P,
ku,v ∈ {1, 2, . . . ,K}, ∀(u, v) ∈ P,
kv,w = (ku,v + 1)δ(au,v), ∀(u, v), (v, w) ∈ P,
kuo,v = 1, ∀(uo, v) ∈ P

in which we optimize over the path P and the activation
sequence (au,v) which is 1 if node u decides to activate node
v and 0 otherwise. We use dynamic programming to solve (6).
The recursive equations for backward induction are given as:

S(u, k, z)=min
v

E[du,v(k)]+pu,v(k)(c̄v+δ(su,v−1)S(v, 1, z)

+ δ(su,v + 1)S(v, 1, z̄))

+ (1− pu,v(k)) min{δ(su,v − 1)S(v, k + 1, z)

+ δ(su,v + 1)S(v, k + 1, z̄), δ(su,v − 1)S(v, 1, z)

+ δ(su,v + 1)S(v, 1, z̄) + cv} (7)

where 0̄ = 1 and 1̄ = 0, and S(u, k, z) denotes the value
function at u with message age k ∈ {1, 2, . . . ,K} and
disparity z ∈ {0, 1}. The boundary conditions are:

S(ud, k, 0) = 0, S(ud, k, 1) =∞, ∀k ∈ {1, . . . ,K}. (8)

Finally, the answer for the minimum expected cost is
S(uo, 1, 0). Algorithm 2 provides the steps of the proposed
method.

V. LIMITING THE NUMBER OF NEGATIVE INFLUENCES

The propagation schemes proposed in the previous sections
focused on influencing a target node positively without taking
into account the dispositions of the intermediate nodes. How-
ever, real-life scenarios often require avoiding the situations
in which a large number of intermediate nodes are influenced
negatively. Accordingly, we consider in this section the prob-
lem of how to influence a target node positively while limiting
the number of negatively influenced intermediate nodes.

Algorithm 3 Forward Induction Dynamic Programming for
Limiting the Number of Negative Influences

1. Initialize the sign and cost of every edge.
2. Assign the boundary conditions from
S(uo, q, 0) = 0, S(uo, q, 1) =∞, ∀q ∈ {0, 1, . . . , Q}.

3. Starting from the source node uo, update the value
functions at each node u via
S(u, q, 0) = min

v:(v,u)∈E
{dv,u + δ(sv,u − 1)S(v, q, 0)

+ δ(sv,u + 1)S(v, q − 1, 1)}
S(u, q, 1) = min

v:(v,u)∈E
{dv,u + δ(sv,u − 1)S(v, q − 1, 1)

+ δ(sv,u + 1)S(v, q, 0)}.
5. Calculate the minimum end-to-end cost S(ud, Q, 0)

upon reaching the destination ud.
6. Determine the optimal path from the optimal

decisions.

We provide a forward induction dynamic programming
algorithm to quantify the influence from the source node to the
intermediate nodes. We denote Pu as the fragment of the path
P that ends at node u. In other words, Pu is a path from uo
to u with the condition that if (u′, v′) ∈ Pu, then (u′, v′) ∈ P .
The problem can be formally stated as follows:

min
P∈P

∑
u,v: (u,v)∈P

du,v

s.t.
∏

u,v: (u,v)∈P

su,v = +1 (9)∣∣∣∣{u :
∏

u′,v′: (u′,v′)∈Pu

su′,v′ = −1

}∣∣∣∣ ≤ Q
in which Q is the maximum allowed number of negatively in-
fluenced intermediate nodes. We consider deterministic costs.

We let S(u, q, 0) denote the value of the minimum-cost
even-parity path connecting uo with u when the number of
negatively influenced intermediate users are no more than
q. S(u, q, 1) stands for the minimum-cost for the odd-parity
path between uo and u with at most q negatively influenced
intermediate users. The recursive relations for the even and
odd parity paths at each node are then given by:

S(u, q, 0) = min
v:(v,u)∈E

{dv,u + δ(sv,u − 1)S(v, q, 0)

+ δ(sv,u + 1)S(v, q − 1, 1)} (10)
S(u, q, 1) = min

v:(v,u)∈E
{dv,u + δ(sv,u − 1)S(v, q − 1, 1)

+ δ(sv,u + 1)S(v, q, 0)} (11)

for u ∈ V and 0 ≤ q ≤ Q. The boundary conditions are given
as follows:

S(uo, q, 0) = 0, S(uo, q, 1) =∞, ∀q ∈ {0, 1, . . . , Q} (12)

The minimum cost to influence the destination positively,
with the condition that no more than Q intermediate nodes
are affected negatively, is then given by S(ud, Q, 0). The
steps of the forward induction dynamic program is given in
Algorithm 3.
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Algorithm 4 Minimize the Total Number of Negatively Influ-
enced Persons

1. Define the positive and negative relationships.
2. Set the boundary conditions from
S(uo, n, 0) = 0, S(uo, n, 1) =∞, n = 0, 1, . . . , N .

3. Start from the source node uo and update the value
functions at each node u according to
S(u, n, 0) = min

v:(u,v)∈E
{δ(su,v − 1)S(v, n− 1, 0)

+ δ(su,v + 1)(S(v, n− 1, 1) + 1)}
S(u, n, 1) = min

v:(u,v)∈E
{δ(su,v − 1)(S(v, n− 1, 1) + 1)

+ δ(su,v + 1)S(v, n− 1, 0)}.
5. The total minimum number of negatively influenced

persons on the path is S(ud, N, 0).
6. The optimal path can be determined from the optimal

decisions.

VI. MINIMIZING THE NUMBER OF NEGATIVE INFLUENCES

In this section, we study the problem of minimizing the
number of negatively influenced users subject to a maximum
number of hops allowed before reaching the target node. We
state this problem as follows:

min
P∈P

∣∣∣∣{u :
∏

u′,v′: (u′,v′)∈Pu

su′,v′ = −1

}∣∣∣∣
s.t.

∏
u,v: (u,v)∈P

su,v = +1,

|P | ≤ N. (13)

We denote S(u, n, 0) as the number of negatively influenced
users through the even-parity path between uo and u where no
more than n hops are used to reach u. We denote S(u, n, 1)
as the number of negatively influenced users through the odd-
parity path between uo and u with at most n hops from uo to
u.

The recursive relations for the even and odd parity paths
are given as follows:

S(u, n, 0) = min
v:(u,v)∈E

{δ(su,v − 1)S(v, n− 1, 0)

+ δ(su,v + 1)(S(v, n− 1, 1) + 1)} (14)
S(u, n, 1) = min

v:(u,v)∈E
{δ(su,v − 1)(S(v, n− 1, 1) + 1)

+ δ(su,v + 1)S(v, n− 1, 0)} (15)

where u ∈ V and n = 1, . . . , N . The maximum number of
hops allowed to reach the destination is N . The boundary
conditions for this problem can be defined as follows:

S(uo, n, 0) = 0, S(uo, n, 1) =∞, ∀n ∈ {0, 1, . . . , N} (16)

The solution is given by S(ud, N, 0), which refers to the even-
parity path with the minimum number of negatively influenced
users upon reaching the destination with no more than N hops.
The steps of the forward induction dynamic program to find
the optimal path for influencing a target node positively while
minimizing the number of negatively influenced persons on

Algorithm 5 Minimum-Cost Propagation with Positive Influ-
ence for Cyclic Graphs

1. Initialize the sets N+ = {uo}, N− = {uo}.
2. Assign the permanent labels of the source node
uo as π

′

+(uo) = 0 and π
′

−(uo) =∞.
3. Set the temporary labels of remaining nodes
u ∈ V by:

π+(u) =

{
duo,u if suo,u = +1
∞ o.w.

π−(u) =

{
duo,u if suo,u = −1
∞ o.w.

where an infinite cost is used whenever no edge
exists between nodes uo and u.

4. Find a node v ∈ V such that:
π(v) = min

i∈V−N+,j∈V−N−
{π+(i), π−(j)}

5. if π(v) = π+(v)

π
′

+(v) = π(v) and N+ = N+ ∪ {v}
6. else

π
′

−(v) = π(v) and N− = N− ∪ {v}
7. if N+ ∩N− = V

STOP
else

8. Update the temporary labels ∀(v, u) ∈ E:
9. if sv,u = +1

10. if (π(v) = π+(v)) ∧ (u ∈ N −N+)

π+(u) = min(π+(u), π
′

+(v) + dv,u)
11. else if (π(v) = π−(v)) ∧ (u ∈ N −N−)

π−(u) = min(π−(u), π
′

−(v) + dv,u)
13. else
14. if (π(v) = π+(v)) ∧ (u ∈ N −N−)

π−(u) = min(π−(u), π
′

+(v) + dv,u)
15. else if (π(v) = π−(v)) ∧ (u ∈ N −N+)

π+(u) = min(π+(u), π
′

−(v) + dv,u)
16. Go to Step 4.

the path is given in Algorithm 4.

VII. MINIMUM-COST INFLUENCE PROPAGATION FOR
GRAPHS WITH CYCLES

We consider in this section the minimum-cost influence
propagation problem from (1) for directed cyclic graphs. We
note that the methods introduced in Section III cannot be
applied to solve (1) directly, since the graphs we study in this
section may involve directed cycles. Therefore, we propose
a modified Dijkstra-like algorithm to tackle (1). Initially, we
define positive and negative temporary labels π+(u) and π−(v)
for each node u ∈ V . Similarly, we denote π

′

+(u) and π
′

−(u)
as the permanent positive and negative labels for each u ∈ V .
The sets of nodes that are assigned permanent positive/negative
labels are represented by N+ and N−, respectively. The steps
of our solution for cyclic graphs are provided in Algorithm 5.

It is important to note that the optimal path in our model
may include a cycle, unlike the generalized shortest path
algorithms for cyclic graphs. The intuition behind this idea
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Algorithm 6 Minimizing the Total Number of Negatively
Influenced Persons for Cyclic Graphs

1. Initialize N+ = {uo}, N− = {uo}.
2. Define the permanent labels of the source
uo as π

′

+(uo) = 0 and π
′

−(uo) =∞.
3. Assign the temporary labels of the remaining nodes
u ∈ V by:

π+(u) =

{
0 if suo,u = +1
∞ o.w.

π−(u) =

{
1 if suo,u = −1
∞ o.w.

where an infinite cost represent that no edge
exists between uo and u.

4. Find a node v ∈ V such that:
π(v) = min

i∈V−N+,j∈V−N−
{π+(i), π−(j)}

5. if π(v) = π+(v)

π
′

+(v) = π(v) and N+ = N+ ∪ {v}
6. else

π
′

−(v) = π(v) and N− = N− ∪ {v}
7. if N+ ∩N− = V

STOP
else

8. Update the temporary labels ∀(v, u) ∈ E:
9. if sv,u = +1

10. if (π(v) = π+(v)) ∧ (u ∈ N −N+)

π+(u) = min(π+(u), π
′

+(v))
11. else if (π(v) = π−(v)) ∧ (u ∈ N −N−)

π−(u) = min(π−(u), π
′

−(v) + 1)
13. else
14. if (π(v) = π+(v)) ∧ (u ∈ N −N−)

π−(u) = min(π−(u), π
′

+(v) + 1)
15. else if (π(v) = π−(v)) ∧ (u ∈ N −N+)

π+(u) = min(π+(u), π
′

−(v))
16. Go to Step 4.

lies in the fact that traversing a cycle may result in an even
parity path with a smaller cost than an acyclic path, due to a
sign change through the cycle.

VIII. MINIMIZING THE NUMBER OF NEGATIVELY
INFLUENCED PERSONS FOR GRAPHS WITH CYCLES

In this part, we introduce a Dijkstra-like algorithm for
minimizing the total number of negatively influenced persons
while influencing a destination in favor of an idea when
the underlying graph contains cycles. From an algorithmic
perspective this problem can be formulated in a similar way
to Algorithm 5, however, we now update the temporary labels
of each node at each iteration to reflect the minimum number
of negatively influenced nodes from the source to the node.
The steps of this algorithm are provided in Algorithm 6.

IX. NUMERICAL RESULTS

We first consider a small-scale network for our simulations
to motivate the propagation model and the optimal policies.

u

z

v

(vx, vy)

(ux, uy)

du,v+ − (zx, zy)
du,z

Fig. 2. Grid network structure for the signed social graph.

Next, we switch to a large-scale network and use the online
Epinions dataset to test our findings, and to demonstrate the
impact of our results. To this end, we first study a grid
network with directed acyclic links as shown in Fig. 2. In
order to prevent directed cycles, we focus our attention on grid
networks where edge (u, v) exists only if ux ≤ vx, uy ≤ vy ,
and u 6= v. That is, node u can only influence the nodes in the
shaded rectangle in Fig. 2. Here, the source node is at the top
left corner in green and the destination node is at the bottom
right corner in blue.

We consider a random graph where the existence of edge
(u, v) is modeled by a Bernoulli random variable where
the probability of existence for the edge is monotonically
decreasing in the distance between nodes u and v. We presume
that edges with a small ‖u− v‖ model close neighbors that
frequently interact with each other. We note that this differs
from the traditional notion of friendship, as two individuals
may be frequently engaging in social interactions even if they
are persons of different ideologies such as political rivals. To
this end, we posit that this information is gathered from sensor
data that measures the frequency of one person interacting
with another person through social discussions or debates. This
can be obtained by various methods ranging from analyzing
the conversations in which one person mentions another or
processing the textual transactions in social media. Similarly,
a large ‖u− v‖ stands for distant neighbors who know each
other at an acquaintance level, and do not interact frequently.
The propagation cost between nodes u and v is uniformly
distributed over [0, dmax(u, v)]:

d(u, v) ∼ U(0, dmax(u, v)) (17)

where dmax(u, v) is a monotonically increasing function of
the distance between the two nodes:

dmax(u, v) = β‖u− v‖α α, β ≥ 0 (18)

where ‖u−v‖ ≥ 1 for all u 6= v. The parameter α is introduced
to capture the impact of social distances on physical costs
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Total delay: 0.17722

(a)

Total delay: 0.55737

(b)

Total delay: 8.3061

(c)

Fig. 3. Simulation results for cost minimization with distance impact
parameter (a) α = 0, (b) α = 0.5, (c) α = 4. Solid lines denote edges
with a positive sign and dotted lines denote edges with a negative sign. The
nodes visited by the optimal path are demonstrated by filled circles.

such as propagation delay. To this end, a large α intensifies
the impact of the distance between two neighbors on the
propagation cost for the edge between these two neighbors. In
effect, many real-world applications suggest that propagating
a message through distant neighbors often takes more effort.
On the other hand, with a low α, distant neighbors are treated
by the network as close contacts as their propagation cost
approaches to those. All neighbors, whether socially distant
or close, are treated as equals by the network when α is
zero, i.e., the distance between nodes has no effect on the
propagation cost. Hence, this parameter is termed the distance
impact parameter throughout our analysis. The coefficient β
is a design-specific weight parameter that is equal for all node
pairs. We denote the probability of an edge having a positive
sign by µ, which refers to a friendship relation between the

Total delay: 11.1248

(a)

Total delay: 32.3417

(b)

Total delay: 3.7816

(c)

Fig. 4. Simulation results for cost minimization with message deterioration
and ignorance with activation cost (a) cu = c̄u = 1 ∀u, (b) cu = c̄u =
100 ∀u, (c) cu = c̄u = 1 ∀u with distance-independent costs. Solid lines
denote edges with a positive sign and dotted lines denote edges with a negative
sign. The nodes visited by the optimal path are filled where a yellow filling
indicates activation as a result of ignorance, a cyan filling indicates activation
without ignorance.

two nodes. Accordingly, the probability of an edge having a
negative label is µ̄ = 1 − µ in which case the two persons
experience an antagonistic relationship type. Unless otherwise
stated, we choose α = 1/2, β = 1, and µ = 1/2 as the default
values for our simulations.

We demonstrate the optimal policies for Algorithm 1 for a
10-by-10 grid network in Fig. 3(a), (b), (c) for various distance
impact parameters. We observe from Fig. 3(a) that for a small
α, the optimal policy is achieved through distant neighbors
as the algorithm utilizes edges with longer distances without
incurring a high propagation cost. This is consistent with our
intuition of distant neighbors becoming equally efficient as
close neighbors when α is decreased. Hence, the algorithm
reduces the number of hops in order to lower the end-to-end
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Total delay: 0.36918, 5 negatively influenced nodes

(a)

Total delay: 0.5138, 3 negatively influenced nodes

(b)

Total delay: 0.71765, 2 negatively influenced nodes

(c)

Fig. 5. Simulation results for cost minimization with at most K negatively
influenced nodes where (a) K = 10, (b) K = 3, (c) K = 2. Solid lines
denote edges with a positive sign and dotted lines denote edges with a negative
sign. The nodes visited by the optimal path are filled where a red filling
indicates a negatively influenced node.

costs, while satisfying the positive influence constraint. On the
other hand, Fig. 3(c) shows that when α is large, propagating
through the distant neighbors becomes too costly, and hence
the optimal policy is to follow close neighbors with more hops
instead of the distant ones.

We next introduce ignorance to our simulations through
an ignorance probability pu,v(ku,v) which is the probability
that node v will ignore node u while u is attempting to
transmit a message of age ku,v to v. It is defined as a
monotonically increasing function of ku,v and the distance
between the two nodes. Fig. 4(a), (b), (c) show optimal
paths for cost minimization with message deterioration and
ignorance following the steps in Algorithm 2. By comparing
Fig. 4(a) and (b), we observe that increasing the activation
cost results in a lower number of activations even though
older messages are more likely to be ignored. We note that

0 negatively influenced nodes, 6 hops

(a)

1 negatively influenced node, 5 hops

(b)

3 negatively influenced nodes, 4 hops

(c)

Fig. 6. Simulation results for negative influence minimization with at most
K hops where (a) K = 10, (b) K = 5, (c) K = 4. Solid lines denote edges
with a positive sign and dotted lines denote edges with a negative sign. The
nodes visited by the optimal path are filled where a red filling indicates a
negatively influenced node.

in Fig. 4(a) with a low activation cost, the second node on the
path is activated even though the message it receives has age
1. This is done in order to keep the message fresh without
incurring a high activation cost, and thus prevent ignorance
further down the path. Fig. 4(c) shows the optimal path for
the same setup except the costs do not depend on distance. As
a result, the optimal path is able to make bigger jumps without
incurring additional cost. However, we observe that bigger
jumps are more likely to result in ignorance, and therefore
a penalty for activation in the total cost.

Fig. 5(a), (b), (c) show optimal paths that minimize the
total cost while negatively influencing no more than K nodes
calculated by Algorithm 3. As can be observed, a lower K
limits the feasibility of paths more strictly. Thus, the minimum
total cost potentially increases. In addition, we see that the
optimal path in Fig. 5(a) negatively influences only 5 nodes
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Total delay 0.20622, 0 negatively influenced nodes

(a)

Total delay 0.51961, 0 negatively influenced nodes

(b)

Total delay 1.0435, 0 negatively influenced nodes

(c)

Fig. 7. Simulation results for cost minimization with at most K = 0
negatively influenced nodes with positive edge probability (a) 1, (b) 0.5, (c)
0. Solid lines denote edges with a positive sign and dotted lines denote edges
with a negative sign. The nodes visited by the optimal path are filled where
a red filling indicates a negatively influenced node.

when it can actually influence K = 10 nodes. This implies
that it is not always optimal to negatively influence as many
nodes as possible, i.e., increasing K does not always result in
a lower total cost.

Next, Fig. 6(a), (b), (c) show optimal paths that minimize
the number of negatively influenced nodes in at most K hops
via Algorithm 4. As in the previous experiment, lowering
the value of K results in the elimination of some of the
feasible paths, and thus the optimal path is compelled to
negatively influence some of the nodes. Another interesting
consequence of this limitation is that the optimal policy may
require the source node to be seeded with the opposite of an
idea, i.e., should be recommended against the idea or should
start spreading negative rumors on the original idea in order
to influence the destination positively. This in turn allows the

Total delay 0.20622, 0 negatively influenced nodes

(a)

Total delay 0.30134, 2 negatively influenced nodes

(b)

Total delay 0.22387, 2 negatively influenced nodes

(c)

Fig. 8. Simulation results for cost minimization with at most K = 2
negatively influenced nodes with positive edge probability (a) 1, (b) 0.5, (c)
0. Solid lines denote edges with a positive sign and dotted lines denote edges
with a negative sign. The nodes visited by the optimal path are filled where
a red filling indicates a negatively influenced node.

network to utilize an odd path to the destination which results
in a smaller number of negatively influenced nodes than that
results by the even paths.

Finally, we elaborate on the impact of positive and nega-
tive edge sign distributions on network propagation. To this
end, we study the optimal policies under various edge sign
probabilities λ in Fig. 7(a), (b), (c) and Fig. 8(a), (b), (c).
The evaluations are performed for Algorithm 3 in which we
observe that the problem formulation is well suited to demon-
strate the effect of sign distributions. We present the optimal
propagation policy of minimum end-to-end cost for influencing
a target node in favor of an idea when no intermediate node
is allowed to be influenced negatively in Fig. 7(a), (b), (c).
We observe that as µ, i.e., the probability of an edge having
a positive sign, increases, the network consists mainly of
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friendship connections. As a result, the algorithm can choose
the best propagation path to minimize the end-to-end cost over
a large number of positive paths as in Fig. 7(a). On the other
hand when µ is decreased, the number of paths that consists
only of positively influenced nodes decreases as well, and the
algorithm reduces the number of hops as much as possible,
which becomes a single node in Fig. 7(c). The tolerance on
the number of negatively influenced intermediate persons is
increased in Fig. 8(a), (b), (c). This in turn allows for greater
flexibility on the feasible paths, and the algorithm can now
choose a new optimal path with a lower total propagation
cost. Note that the optimal policies for the two problems
coincide when µ = 1, which eliminates the negative paths
and reduces the problems into conventional minimum delay
network propagation. We observe that the optimal policies in
Fig. 7(b), (c) and Fig. 8(b), (c) require initialization with a
negative disposition at the source as discussed for the previous
algorithms.

In addition to the small-scale simulations, we also perform
large-scale evaluations using online data. We chose to use
the Epinions social graph [13], a common topology used in
the signed networks literature [9], [10], [14], [19], [20] for
analyzing friend and foe relationships in addition to trust and
distrust. Epinions is a consumer review website where users
can indicate their friends and foes based on the opinions of
other users. This signed social graph has 131828 nodes and
841372 edges, with a diameter (longest shortest path) of 14.
Throughout our evaluations, the source and destination nodes
are selected randomly. For every possible source-destination
pair, we try to find the optimal path and propagation policy
such that the source positively influences the destination.

We compare the results between Dijkstra-type algorithms
and a naı̈ve myopic algorithm to find a low cost positive path.
The first Dijkstra-type algorithm we implement is Algorithm
5, which finds paths that minimize the sum of the costs on
the path between source and destination nodes, where the cost
between adjacent nodes i and j is given by κ|i− j| where κ
is a weight parameter. In our simulations, we select κ = 0.1.
The myopic algorithm is referred to as shortest DFS. It is a
depth first search algorithm that traverses the graph starting
from the source looking for the destination. At each node, it
selects the successor with lowest cost, recursively repeating
the process until the destination is reached. If a path from
a node to the destination is not found, the algorithm selects
a successor of the node with higher cost. For computational
reasons, we limit the length of the paths to 1500. Finally, we
implement Algorithm 6, which seeks to minimize the number
of negatively influenced nodes on a path while influencing a
destination in favor of an idea. This Dijkstra-type algorithm
is termed min negative path in the sequel.

First, we randomly select 100 sources and 100 destinations.
Using Algorithm 5, we find that each of the 100 sources
is positively connected to 88.3 destinations on average. The
median number of destinations that are positively connected to
each source is 96.0. The average (respectively median) path
length is 54.45 (respectively 40.0) hops with a variance of
2090.85 hops. The average (respectively median) path cost is
3436.57 (respectively 2488.4) with a variance of 10590519.21.

The positive paths found by the shortest DFS algorithm
have an average (respectively median) length of 660.73 (re-
spectively 638.0) hops with a variance of 160122.99. The
average (respectively median) cost of these paths is 17604.64
(respectively 16875.4) with a variance of 140341478.22. It can
be observed that on the average, the cost of the paths from
Algorithm 5 is less than a fifth of the cost of the paths found
by the shortest DFS algorithm.

For Algorithm 6 we find that the average (respectively
median) path length is 4.023 (respectively 4.0) hops, with a
variance of 0.843 hops. Relaxing the constraint to minimize
costs implies much shorter paths than what is found by
Algorithm 5. The average (respectively median) number of
negatively influenced nodes on each path is 0.096 (respectively
0), with a variance of 0.113. This means at least half of the
paths have no negatively influenced nodes.

Next, we implement the algorithms on a randomly selected
500 sources and 500 destinations. From Algorithm 5, we
find that each source is positively connected on average to
436.998 destinations. The median number of destinations
positively connected to each source is 490.0. The average
(median) path length is 55.15 (respectively 42.0) with vari-
ance 2166.64. The average (respectively median) path cost is
3419.91 (respectively 2363.7) with a variance of 10727606.92.
On the other hand, with shortest DFS the average (median)
length of the paths found is 726.95 (respectively 727.0). The
average (median) cost of these paths is 19134.18 (respectively
18425.9). Similar to the previous case, the average cost of
Algorithm 5 is less than a fifth of the cost of the paths found
by shortest DFS.

We also find that, for Algorithm 6 the average (median)
path length is 4.097 (respectively 4.0) hops, with a variance
of 1.044 hops. The average (median) number of negatively
influenced nodes on each path is 0.057 (respectively 0), with
a variance of 0.058. Again, at least half of the optimal paths
have no negatively influenced nodes.

The results for the analysis of Algorithm 5 with the Epinions
dataset are provided in Table I for 100, 500 and 10000
sources and destinations, respectively. Similarly, the results of
the shortest DFS (myopic) algorithm are given in Table II.
From comparing the results in Table I and II, we observe
that the average cost of the paths found by the shortest
DFS algorithm is five times the cost of the paths found by
Algorithm 5. Further analysis on the selected 100 sources and
100 destinations show that, among the 10000 possible source-
destination pairs, in 8959 cases the destination is not reachable
from the source with the shortest DFS algorithm. We note that
some of these pairs may in fact be unreachable as a natural
result of the graph structure, i.e., the source and the destination
may not be connected. However, the same analysis shows that
there exist only 1170 cases in which the destination is not
reachable from the source with the Dijkstra-type algorithm.
Hence, the number of paths discovered by the shortest DFS
algorithm is only a tenth of the paths found by Algorithm 5.
Similarly, for 500 sources 500 and destinations, the number
of cases a destination is not reachable from the source with
the shortest DFS algorithm is as large as 222650, whereas
with the Dijkstra-type algorithm this number is 31460. Again,
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TABLE I
MINIMUM COST ALGORITHM (ALGORITHM 5) RESULTS FOR THE EPINIONS DATASET.

Number of Number of Total number of Average Median Average Median
sources destinations paths found path length path length path cost path cost

100 100 8830 54.450 40.0 3436.569 2488.4
500 500 218499 55.148 42.0 3419.907 2363.7

10000 10000 78029370 47.024 30.0 5027.842 4145.1

TABLE II
RESULTS OF THE shortest DFS (MYOPIC) ALGORITHM WITH THE EPINIONS DATASET.

Number of Number of Total number of Average Median Average Median
sources destinations paths found path length path length path cost path cost

100 100 1041 660.727 638.0 17604.642 16875.4
500 500 27309 726.949 727.0 19134.178 18425.9

TABLE III
RESULTS FOR THE min negative path ALGORITHM (ALGORITHM 6) WITH THE EPINIONS DATASET.

Number Number Total number Average Median Negatively Negatively
of of of path path influenced persons influenced persons

sources destinations paths found length length (average) (median)
100 100 8830 4.023 4.0 0.096 0.0
500 500 218499 4.097 4.0 0.057 0.0

10000 10000 78029370 4.646 5.0 0.123 0.0

the number of paths found by the shortest DFS algorithm is
a tenth of Algorithm 5. As importantly, we have observed
that the shortest DFS algorithm can not terminate within a
reasonable amount of computing time for 10000 nodes.

The results for the implementation of the min negative
path algorithm, i.e., minimizing the total number of negatively
influenced persons on the Epinions dataset, are given in
Table III for 100, 500 and 10000 sources and destinations.

The time complexity of the shortest DFS algorithm is
O(|E|), as with a regular DFS. That is because instead of
visiting each edge at most once, it can be traversed at most
twice, once considering that the end node of the edge is on
a positive path and once on a negative path. This yields the
same asymptotic complexity. On the other hand, the modified
Dijkstra’s algorithm has complexity O((|E| + |V |) log |V |),
which is identical to the regular Dijkstra’s algorithm. That is
because as with shortest DFS, each edge may be traversed
twice, which leads to the same asymptotic complexity as the
regular Dijkstra’s algorithm. However, it is important to note
that the shortest DFS algorithm does not yield an optimal
solution, as confirmed by the experimental results. On the
other hand, the modified Dijkstra’s procedure does.

An important outcome of our evaluations is that, even for
a very large number of source and destination pairs, at least
half of the paths have zero negatively influenced nodes. In
addition, the average number of hops in each path is less than
5. This justifies our intuition that, it is actually possible to
find a relatively short path from one node to another purely
dominated by friendship (homophily) relations. In effect, our
findings show that in general any node can influence another
node positively within a small number of hops.

X. CONCLUSION

We have studied a social network with positive and negative
relationship types, in which friends and foes are characterized
by positive and negative signs, respectively. We have proposed
a propagation scheme to influence a target person in favor of
an idea, an action, or a product. Depending on the underlying
relationship structure, we presume that persons are influenced
in their decisions by the observations made available to them.
To this end, our propagation schemes apply to networks with
socially aware sensors that can extract information about
social and physical phenomena. We have studied the opti-
mal propagation policies by integrating social awareness into
network propagation under influence-centric constraints. We
have implemented the proposed algorithms under an artificially
created setup as well as the Epinions dataset in order to gain an
understanding of the optimal policies in both small and large-
scale networks. We have observed that the average network
propagation cost can be reduced significantly compared to
naı̈ve myopic schemes, and that randomly chosen sources can
positively influence randomly chosen destinations in over 87%
of the cases.

In this paper, we have considered positive and negative
relationships, and have assumed the knowledge of the un-
derlying social graph and the corresponding polarities. Future
directions include constructing a multilayer influence propa-
gation scheme for signed networks, incorporating multi-level
relationship types, multi-modal sensor observations, practical
applications in modern social networks, degree of positivity
and negativity through threshold based influence patterns,
and developing inference methods for enhancing situational
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awareness at the target node.
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