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Abstract—We study a social network in which individuals
make decisions influenced by a recommender as well as the
previous actions taken by themselves or other users. The
recommender aims to tailor its suggestions to maximize the
benefit from utilizing social interactions. We refer to this benefit
as the recommender’s influence which, in essence, measures
the value of controlling the specific suggestions offered to the
individuals. We show that this influence can be quantified by
the directed information between the suggestions and people’s
actions. Accordingly, we identify the precise relationship between
the social network-based recommendation system and a finite
state communication channel whose capacity analysis provides
the solution for the influence maximization problem for the
recommender. Our results demonstrate that a recommender that
tailors its suggestions based on the social dynamics of its customer
base can have a significantly greater influence.

I. INTRODUCTION

Social networks have become powerful tools for connecting
virtual communities and exchanging information. The impact
of mutual relationships in social behavior has been the focus
of extensive research, ranging from spread of information [1]
and recommender software design [2], to selecting key users
to maximize market profit or influence [3]. Interpersonal
influence and social advertising have also been acknowledged
as major marketing strategies [4], [5]. As such, online systems
are now integrating friend interactions into their recommen-
dation process, by allowing users to link to their social media
accounts and view the preferences of their friends.

Information-theoretic approaches to social and recommen-
dation networks to date are limited. Entropy is utilized in [6] to
classify user activity on Twitter and to categorize the contents,
whereas transfer entropy is incorporated in [7] to identify
influential users and hidden network structures. The timing
information of tweets is utilized in [8] to quantify the influence
between two users on Twitter. In [9], belief propagation is
applied to evaluate marginal probabilities of user ratings for
recommender systems. The error performance for estimating
an underlying user rating matrix is analyzed in [10].

Informational relationships in complex systems have first
been characterized in [11] to provide a quantitative description
of directional information flow. Subsequently, directed infor-
mation is introduced to study channels with causal feedback
in [12], [13]. It has found various applications in hypothesis
testing, instantaneous data compression, and portfolio the-
ory [14], where it is used to quantify the increase in growth
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rate in a gambling scenario with causal side information.
Directed information graphs are introduced in [15].

In this paper, we model the interaction between a recom-
mender and an individual user as a recommendation channel.
Using this base model, we consider a social network with
interacting users and a central recommender that wishes to
influence the network. An example of this setting is a video
streaming website that makes personalized recommendations
to its subscribers. The subscribers can share their opinions
on social media, thereby affecting the actions of others. In
our model, we want to reflect the influence of friendship,
dominance, or credibility on decision patterns by allowing
an individual to be influenced by other users and previous
decisions as well as the recommender. As such, our social
model inherently has causal feedback of past decisions at the
users and the recommender, often available in practice in the
form of a reply message, retweet or a reshare.

In our setting, a recommender controlling the suggestions
has a competitive advantage in estimating the decisions of
the social network. We quantify this advantage as done for
a gambler with side information in [16], and adopt it as
a measure of the recommender’s influence on the network.
We then solve the problem of maximizing this influence by
choosing the optimal recommendation strategy. In particular,
the recommender is to choose each suggestion based on causal
feedback such that it knows more about the network than
an observer without access to the suggestions. We show that
this influence is quantified by directed information, and that
the influence maximization problem is equivalent to finding
the capacity of a finite state feedback channel. Our main
contributions can be summarized as follows:
• We provide an information-theoretic model for an inter-

active recommendation network.
• We quantify the influence of the recommender on the

social network using directed information.
• We determine the fundamental limits of the recom-

mender’s influence, and corresponding recommendation
strategies.

We anticipate this study to facilitate research directions that
integrate social networks and information theory.

II. SYSTEM MODEL

A. Base Model: Recommendation Channel

We initially consider an interaction process between an
individual user and a recommender given in Fig. 1. The set
of possible recommendations are given as K = {1, 2, . . . ,K},
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Fig. 1. Recommendation channel.

where each suggestion may represent buying a product, vot-
ing for a candidate, and so on. Starting from i = 1, the
recommender makes a suggestion Xi ∈ K to the user, for
i = 1, . . . , n. In response to each suggestion, the user makes
a decision Yi ∈ Y = K∪{e}, where e denotes not taking any
action, i.e., indifference. The decision at time i is influenced by
both the recommender’s suggestion Xi and the user’s previous
decision, Yi−1. The recommender has causal knowledge of all
previous decisions Y i−1 = (Y1, . . . , Yi−1) when choosing Xi.

The decision at time i is governed by the probability
p(Yi|Xi, Yi−1), which denotes the probability of choosing
Yi given the recommender’s suggestion Xi and the previous
decision Yi−1. We parameterize this probability as shown in
Fig. 2, where an edge between node xi and node yi represents
the probability p(Yi = yi|Xi = xi, Yi−1 = yi−1). For
example, the probability of accepting a suggestion Xi = k
that is identical to the previous decision Yi−1 = k is

p(Yi = k|Xi = k, Yi−1 = k) = α, (1)

and the probability of not taking an action given Yi−1 = e is

p(Yi = e|Xi = k, Yi−1 = e) = ρ. (2)

The remaining parameters are found by uniformly distributing
the remaining probability among options, e.g., for j 6= k,

p(Yi = j|Xi = k, Yi−1 = k) =
1− (α+ φ)

K − 1
. (3)

Fig. 2a characterizes the bias towards the previous action,
whereas Fig. 2b applies when the person has not taken an
action at the previous time instant. We choose Y0 = e to avoid
imposing a bias on the decisions of the person. To ensure valid
probability distributions, the parameters in Fig. 2 satisfy

i) 0 < α, φ < 1, α+ φ < 1, (4)
ii) 0 < β, θ, µ < 1, β + θ + µ < 1, (5)

iii) 0 < γ, ρ < 1, γ + ρ < 1. (6)

We view the recommendation process in Fig. 1 with the
behavior dynamics in Fig. 2 as a finite state channel with
causal feedback. That is, when determining the suggestion Xi

at time instant i, the recommender has access to the previous
decisions, i.e., Y i−1. Since the recommender can observe the
previous decisions in the network, this channel exhibits causal
feedback. The corresponding channel is characterized by the
probability p(Yi|Xi, Si), where the state Si of the channel is
the previous decision Yi−1. We refer to this finite state channel
as the recommender channel. This equivalence allows us to
study the fundamental limits of the recommender channel from
the perspective of point-to-point finite state channels.

B. Model Extensions
The recommendation process from Section II-A can be im-

mediately generalized to the case when the user is influenced
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Fig. 2. Decision probabilities with suggestions Xi ∈ K and decisions Yi ∈
Y , for the cases (a) Yi−1 = k ∈ K and (b) Yi−1 = e.
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Fig. 3. Recommendation system with M = 2. Dashed lines represent the
social influence between users whereas solid lines represent the forward and
feedback channels between a user and the recommender.

not only by its most recent action, but by the past M ∈ Z+

actions. To do so, we define the channel output as a vector

Yi = (Yi, Yi−1, . . . , Yi−(M−1)) (7)

which also includes the past M decisions. We characterize the
corresponding channel by the probability p(Yi|Xi,Yi−1) and
for every v = (v1, . . . , vM ) ∈ YM , u = (u1, . . . , uM ) ∈ YM ,

p(Yi = v|Xi,Yi−1 = u) = p(Yi = v1|Xi,Yi−1 = u) (8)

if vt+1 = ut for t = 1, . . . ,M−1, and p(Yi = v|Xi,Yi−1 =
u) = 0 otherwise.

Our model can also be utilized to study a network with n
users and a recommender as in Fig. 3. In this model, at time
instant i, the recommender makes a suggestion Xi ∈ K to
user i. User i makes a decision Yi ∈ Y , influenced by both
the recommender’s suggestion Xi and the decision of the past
M users (Yi−1, . . . , YM ). Then, p(Yi|Xi,Yi−1) denotes the
probability of Yi given Xi and the observed decisions of the
previous users Yi−1. The social network in Fig. 3 can also
be transformed into a virtual finite state channel with causal
feedback. Therefore, the following results apply to both social
scenarios. For simplicity, we assume M = 1 in the sequel.

III. INFLUENCE MAXIMIZATION FOR THE RECOMMENDER

In this section, we quantify a measure for the influence
of the recommender over others in the social network, and
solve the problem of influence maximization. We first relate
the influence of the recommender to the increase in growth rate
for the gambling problem in [14]. We consider the decisions
of users as random events, where betting on the correct
outcome generates profits. For example, buying the stocks of
a company is a bet played on the outcome that an individual,
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or collectively the network, will choose the product of said
company over its competitors, therefore yielding a revenue for
its shareholders. In this setting, knowing the suggestions made
to each individual clearly gives the recommender an advantage
when choosing which companies to invest in.

From the perspective of an outsider that is unaware of
the suggestions Xn delivered to each user, the sequence
of decisions Y n has the probability distribution p(yn). The
optimal investment strategy that maximizes the growth rate of
the outsider’s wealth is proportional to the payoffs [14], [16],
[17], yielding the growth rate

W (Y n) =
∑
yn

p(yn) log o(yn)−H(Y n), (9)

where o(yn) is the payoff for unit investment in the outcome
yn. On the other hand, knowing suggestions Xn, the recom-
mender’s optimal causal gambling strategy yields the growth
rate [14, Thm. 1]
W (Y n||Xn) =

∑
yn

p(yn) log o(yn)−H(Y n||Xn), (10)

where H(Y n||Xn) is the causally conditional entropy [13]

H(Y n||Xn) =

n∑
i=1

H(Yi|Y i−1, Xi). (11)

The increase in growth rate with the knowledge of Xn, which
we refer to as the influence of the recommender, is therefore

∆W (Y n||Xn) = W (Y n||Xn)−W (Y n) (12)
= H(Y n)−H(Y n||Xn) (13)
= I(Xn → Y n), (14)

where (14) is the directed information [12], defined as

I(Xn → Y n) =

n∑
i=1

I(Xi;Yi|Y i−1). (15)

Note that this is in agreement with [14, Corollary 1]. We con-
sider the case where the recommender chooses the suggestions
based on a causally conditioned input distribution [13],

p(xn||yn) =

n∏
i=1

p(xi|xi−1, yi−1), (16)

i.e., the recommender chooses xi with probability
p(xi|xi−1, yi−1) for i = 1, . . . , n. In this case, the
recommender can design the input distribution in (16) to
maximize its influence, by solving the influence maximization
problem

lim
n→∞

max
p(xn||yn)

1

n
I(Xn → Y n). (17)

Note that (17) is identical to the problem of finding the
capacity of the recommender channel, which is a finite state
channel with causal feedback [18]. In fact, feedback capacity
can be interpreted as the maximum rate of information flow
from the recommender to the actions. In the sequel, we focus
on the capacity of the recommender channel in order to find
the influence-maximizing strategy for the recommender.

When feedback is equal to the previous output, (17) can be
attained within a class of probability mass functions satisfying

p(xi|xi−1, yi−1) = p(xi|yi−1), i = 1, . . . , n, (18)

as shown in [19], [20]. We then denote

p∗(xn||yn) =

n∏
i=1

p(xi|yi−1). (19)

Due to the distribution in (19), the output satisfies the Markov
chain Y i−2−Yi−1−Yi [19]. Moreover, by construction of the
channel, we have the Markov chain Xi−1 − Yi−1 − Yi. As a
result, the directed information in (15) can be written as

I(Xn → Y n) =

n∑
i=1

(H(Yi|Y i−1)−H(Yi|Xi, Y i−1)) (20)

=

n∑
i=1

(H(Yi|Yi−1)−H(Yi|Xi, Yi−1)) (21)

=

n∑
i=1

I(Yi;Xi|Yi−1). (22)

Hence the feedback capacity becomes

C = lim
n→∞

max
p∗(xn||yn)

1

n

n∑
i=1

I(Yi;Xi|Yi−1), (23)

where p∗(xn||yn) is defined in (19). Note that the terms on
the right side of (19) can be different for each user index i.

We explain now that the solution to (23) is a stationary dis-
tribution, i.e., p(xi|yi−1) = p(xj |yj−1), i, j ∈ {1, 2, . . . , n},
by using the conditions in [18]. Let a directed edge exist from
state k to state j if

min
m∈K
{p(Yi = j|Xi = m,Yi−1 = k)} > 0. (24)

It can be observed from Fig. 2 that a directed path exists from
k to j for all j, k ∈ Y , hence the Markov chain is strongly
irreducible. In addition, every state has a self loop, hence their
period is one, and the Markov chain is strongly aperiodic.

Next, we provide a set of sufficient conditions on network
parameters that ensures the state transition matrix is full
column rank.

Theorem 1. A recommender can maximize its influence in the
social network by a stationary recommendation distribution if

i) α > θ (25)
ii) µ ≥ φ (26)

iii) β >
(
θ + µ

)/
(K − 1). (27)

Proof: This result immediately follows from constructing the
state transition matrix for k ∈ Y and applying Gaussian
elimination. One then observes that the matrix has either full
rank or is of rank 1. The former case readily satisfies the
conditions in [18]. For the latter, we refer to [20] for the details
on how the conditions in [18] are still satisfied. �

Remark 1. In Thm. 1, (25) implies that a person is more likely
to accept a recommendation when the corresponding action is
also taken before. If the recommendation is different from the
previous action, accepting the recommendation is arguably less
probable than the previous case. The condition in (26) implies
that a person is less likely to ignore a recommendation if the
same action is taken previously. Finally, (27) is equivalent
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to β > β+θ+µ
K−2 , which states that if the recommendation is

different from the previous action, a person is more likely to
accept the recommendation than to choose an action neither
recommended nor taken previously. We remark that these
conditions primarily reflect the tendency of a person to prefer
an action that was also previously taken. Hence, the conditions
in Thm. 1 are consistent with the nature of social marketing.

Let p(x|y) denote the stationary distribution of channel
input xi ∈ K when the channel state is yi−1 ∈ Y , i.e.,
p(xi|yi−1) = p(x|y) for all x = xi, y = yi, and i = 1, . . . , n.
Then, (23) can be rewritten as

C = max
p(x|y)

∑
k∈Y

πkI(Xi;Yi|Yi−1 = k), (28)

where
πk = lim

i→∞
p(Yi = k) (29)

is the stationary distribution of the channel output process in-
duced by the stationary input distribution p(x|y), x∈K, y ∈ Y .

In order to determine the capacity of the recommender
channel, we first evaluate the stationary Markov distributions.
We denote the conditional distribution of the recommender’s
input to user i given the decision from user i− 1 as

p(Xi = k|Yi−1 = k) = λ, ∀k ∈ K, (30)
which is equal for all k due to the symmetry of the channel
for k = 1, . . . ,K. In the sequel, we denote

a1 + . . .+ ai = 1− (a1 + . . .+ ai) (31)

for a1, . . . , ai ∈ R and i ∈ N. Since
∑K
j=1 p(Xi = j|Yi−1 =

k) = 1, due to symmetry, we have

p(Xi=j|Yi−1 =k) =
λ̄

K−1
, j 6= k, ∀j ∈ K. (32)

We choose the conditional input probabilities for Yi−1 = e as

p(Xi = k|Yi−1 = e) =
1

K
, ∀k ∈ K (33)

again due to the symmetry of the channel. As a result, the
transition probabilities for the induced Markov chain are

p(Yi = e|Yi−1 = k) = φλ+ µλ̄, (34)
p(Yi = k|Yi−1 = k) = αλ+ θλ̄, (35)

p(Yi = j|Yi−1 = k) =
1− λ(α+ φ)− λ̄(θ + µ)

K − 1
, (36)

p(Yi = k|Yi−1 = e) =
1− ρ
K

, (37)

p(Yi = e|Yi−1 = e) = ρ, (38)

for j, k ∈ K and j 6= k. The stationary output distributions
can be determined from the global balance equations

πk
∑
j∈Y

p(Yi =j|Yi−1 =k) =
∑
j∈Y

πjp(Yi=k|Yi−1 =j) (39)

for k ∈ Y . Due to symmetry, we have π1 = π2 = . . . = πK .

Substituting this and (34)-(38) in (39) yields the solution

πe =
φλ+ µλ̄

1− ρ+ φλ+ µλ̄
, (40)

πk =
1− ρ

K(1− ρ+ φλ+ µλ̄)
, k = 1, . . . ,K. (41)

We are now ready to present our main result:

Theorem 2. The capacity of a recommender channel with
K ≥ 2 recommendations, that satisfies Thm. 1, is given
by (42), where we have defined H(ϕ1, ϕ2, . . . ϕi) =
−
∑i
j=1 ϕj logϕj .

Proof: We first rewrite (28) using (30), (32) as

C = max
p(xi|yi−1)

∑
k∈Y

I(Yi;Xi|Yi−1) (43)

= max
λ∈[0,1]

∑
k∈Y

I(Yi;Xi|Yi−1) (44)

= max
λ∈[0,1]

∑
k∈Y

πk(H(Yi|Yi−1 =k)−H(Yi|Xi, Yi−1 = k))

(45)

The expression in (42) is then obtained by evaluating the
entropy values from model parameters, and substituting (40)-
(41) in (45). �

Remark 2. For a binary recommendation network, i.e., K = 2,
the channel parameters satisfy β+ θ+µ = 1 by construction,
which implies β + θ + µ = 0. In this case, we drop the
λ̄(β + θ + µ) log(K − 2) term in (42) to obtain the capacity.

IV. NUMERICAL RESULTS

We evaluate the influence of the recommender in various
social scenarios with different channel parameters. We first
analyze the influence of a trusted recommender in comparison
to an untrusted recommender. We say that a recommender is
trusted if users follow the recommender’s suggestions with rel-
atively high probability. We expect a trustworthy recommender
to obtain a greater influence, since it would be more successful
at getting its recommendations accepted. The trustworthiness
of a recommender is reflected in the parameters β, α and γ
in Fig. 2. Trustworthiness increases with β, α and γ. Recall
that α is the probability of accepting a recommendation that
is the same as the previous decision, whereas β is that of
accepting the recommendation despite taking a different action
previously. Thus, a natural choice would be to let β < α.
On the other hand, γ refers to the case when no action has
been taken previously, hence the user is not affected by the
previous decision when reacting. Based on these definitions,
for some β, we let γ = β + 0.1 and α = β + 0.3, and
refer to β as the trustworthiness of the recommender, which
is an overall indicator of the recommender’s reputation. The

C = max
λ∈[0,1]

ρ̄

ρ̄+ φλ+ µλ̄

(
H(αλ+ θλ̄, φλ+ µλ̄, λ(α+ φ) + λ̄(θ + µ))− λH(α, φ, α+ φ)− λ̄H(θ, µ, β, β + θ + µ)

+λ̄(θ+µ) log(K−1)−λ̄(β+θ+µ) log(K−2)

)
+

φλ+µλ̄

ρ̄+φλ+µλ̄

(
H(ρ, ρ̄)−H(γ, ρ, γ+ρ)+ρ̄ logK−(γ+ρ) log(K−1)

)
(42)
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Fig. 4. Recommender influence vs. trustworthiness of the recommender for
various number of possible suggestions K.

remainder of the parameters are chosen as θ = 0.3, µ = 0.2,
φ = 0.2, ρ = 0.2, in accordance with the conditions in (25)-
(27) in Thm. 1. The maximum influence the recommender
can achieve is illustrated in Fig. 4 for 0.25 ≤ β ≤ 0.5. We
observe that the influence of the recommender significantly
increases as its trustworthiness β increases. It can also be
seen that the influence of the recommender increases with
the number of actions K. This is because more choices for
actions result in less predictable decisions for each person
in the network, making suggestions more valuable from an
influence perspective.

We next study the recommender’s influence in terms of how
responsive the users in the social network are. We posit that
responsive users will often react by taking actions, i.e, will
avoid the output e. Hence, the degree of indifference in our
model is dominated by the channel parameter ρ. We fix the
parameters β = 0.3, α = 0.6, θ = 0.3, µ = 0.2, φ = 0.2,
and ρ = 0.2, which correspond to moderate trust levels in
Fig. 4, and control the degree of indifference of the users
via ρ. For consistency, in doing so, we keep γ proportional
to the changes in ρ by setting γ = (1 − ρ)/2. We present
the maximum influence of the recommender with respect to
network indifference, indicated by ρ, in Fig. 5. We observe that
a recommender has greater influence in a responsive network,
i.e., when ρ is small. However, in comparison to Fig. 4, the
effect of indifference is not as dramatic as the effect of the
recommender’s trustworthiness.

V. CONCLUSION AND DISCUSSION

We proposed a recommendation model with underlying
social interactions, where individuals are influenced by their
previous decisions or the decisions of previous users. We
characterized the fundamental limits of the recommender’s in-
fluence on the network, which is measured by the information
contained in the suggestions. Utilizing the equivalence of this
model to a finite state channel with feedback, we determined
the optimal recommendation pattern, which is a stationary
strategy based on the previous decision. We observed how the
influence is impacted by the recommender’s reputation. Future
directions include considering larger graphs with complex re-
lationship structures and channel models that capture different
aspects of human behavior and social interaction.
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