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Abstract—We study the lossy communication of correlated
sources over a multiple access channel (MAC). In particular, we
provide a new set of necessary conditions for the achievability of
a distortion pair over a given channel. The necessary conditions
are then specialized to the case of bivariate Gaussian sources and
doubly symmetric binary sources over a Gaussian multiple access
channel. Our results indicate that the new necessary conditions
provide the tightest conditions to date in certain cases.

I. INTRODUCTION

We consider the transmission of correlated sources over a
multiple access channel (MAC) under individual fidelity crite-
ria. This is one of the fundamental open problems in network
information theory, and the set of achievable distortion pairs
is unknown in most cases. This problem generalizes another
long-standing open problem, namely the multi-terminal lossy
source-coding problem, obtained when the underlying MAC
consists of two orthogonal finite-capacity error-free links.
Despite the lack of a general single-letter characterization for
the multi-terminal source coding problem, the optimality of
separate source and channel coding can be shown [1] when the
underlying MAC is orthogonal. However, due to the lack of a
general separation result, the set of achievable distortion pairs
is not known even in scenarios for which the corresponding
source coding problem can be solved completely; this is
the case even for lossless transmission [2], illustrating the
difficulty of the problem. However, as it is shown in [3],
[4], optimality of separation can emerge also through the
availability of a side information at the receiver, conditioned
on which the two sources are independent.

In the absence of single-letter necessary and sufficient
conditions, the goal is to obtain computable inner and outer
bounds. A fairly general joint source-channel coding scheme
is introduced in [5] by leveraging hybrid analog-digital coding.
This scheme subsumes most other known coding schemes. A
novel outer bound is presented in [6] for the Gaussian setting,
which uses the fact that the correlation among channel inputs
is limited by the correlation available among source sequences.
Another bound is proposed in [7] and recently in [8].

Here, we exploit the ideas from [4] in order to obtain new
necessary conditions for the achievability of a distortion pair.
By providing a side information to the encoders and decoder
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Fig. 1. Correlated sources over a MAC.

that enables separation by inducing conditional independence,
we are able to obtain computable necessary conditions. Al-
though this idea has previously been used to obtain converse
results in multiterminal source coding [9−10], this paper is
the first effort that utilizes it in a joint source-channel coding
problem to derive novel converse bounds. We show that the
proposed technique leads to the tightest known bounds to date
in certain scenarios. In particular, we study the transmission of
Gaussian and doubly symmetric binary sources (DSBS) over
a Gaussian MAC, and provide comparisons of the obtained
necessary conditions with those from [6] and [8].

In the sequel, we use X for a random variable, x for
its realization, and X to denote its domain. We let Xn =
(X1, . . . , Xn) be a random vector of length n. We use E[X]
and var(X) for the expected value and variance of X , respec-
tively. The cardinality of X is denoted by |X |.

II. SYSTEM MODEL

We study the transmission of memoryless sources S1 and
S2 over a memoryless MAC as illustrated in Fig.1. Encoder
j observes Snj = (Sj1, . . . , Sjn) and maps it to the channel
input Xn

j = (Xj1, . . . , Xjn), through an encoding function
e
(n)
j : Snj → Xnj , j = 1, 2. The channel is characterized by

the conditional distribution p(y|x1, x2). The decoder observes
the channel output Y n and constructs its estimates for both
source sequences, Ŝn1 and Ŝn2 , through the decoding functions
g
(n)
j : Yn → Ŝnj , j = 1, 2. Corresponding average distortion

values for the source sequence Snj , j = 1, 2, are given by

∆
(n)
j =

1

n

n∑
i=1

E[dj(Sji, Ŝji)], (1)

where dj(·, ·) < ∞ is the additive distortion measure
for source Snj . A distortion pair (D1, D2) is achievable
for the source pair (S1, S2) and channel p(y|x1, x2) if
there exists a sequence of encoding and decoding functions
{e(n)1 , e

(n)
2 , g

(n)
1 , g

(n)
2 } such that
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lim sup
n→∞

∆
(n)
j ≤ Dj , j = 1, 2. (2)

In the sequel, we will use the following two definitions
extensively.

Definition 1. (Wyner’s common information) [11] Wyner’s
common information between S1 and S2 is given as,

CW (S1, S2) = min
p(v|s1,s2):
S1−V−S2

I(S1, S2;V ). (3)

Definition 2. (Conditional rate distortion function) [12] De-
fine the minimum average distortion for Sj given Q as [13],
[14]:

E(Sj |Q) = min
f :Q→Ŝj

E[dj(Sj , f(Q))], j = 1, 2, (4)

Then, the conditional rate distortion function for source Sj
when side information Z is shared between the encoder and
the decoder is given as,

RSj |Z(Dj) = min
p(uj |sj ,z):

E(Sj |Uj ,Z)≤Dj

I(Sj ;Uj |Z), j = 1, 2. (5)

III. A NECESSARY CONDITION FOR THE TRANSMISSION
OF CORRELATED SOURCES OVER A MAC

We consider in this section the lossy transmission of cor-
related sources over a MAC, and provide a set of necessary
conditions for the achievability of a distortion pair (D1, D2).
This will be accomplished by providing correlated side infor-
mation to the encoders and the decoder, conditioned on which
the two sources become independent.

A set of necessary conditions for transmitting correlated
sources over a MAC is presented in Theorem 1 below.

Theorem 1. Consider the communication of two correlated
sources S1 and S2 over a MAC characterized by p(y|x1, x2).
If a distortion pair (D1, D2) is achievable, then for every Z,
for which S1 − Z − S2 form a Markov chain, we have

RS1|Z(D1) ≤ I(X1;Y |X2, Q), (6)
RS2|Z(D2) ≤ I(X2;Y |X1, Q), (7)

RS1|Z(D1) +RS2|Z(D2) ≤ I(X1, X2;Y |Q), (8)
RS1S2

(D1, D2) ≤ I(X1, X2;Y ), (9)

for some Q for which X1 − Q − X2 form a Markov chain,
where

RS1S2
(D1, D2) = min

p(ŝ1,ŝ2|s1,s2):
E[dj(Sj ,Ŝj)]≤Dj , j=1,2

I(S1, S2; Ŝ1, Ŝ2) (10)

is the rate distortion function of the joint source (S1, S2) with
target distortion Dj for source Sj , j = 1, 2.

Proof. For any Z that satisfies the Markov chain condition,
we consider the genie-aided setting in which Zn is provided
to both the encoders and the decoder. From [4, Theorem 2],
separation is optimal in this setting, and the corresponding
necessary and sufficient conditions for the achievability of a
distortion pair serve as necessary conditions for the original
problem. Conditions (6)-(8) follow from [4], whereas condi-
tion (9) follows from the cut-set bound.

By relaxing conditions (6) and (7), we obtain the following
necessary conditions.

Corollary 1. If a distortion pair (D1, D2) is achievable for
sources (S1, S2), then for every Z that forms a Markov chain
S1 − Z − S2, we have

RS1|Z(D1) +RS2|Z(D2), ≤ I(X1, X2;Y |Q) (11)
RS1S2

(D1, D2) ≤ I(X1, X2;Y ), (12)

for some Q such that X1 −Q−X2.

In the following, we specialize the necessary conditions
from Corollary 1 to the transmission of correlated sources over
a Gaussian MAC.

Consider a memoryless MAC with additive Gaussian noise:

Y = X1 +X2 +N, (13)

where N is a standard Gaussian random variable. We impose
input power constraints 1

n

∑n
i=1 E[X2

ji] ≤ P , j = 1, 2.
From [15], for the Gaussian MAC, we have

I(X1, X2;Y |Q) ≤ 1

2
log(1 + β1P + β2P ) (14)

I(X1, X2;Y )≤ 1

2
log(1+2P+2P

√
(1−β1)(1−β2)) (15)

for some 0 ≤ β1, β2 ≤ 1. From Corollary 1, along with (14)
and (15), we obtain the following necessary conditions.

Corollary 2. If a distortion pair (D1, D2) is achievable for
sources (S1, S2) over a Gaussian MAC characterized in (13),
then for every Z that forms a Markov chain S1 − Z − S2,

RS1|Z(D1) +RS2|Z(D2) ≤ 1

2
log(1 + β1P + β2P ) (16)

RS1S2
(D1,D2) ≤ 1

2
log(1+2P+2P

√
(1−β1)(1−β2)) (17)

for some 0 ≤ β1, β2 ≤ 1.

IV. GAUSSIAN SOURCES OVER A GAUSSIAN MAC

In this section, we study the transmission of bivariate Gaus-
sian sources over a Gaussian MAC. We compare the necessary
conditions in Corollary 2 with the conditions obtained by
Lapidoth and Tinguely in [6], and by Lapidoth and Wigger in
[8]. Consider a bivariate Gaussian source (S1, S2) such that(

S1

S2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, (18)

transmitted over the memoryless Gaussian MAC in (13), under
squared error distortion measures dj(Sj , Ŝj) = (Sj − Ŝj)

2

for j = 1, 2. The common part between S1 and S2 in (3) is
characterized as follows [16, Proposition 1]. Let V , N1, and
N2 be standard random variables. We can express S1, S2 as,

Si =
√
ρV +

√
1− ρNi for i = 1, 2, (19)

such that I(S1, S2;V ) = 1
2 log 1+ρ

1−ρ and I(S1, S2;V ′) ≥
1
2 log 1+ρ

1−ρ for all S1 − V ′ − S2 for which V ′ 6= V .
For this scenario, the tightest known necessary conditions

are obtained by Lapidoth and Tinguely in [6, Theorem IV.1]:

RS1S2(D1, D2) ≤ 1

2
log(1 + 2P (1 + ρ)). (20)
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Fig. 2. Partitioned distortion regions for (D1, D2).

Another set of necessary conditions is presented by Lapidoth
and Wigger in [8, Corollary 1.1]. For correlated Gaussian
sources, together with (14)-(15), their conditions are obtained
as follows.2

RS1S2
(D1,D2)− 1

2
log

1+ρ

1−ρ ≤
1

2
log(1+β1P+β2P ) (21)

RS1S2
(D1,D2) ≤ 1

2
log(1+2P+2P

√
(1−β1)(1−β2)) (22)

for some 0 ≤ β1, β2 ≤ 1.
In the following, we compare the necessary conditions from

Corollary 2 with the conditions from (20) and (21)-(22). We
note that since comparing the performance of the full set of
necessary conditions from Theorem 1 with [8, Theorem 1] is
computationally intensive, we focus on Corollary 2 by relaxing
the first two conditions in Theorem 1, and compare this subset
of conditions with [6, Theorem IV.1] as in [8, Corollary 1.1].
To do so, we let Z in Corollary 2 to be the common part of
(S1, S2) from (3), i.e., Z = V from (19).

The rate distortion function for source Si, i = 1, 2, with
encoder and decoder side information Z is [18]:

RSi|Z(Di) =

{
1
2 log 1−ρ

Di
if 0 < Di < 1− ρ

0 if Di ≥ 1− ρ . (23)

Lastly, for the Gaussian source, (10) is as in [6, Theorem III.1].
In the following, we show that there exist (D1, D2) values

for which Corollary 2 gives the tightest bound compared to
(20) and (21)-(22). To do so, we define

r1(β1, β2) ,
1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)), (24)

r2(β1, β2) ,
1

2
log(1 + β1P + β2P ), (25)

and consider the region

R =
⋃

0≤β1,β2≤1

{(R1, R2) : R1≤r1(β1,β2), R2≤r2(β1,β2)} . (26)

Then, the necessary conditions in Corollary 2 state that, if a
distortion pair is achievable, then(

RS1S2(D1, D2), RS1|Z(D1) +RS2|Z(D2)
)
∈ R. (27)

The necessary conditions from (21)-(22), on the other hand,
state that, if a distortion pair (D1, D2) is achievable, then(

RS1S2(D1, D2), RS1S2(D1, D2)− 1

2
log

1+ρ

1−ρ

)
∈ R. (28)

2We note that our expressions differ slightly from (15) in [8]. Please see
[17] for the details.
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Fig. 3. Comparison of Corollary 2 with LT and LW necessary conditions
from (20) and (21)-(22), respectively, for P = 2, ρ = 0.5, and D1 = 0.14.
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Fig. 4. Comparison of Corollary 2 with LT and LW necessary conditions
from (20) and (21)-(22), for P = 2, ρ = 0.5, and D1 = 0.145.

In the following, we let ρ = 0.5 and P = 2. We partition the
set of all distortion pairs (D1, D2), 0 ≤ D1, D2 ≤ 1, as in
Fig. 2, and define the following pairs:

g(D1,D2),
(
RS1S2(D1,D2), RS1|Z(D1)+RS2|Z(D2)

)
, (29)

l(D1,D2),
(
RS1S2

(D1,D2), RS1S2
(D1,D2)− 1

2
log

1+ρ

1−ρ
)
.

(30)
Consider first Region B in Fig. 2, for which D1 ≤ 1− ρ and
1 − ρ ≤ D2 ≤ 1−ρ2−D1

1−D1
. We let D1 = 0.14 < 1 − ρ. For a

(D1, D2) pair in Region B, i.e., D1 = 0.14 and 1−ρ ≤ D2 ≤
1−ρ2−D1

1−D1
, from (23) we have

g(D1,D2) =

(
1

2
log

1− ρ2
D1D2

,
1

2
log

1− ρ
D1

)
. (31)

The g(D1, D2) pairs obtained for increasing D2 values within
Region B are illustrated as points with green “+” sign in Fig. 3.
On the other hand, the region R from (26) is the region
shaded in blue in the same figure. Whenever a green point
from (31) falls outside the blue region R, we conclude that
the corresponding distortion pair (D1, D2) is not achievable,
according to Corollary 2. We also evaluate

l(D1,D2) =

(
1

2
log

1− ρ2
D1D2

,
1

2
log

(1− ρ)2

D1D2

)
(32)

for points (0.14, D2) in Region B. The points corresponding
to l(D1, D2) for different D2 values are shown with a dark
blue “*” marking in Fig. 3. Accordingly, whenever such a
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Fig. 5. Comparison of Corollary 2 with LT and LW necessary conditions
from (20) and (21)-(22), for P = 2, ρ = 0.5, and D1 = 0.15.

point from (32) is not contained within region R from (26),
the corresponding (D1, D2) pair is not achievable, according
to the LW conditions in (21)-(22). We next consider (D1, D2)
pairs from Region D. We plot in Fig. 3 the values obtained for
D1 = 0.14 and D2 varying from 1−ρ2−D1

1−D1
to 1− ρ2 + ρ2D1,

with a purple “+” sign for g(D1, D2) and with a red “x” mark-
ing for l(D1, D2). Finally, we consider Region G. We plot in
Fig. 3 the values obtained for 1−ρ2+ρ2D1 ≤ D2 ≤ 1, with a
pink “+” sign for g(D1, D2) and with a black “*” marking for
l(D1, D2). These points coincide as g(D1, D2) and l(D1, D2)
depend only on D1 in this case. The points sharing the same
value on the horizontal axis correspond to the same (D1, D2)
pair, as the first terms of both (29)-(30) are equal. Lastly, we
illustrate the right-hand side (RHS) of (20) with a straight line.
The points on the RHS of this line correspond to (D1, D2)
pairs that are not achievable due to (20). In Figs. 4-6, we plot
the corresponding regions for D1 ∈ {0.145, 0.15, 0.16}, by
keeping the remaining parameters fixed.

In order to compare Corollary 2 with the LT bound from
(20) and LW conditions from (21)-(22), we investigate the
(D1, D2) pairs that cannot be achieved by Corollary 2, (20),
and (21)-(22), respectively, in Figs. 3-6. We observe from
Fig. 3 that none of the considered (D1, D2) pairs is achievable
when D1 = 0.14, according to Corollary 2 and the LT bound,
whereas some (D1, D2) pairs satisfy the LW conditions, as
several points labeled with “x” fall into region R. From Fig. 4,
we observe that when D1 = 0.145, some (D1, D2) pairs
from Regions G and D (from Fig. 2) satisfy both LT and
LW conditions, but not Corollary 2, as some pink and purple
points marked with “+” are on the left-hand side (LHS) of
the straight line, but outside R. Fig. 5 shows similar results
for D1 = 0.15. In Fig. 6, we find that there exist (D1, D2)
pairs in Region B that satisfy LT and LW conditions but not
Corollary 2 when D1 = 0.16, as several green points marked
with “+” are on the LHS of the straight line but outside R.
We then conclude that there exist (D1, D2) pairs for which
Corollary 2 provides tighter conditions than both the LT and
LW conditions in Regions G, D, and B, and, by symmetry, in
Regions I, F , and C.

By comparing the LHS of Corollary 2 with (21)-(22),
and using the fact that the region defined by the RHS of
both conditions is the same, we find that Corollary 2 is at

1.3 1.35 1.4 1.45 1.5 1.55 1.6
0
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0.8

1
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Corollary 2

R

Fig. 6. Comparison of Corollary 2 with LT and LW necessary conditions
from (20) and (21)-(22), for P = 2, ρ = 0.5, and D1 = 0.16.

least as tight as LW conditions in all regions but E , D,
and F . For space considerations, the details are provided
in [17]. We remark that this does not necessarily mean that
Corollary 2 is strictly tighter in any of these regions, since the
necessary conditions involve also the RHS of (16)-(17) and
(21)-(22), and they can be used to claim the impossibility of
achieving certain distortion pairs based on the relative value
of the rate distortion functions with respect to the rate region
characterized by the RHS. It is possible that, even though
the LHS of Corollary 2 is lower than the LHS of the LW
bound, either both or none of the necessary conditions may
be satisfied, leading exactly to the same conclusion regarding
the achievability of the corresponding distortion pair. On the
other hand, while we have numerically shown the existence
of cases in which Corollary 2 provides strictly tighter bounds
than LW conditions, we have not come across a case in which
the opposite holds, that is, LW conditions show that a certain
distortion pair is not achievable, while Corollary 2 holds.

V. BINARY SOURCES OVER A GAUSSIAN MAC

In this section, we consider the transmission of a doubly
symmetric binary source (DSBS) over a Gaussian MAC.
Consider a DSBS with joint distribution

p(S1 =s1, S2 =s2) =
1−α

2
(1−|s1−s2|) +

α

2
|s1−s2|, (33)

a memoryless Gaussian MAC from (13), and Hamming distor-
tion dj(Sj , Ŝj)= |Sj−Ŝj | where Ŝj=Sj={0, 1} for j = 1, 2.

For the conditions in Corollary 2, we choose the variable
Z as illustrated in Fig. 7(a). Then the joint distribution for
(Si, Z) is as given in Fig. 7(b) for i = 1, 2. Note that Z
forms a Z-channel both with S1 and S2 while satisfying S1−
Z − S2. Using the conditional rate-distortion function for the
Z-channel setting from [19], one can evaluate Corollary 2.

We compare Corollary 2 first with the set of necessary
conditions obtained from [6, Remark IV.1],

RS1S2(D1, D2) ≤ 1

2
log(1 + 2P (1 + ρmax)), (34)

where RS1S2
(D1, D2) is as in [20, Theorem 2], and ρmax is

the Hirschfield-Gebelin-Rényi maximal correlation for DSBS
given by [21]:

ρmax =
√

2(α2 + (1− α)2)− 1. (35)
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We next obtain the Lapidoth-Wigger necessary conditions
from [8, Corollary 1.1] by using (14)-(15),

RS1S2
(D1,D2)−1−h(α)+2h(θ)≤ 1

2
log(1+β1P+β2P ) (36)

RS1S2
(D1,D2)≤1

2
log(1+2P+2P

√
(1−β1)(1−β2)) (37)

for some 0 ≤ β1, β2 ≤ 1, where θ = (1/2)(1−
√

1− 2α) and
h(λ) = −λ log λ − (1 − λ) log(1 − λ) is the binary entropy
function, and CW (S1, S2) from (3) is as in [11].

The last set of necessary conditions we consider is obtained
from [8, Theorem 1] by relaxing (9a) and (9b), letting W ←
Z, where Z is as defined in Fig. 7, and using (14)-(15),

RS1S2(D1,D2)−1+
α

1−αh(α)≤ 1

2
log(1+β1P+β2P ), (38)

RS1S2
(D1,D2) ≤ 1

2
log(1+2P+2P

√
(1−β1)(1−β2)), (39)

for some 0 ≤ β1, β2 ≤ 1. In Fig. 8, we compare the necessary
conditions from Corollary 2 with the LT necessary conditions
from (34), and the LW conditions from (36)-(37) and (38)-
(39) for the setting D1 = 0.25, and 0 ≤ D2 ≤ α

2(1−α) . The
green “+” signs are for the points obtained from Corollary 2,
whereas blue “*” markings are for the points from (36)-
(37) and red “x” markings are for (38)-(39). The straight
line represents (34). Fig. 8 shows that there exist (D1, D2)
pairs for which all conditions except Corollary 2 are satisfied,
suggesting Corollary 2 to be tighter under those settings.

VI. CONCLUSION

We have identified a set of necessary conditions for the
lossy transmission of correlated sources over a multiple access
channel. We have shown that these conditions provide, in
certain cases, the tightest known necessary conditions for
the Gaussian setting, i.e., Gaussian sources transmitted over
a Gaussian MAC, as well as for a DSBS over a Gaussian
MAC. Current and future directions include investigating the
necessary conditions for other multi-terminal scenarios.
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