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Abstract—This paper studies the impact of side information on
the lossy compression of a remote source, one which is indirectly
accessed by the encoder. In particular, we identify the conditions
under which sharing side information between the encoder and
the decoder may be superior or inferior to having two-sided,
i.e., correlated but not identical, side information. As a special
case, we characterize the optimal rate-distortion function for a
direct binary source with two-sided information by proposing
an achievable scheme and proving a converse. This example
suggests a hierarchy on the impact of side information, in that
the performance is mainly determined by how well the decoder
learns about the source and then by how well the encoder learns
about the decoder’s observation.

I. INTRODUCTION

We study the lossy compression of a remote source with
two-sided side information. The encoder has access only
to a noisy observation of the source. The encoder and the
decoder have either common or individual side information
correlated with the source. We focus on identifying whether
common or correlated side information is beneficial from the
source coding perspective, and investigate the conditions on
the indirect observation of the source as well as the encoder’s
and decoder’s side information under which one system out-
performs the other. As a special case, we characterize the
rate-distortion function for a binary source with two-sided
information and elaborate on the hierarchy between encoder
and decoder side information in lossy source coding.

Related Work: Shannon introduced the rate-distortion func-
tion as the fundamental metric for (direct) source coding with
a fidelity criterion [1]. Wyner and Ziv showed that the rate-
distortion function with only decoder side information [2] is
inferior to the conditional rate-distortion of the system with
shared information between the encoder and the decoder [3].
Lossy source coding with two-sided side information is studied
in [4]. The rate-distortion function for the case with decoder
side information as well as an additional shared information
is numerically evaluated in [5]. For a remote source with only
decoder side information, which we call a remote Wyner-Ziv
system, the rate-distortion function is characterized in [6].

II. SYSTEM MODEL AND PRELIMINARIES

In the remainder of the paper, X represents a random
variable, and x is its realization. X denotes a set, and |X |
is its cardinality. E[X] is the expected value of X .

Consider a discrete memoryless remote (indirect) source
with two-sided side information as in Fig. 1. X̃ is the encoder’s
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Fig. 1. Remote source coding with two-sided information.
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Fig. 2. Remote source coding with shared information.

observation of the source X . The direct source is a special case
with X = X̃ . The encoder and the decoder have access to side
information S1 and S2, respectively. The random variables
X , X̃ , S1, and S2 are described by the joint distribution
p(x, x̃, s1, s2) over the corresponding alphabets X , X̃ , S1,
S2. The n-letter encoding and decoding schemes are defined
analogously to [4]. In the resulting single letter expression, a
lossy version X̂ of X is recovered, with a fidelity criterion
E[d(X, X̂)] ≤ D, where d(x, x̂) is the distortion measure.

The remote source with two-sided side information is a
special case of the remote Wyner-Ziv system in [6], by setting
X̃S1 as the encoder’s observation of the source and S2 as
the decoder side information. Therefore, the rate-distortion
function for the remote two-sided system is

RTS(D) = min
p(u|x̃,s1),x̂=g(u,s2)

I(U ; X̃S1|S2), (1)

such that U − X̃S1 − XS2 forms a Markov chain and
E[d(X, g(U, S2))] ≤ D. For the cardinality of the auxiliary
variable, it suffices to consider |U| ≤ |X̃ ||S1|+ 1.

Next, consider a remote source with shared information as in
Fig. 2, in which the decoder side information is shared with the
encoder. Its rate distortion function follows from (1) by letting
S1 = S2 and noting that I(V ; X̃, S2|S2) = I(V ; X̃|S2) and
that V − X̃S2 − XS2 holds if and only if V − X̃S2 − X .
Therefore the rate-distortion function for the remote system
with shared-information is

RSH(D) = min
p̄(v|x̃,s2),x̂=f(v,s2)

I(V ; X̃|S2), (2)
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Fig. 3. Remote source with decoder only side information (remote Wyner-
Ziv).

such that V − X̃S2 − X forms a Markov chain and
E[d(X, f(V, S2))] ≤ D.

Finally, we present a technical result on reducing two-sided
systems to “Wyner-Ziv” ones.

Proposition 1. Given X̃ − S1 −XS2 or S1 − X̃ −XS2, the
remote source system with two-sided side information (Fig. 1)
is equivalent to a remote source system with decoder only side
information in Fig. 3 with V = S1 or V = X̃ , respectively.

Proof. Let X̃−S1−XS2 hold for the system in Fig. 1. First,

I(U ; X̃S1|S2) ≥ I(U ;S1|S2). (3)

Moreover, X̃ − S1 −XS2 and U − X̃S1 −XS2 hold if and
only if UX̃ − S1 − XS2, as a result of non-negativity of
mutual information and the chain rule I(UX̃;XS2|S1) =
I(X̃;XS2|S1) + I(U ;XS2|X̃S1). Since the Markov chain
UX̃ − S1 −XS2 implies U − S1 −XS2, then (3) states that
the search space can be limited to the distributions that satisfy
U−S1−XS2 with no rate increase. Hence, the remote system
with two-sided information can be reduced to a remote source
with decoder side information in Fig. 3 with V = S1. The
case when S1 − X̃ − XS2 follows the same steps with the
roles of X̃ and S1 exchanged.

III. CASES WHERE SHARED INFORMATION IS BETTER

In this section, we study the conditions under which two-
sided information can never outperform shared information.

Theorem 1. For remote source coding systems in Figs. 1
and 2, whenever S1 − X̃S2 −X , it holds for all D that

RSH(D) ≤ RTS(D). (4)

Proof. We show that any optimal strategy for the two-sided
case leads to a valid strategy for the shared case, but with a
larger rate. Without loss of generality, let U in (1) and V in (2)
be from a set with cardinality max (|U|, |V|). Let the minimum
in (1) be achieved by p∗(u|x̃, s1) and g∗(u, s2). Then,

E[d(X, g∗(U, S2))]

=
∑

u,x,x̃,s1,s2

d(x, g∗(u, s2))p∗(u|x̃, s1)p(x, x̃, s1, s2) ≤ D. (5)

For the shared information system, consider the distribution

p̄(u|x̃, s2) =
∑
s1

p∗(u|x̃, s1)p(s1|x̃, s2), (6)

due to U−X̃S1−S2 since U−X̃S1−XS2, and the function

f(u, s2) = g∗(u, s2), (7)

and use S1− X̃S2−X to determine its expected distortion as

E[d(X, f(U, S2))]=
∑

u,x,x̃,s2

d(x, f(u, s2))p̄(u|x̃, s2)p(x, s2, x̃)

=
∑

u,x,x̃,s2

d(x, g∗(u, s2))
∑
s1

p∗(u|x̃, s1)p(s1|x̃, s2)p(x,s2,x̃)

=
∑

u,x,x̃,s1,s2

d(x, g∗(u, s2))p∗(u|x̃, s1)p(s1|x̃,s2,x)p(x,s2,x̃) (8)

which is ≤ D due to (5). Hence, p̄(u|x̃, s2) and f(u, s2)
in (6) and (7) are valid assignments for the shared infor-
mation system achieving a rate I(U ; X̃|S2) characterized by
p̄(u|x̃, s2)p(x, s2, x̃) in (2), whereas the minimum compres-
sion rate for the system with two-sided information according
to (1) is

RTS(D) = I(U ; X̃S1|S2) ≥ I(U ; X̃|S2) (9)

in which I(U ; X̃|S2) in (9) is characterized by
p∗(u|x̃, s2)p(x, s2, x̃) where

p∗(u|x̃, s2) =
∑
s1

p∗(u|x̃, s1)p(s1|x̃, s2) = p̄(u|x̃, s2), (10)

due to (6). We have from (9) and (10) that, for every optimal
distribution and reconstruction function corresponding to a
given distortion D for the two-sided information system, there
exists a feasible assignment for the shared information system
whose rate is no greater than that of the two-sided system.

Remark 1. Encoder side information is redundant whenever
it is conditionally independent of the source given the observa-
tion of the source and decoder side information. In this case,
it is better to share the decoder side information, no matter
how noisy it may be.

Remark 2. Theorem 1 can alternatively be obtained by
providing S2 to the encoder in Fig. 1, and using the fact that
RTS(D) ≥ minU I(U ; X̃, S1, S2|S2) ≥ minU I(U ; X̃|S2)
over all U and g satisfying U − (X̃, S1, S2) − (X,S2)
and d(X, g(U, S2)) ≤ D. Since X − (X̃, S1, S2) − U and
X−(X̃, S2)−S1 imply X−(X̃, S2)−U , we have RSH(D) ≤
RTS(D).

Corollary 1. A direct source with two-sided information can
never outperform the direct source with shared information.

Proof. For X̃ = X , the condition in Theorem 1 becomes
S1 − XS2 −X which always holds.

Therefore, for a direct source, sharing even noisy decoder
side information is better than having individual side informa-
tion at the encoder and the decoder, no matter how good the
encoder side information might be.

Corollary 2. If S1−X−S2, the direct source with two-sided
information is equal to a Wyner-Ziv system with only decoder
side information S2.

Proof. For a direct source X̃ = X , so we can invoke Prop. 1
with S1 − X̃ − XS2 and X̃ = X , since S1 − X − S2 is
equivalent to S1 −X −XS2.
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Fig. 4. Binary source with two-sided information, 0 ≤ p1, p2 ≤ 0.5.

Hence, encoder side information is totally useless for a
direct source if it is does not convey any information about
the decoder’s observation.

IV. CASES WHERE TWO-SIDED INFORMATION IS BETTER

In this section, we study the conditions under which shared
information can never outperform two-sided information.

Theorem 2. For the remote source coding systems in Figs. 1
and 2, if we have X̃ −S1−XS2, then it holds for all D that

RSH(D) ≥ RTS(D). (11)

Proof. We show that any attainable distortion for the shared
information system is attainable for the two-sided information
system with the same (zero) rate. Since X̃ − S1 − XS2,
applying Prop. 1 to Fig. 1 reduces it to Fig. 3 with V = S1,
which we refer to as System 1. Applying Prop. 1 again to
Fig. 2 by letting S1 = S2 reduces it to Fig. 3 with V = S2

and p(v, s2|x) = p(s2|x), which we refer to as System 2. In
this case, no additional information is provided to the encoder
about X that is not already known to the decoder, hence
the only feasible distortion levels are the ones that allow the
decoder to predict X from S2 only, which requires zero rate.
As both systems are remote Wyner-Ziv type, the rate distortion
function of System 1 is [2]

R1(D) = min
p(u|s1),p(x̂|u,s2)

I(U ;S1|S2) (12)

such that U − S1 −XS2 and

E[d(X, X̂)]=
∑

x,u,s1,s2,x̂

d(x, x̂)p(x̂|u, s2)p(u|s1)p(x,s1,s2)≤D.

The rate distortion function of System 2 is

R2(D) = min
p̄(u|s2),p̄(x̂|u,s2)

U−S2−X

I(U ;S2|S2) = 0, (13)

where

E[d(X,X̂)]=
∑

x,u,s2,x̂

d(x,x̂)p̄(x̂|u,s2)p̄(u|s2)p(x,s2)≤D, (14)

since U − S2 −XS2 is equivalent to U − S2 −X . Hence the
rate is zero for system 2 whenever D is attainable. Suppose
that a given D is attainable for System 2. Then

E[d(X, X̂)] =
∑
x,x̂,s2

d(x, x̂)p̄∗(x̂|s2)p(x, s2) ≤ D, (15)

where p̄∗(x̂|s2) =
∑
u p̄(x̂|u, s2)p̄(u|s2). Next, assume that

p(x̂|u, s2) = p̄∗(x̂|s2) for all u ∈ U and p(u|s1) = p∗(u)
∀s1 ∈ S1 for some p∗(u) in System 1, and determine its
expected distortion as

Encoder Decoder
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Fig. 5. Binary source with shared information (decoder information is shared).

E[d(X, X̂)] =
∑

x,u,s1,s2,x̂

d(x, x̂)p(x̂|u, s2)p(u|s1)p(x, s1, s2)

=
∑

x,u,s1,s2,x̂

d(x, x̂)p̄∗(x̂|s2)p∗(u)p(x, s1, s2)

=
∑
x,s2,x̂

d(x, x̂)p̄∗(x̂|s2)p(x, s2) ≤ D, (16)

where (16) follows from (15). Hence, D is also attainable for
System 1 with a rate given by

I(U ;S1|S2) = I(U ;S1)− I(U ;S2) ≤ I(U ;S1) = 0, (17)

since U − S1 − XS2 and U is independent of S1. Hence,
System 1 always performs at least as good as System 2. In
other words, shared information cannot outperform two-sided
information.

V. BINARY DIRECT SOURCE
WITH TWO-SIDED INFORMATION

In this section, we study a binary direct source with two-
sided information shown in Fig. 4, and characterize its rate-
distortion function using an optimal ternary alphabet for the
auxiliary random variable. Our achievability and converse
analysis is inspired by [7]. In the following, we frequently
use the notations p̄ = 1− p and p ∗ q = (1− p)q + p(1− q),
for scalars 0 ≤ p, q ≤ 1, as well as the binary entropy function
h(p) = −p log p− (1− p) log(1− p).

Theorem 3. The rate distortion function for the binary direct
source with two-sided side information is given by

RTS(D) = min
0≤α,β,θ≤1
0≤γ≤0.5

0≤d≤p1∗p2

R(α, β, θ, d, γ) (18)

where

R(α, β, θ, d, γ) := h(p1)−θh(d)+θh
(
p2 ∗ (α(1− d)+βd)

)
−θ(1− d)h(α)−θdh(β)−(1− θ)h(γ) (19)

subject to the constraints

θd+ (1− θ)(p2 ∗ γ) ≤ D, (20)

θβd+ θ(1− α)(1− d) + (1− θ)γ = p1, (21)

γ = 0.5 whenever θ = 1. (22)

Proof. (Achievability) Consider the distribution
p(u, x, s1, s2) = p(u, x, s1)p(s2|s1), using p(u, x, s1)
given in Table I and U −XS1 − S2 to calculate

R(α, β, θ, d, γ) = I(XS1;U |S2) (23)
=H(XS1)−H(S2)−H(X|U)+H(S2|U)−H(S1|XU) (24)
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TABLE I
JOINT DISTRIBUTION p(u, x, s1).

S1 = 0 S1 = 1

X = 0 X = 1 X = 0 X = 1

U = 0 θαd̄/2 θβd/2 θᾱd̄/2 θβ̄d/2

U = 1 θβ̄d/2 θᾱd̄/2 θβd/2 θαd̄/2

U = 2 θ̄γ̄/2 θ̄γ/2 θ̄γ/2 θ̄γ̄/2

from which (19) immediately follows. Consider an assignment

X̂ =

{
U if U = 0, 1
S2 if U = 2

(25)

so that the expected distortion is

E[d(X, X̂)] = θd+ (1− θ)(p2 ∗ γ) ≤ D. (26)

Lastly, the condition p(x, s1) = p1/2 if x 6= s1 leads to (21),
which ensures a valid marginal distribution for (X,S1).

(Converse) We prove an equivalent expression to (19):

R(α, β, θ, d, γ) = I(XS1;U |S2)

=H(XS1)−H(S2)−H(S1|U)+H(S2|U)−H(X|S1U) (27)

=h(p1)− (1−θ)h(γ)+ θh
(
p2 ∗ (αd̄+βd)

)
− θh(αd̄+ βd)

−θ(αd̄+βd)h(
βd

αd̄+βd
)−θ(1−(αd̄+βd))h(

β̄d

1−(αd̄+βd)
). (28)

Consider all tuples (X,S1, S2, U) satisfying U −XS1 − S2

and E[d(X, f(U, S2))] ≤ D for some optimal f(u, s2) = x̂
and achieving the minimum of (27). Define the set

A = {u : f(u, 0) = f(u, 1) = g(u)}, (29)

for some function g(u), and its complement Ac = {u :
f(u, 0) 6= f(u, 1)}. Denote

θ := p(U ∈ A), 0 ≤ θ ≤ 1, (30)

du := p(X 6= g(u)|U = u) for u ∈ A, (31)

d :=
∑
u∈A

pu
θ
du, (32)

where pu = p(U = u), so that
∑
u∈A pudu = θd, and∑

u∈A pu(1−du) = θ(1−d). Note that, the attained distortion
within set A must be lower than that achieved by solely
using S2, therefore du ≤ p1 ∗ p2 for all u ∈ A and thus
d ≤ p1 ∗ p2. Next, for each u ∈ A, define

αu := p(S1 = g(u)|X = g(u), U = u), (33)
βu := p(S1 = g(u)|X 6= g(u), U = u). (34)

and

α :=
∑
u∈A

pu(1− du)

θ(1− d)
αu, 0 ≤ α ≤ 1, (35)

β :=
∑
u∈A

pudu
θd

βu, 0 ≤ β ≤ 1. (36)

Now, it can be determined within the set A that,∑
u∈A

puH(S2|U = u)−
∑
u∈A

puH(S1|U=u)

=
∑
u∈A

pu
(
h(p2∗p(S1 =g(u)|U=u))−h(p(S1 =g(u)|U=u))

)
(37)

≥θ
(
h
(∑
u∈A

pu
θ
p(S1 =g(u)|U=u)

)
− h
(
p2 ∗

(∑
u∈A

pu
θ
p(S1 = g(u)|U = u)

)))
(38)

=θ
(
h(α(1− d) + βd)− h(p2 ∗ (α(1− d) + βd))

)
(39)

where (37) follows from U−S1−S2, (38) from the convexity
of h(p2 ∗ δ) − h(δ) for all 0 ≤ δ ≤ 1 [2], and (39) from
p(S1 = g(u)|U = u) = αu(1− du) + βudu. Moreover,∑
u∈A

puH(X|S1, U=u)

=
∑
u∈A

pup(S1 =g(u)|U=u)h(p(X 6=g(u)|S1 =g(u),U=u))

+
∑
u∈A

pup(S1 6=g(u)|U=u)h(p(X 6=g(u)|S1 6=g(u),U=u))

≤ (θ(1− d)α+ θdβ)h(
∑
u∈A

puβudu
θ(1− d)α+ θdβ

)

+ (θ−(θ(1−d)α+θdβ))h(
∑
u∈A

pu(1−βu)du
θ−(θ(1−d)α+θdβ)

) (40)

= θ(α(1− d) + βd)h(
βd

(1− d)α+ dβ
)

+ θ(1− ((1− d)α+ dβ))h(
(1− β)d

1− ((1− d)α+ dβ)
) (41)

where (40) follows from (31) - (36), Jensen’s inequality, and
that

∑
u∈A pu(αu(1−du)+βudu) = θ(1−d)α+θdβ, whereas

(41) is implied by (35) and (36).
If u ∈ Ac, define γu := p(X 6= S1|U = u) and

γ :=
∑
u∈Ac

pu
1− θγu. (42)

Lemma 1. For any optimal U in the binary two-sided system,
0 ≤ γu ≤ 0.5 for all u ∈ Ac, where A is defined in (29).

Proof. Assume an optimal p(u, x, s1, s2), f(u, s2) is given,
for which γu = p(X 6= S1|U = u) > 0.5 for some u ∈ Ac.
Partition Ac into disjoint subsets Ac = A1 ∪A2 ∪A3 ∪A4,
A1 = {u : u ∈ Ac, γu > 0.5, f(u, s2) = s2, ∀s2} (43)
A2 = {u : u ∈ Ac, γu ≤ 0.5, f(u, s2) = s2, ∀s2} (44)
A3 = {u : u ∈ Ac, γu > 0.5, f(u, s2) = s̄2, ∀s2} (45)
A4 = {u : u ∈ Ac, γu ≤ 0.5, f(u, s2) = s̄2, ∀s2} (46)

Consider a new p′(u, x, s1, s2) and f ′(u, s2) such that for all
s1 ∈ S1 and u ∈ Ac we let p′u = pu and

p′(S1 = s1|U = u) = p(S1 = s1|U = u), (47)
if u ∈ A1 we let f ′(u, s2) = s2 and
p′(X 6=s1|S1 =s1,U=u) = 1−p(X 6=s1|S1 =s1,U=u), (48)

if u ∈ A2 we let f ′(u, s2) = s2 and

p′(X 6=s1|S1 =s1, U=u) = p(X 6=s1|S1 =s1, U=u), (49)
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if u ∈ A3 we let f ′(u, s2) = s2 and

p′(X 6=s1|S1 =s1,U=u)=1−p(X 6= s1|S1 =s1,U=u), (50)

if u ∈ A4 we let f ′(u, s2) = s̄2 and

p′(X 6=s1|S1 =s1, U=u) = p(X 6=s1|S1 =s1, U=u). (51)

It can be calculated that the total contribution of p′(u, x, s1, s2)
to the expected distortion is no greater than that of
p(u, x, s1, s2), whereas the contributions of the two distribu-
tions to the rate are equal. Hence, p(u, x, s1, s2) and f(u, s2)
can be replaced with p′(u, x, s1, s2) and function f ′(u, s2)
without loss of optimality, for which γu ≤ 0.5 for all u ∈ Ac
for p′(u, x, s1, s2). Moreover, γ ≤ 0.5 follows from (42).

Using Lemma 1, we observe within set Ac that,∑
u∈Ac

puH(X|S1, U=u)=
∑
u∈Ac

puh(p(S1 6=X|U=u)) (52)

≤ (1− θ)h(
∑
u∈Ac

puγu
1− θ ) = (1− θ)h(γ), (53)

and that,∑
u∈Ac

puH(S2|U = u)−
∑
u∈Ac

puH(S1|U = u) (54)

=
∑
u∈Ac

puH(p2 ∗ p(S1|U=u))−
∑
u∈Ac

puH(p(S1|U=u))≥0,

(55)

from U−S1 − S2, implied by U−XS1−S2 and X−S1−S2.
Then, combining (27), (39), (41), (53), and (55), we obtain1

I(XS1;U |S2) ≥ RHS of (28) = RHS of (19).

We next show (20) as follows:

D ≥ E(d(X 6= X̂)) (56)

= p(X 6= X̂, U ∈ A) + p(X 6= X̂, U ∈ Ac) (57)

≥
∑
u∈A

pudu + (1− θ)
(
p2 ∗

( ∑
u∈Ac

puγu
(1− θ)

))
(58)

= θd+ (1− θ)(p2 ∗ γ), (59)

where (58) holds because if u ∈ Ac and f(u, s2) = s2, then

p(X 6= X̂|U = u) = p(X 6= S2|U = u) = p2 ∗ γu, (60)

whereas if u ∈ Ac and f(u, s2) = s̄2, then

p(X 6= X̂|U = u) = 1− (p2 ∗ γu) ≥ p2 ∗ γu, (61)

since p2 ∗ γu ≤ 0.5 due to Lemma 1. Lastly,

p1 = p(X 6= S1) (62)

=
∑
u∈Ac

puγu+
∑
u∈A

pu(1−du)(1−αu)+
∑
u∈A

puduβu (63)

= (1− θ)γ+θ(1−d)(1−α)+θdβ (64)

which establishes (21) and completes the proof of converse.

Remark 3. For p1 = 0, Fig. 4 reduces to a Wyner-Ziv source
with a rate distortion function RWZ(D), in which the source
and decoder side information forms a doubly symmetric binary
source (DSBS) with parameter p2. Then, RWZ(D) = RTS(D)

1RHS = right hand side
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Fig. 6. Comparison of the rate distortion functions RWZ(D), RSH(D), and
RTS(D), for the Wyner-Ziv, shared information, and two-sided information
systems, respectively, for a binary source with p1 ∗ p2 = 0.14.

with α = 1, β = 0, γ = 0 in (19). For p2 = 0, Fig. 4
reduces to a shared information system with parameter p1,
and RSH(D) = RTS(D) with θ = 1, α = β, β̄ ∗D = p1, and
d = D in (19).

Remark 4. Numerical evaluations suggest that inequality
in (20) can be replaced with an equality.

We compare (18) first with a Wyner-Ziv upper bound such
that the source and decoder side information forms a DSBS
with parameter p1 ∗ p2, and then a conditional rate distortion
lower bound obtained by Fig. 5, such that the source and
shared information forms a DSBS with parameter p1 ∗ p2.
We also present our two-sided results in Fig. 6 for two sets
of p1 and p2 for which p1 ∗ p2 are equal. Fig. 6 indicates an
inherent hierarchy between the encoder and the decoder side
information, such that having a less noisy side information at
the decoder is more essential than at the encoder.

VI. CONCLUSION

We have considered the rate distortion problem for a remote
source with side information, and studied the conditions under
which two-sided or shared information is useful. As a special
case, we have completely characterized the direct binary
source with two-sided side information.
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