
Protocols for Efficient Inference Communication
Carl Andersen and Prithwish Basu

Raytheon BBN Technologies
Cambridge, MA

canderse@bbn.com pbasu@bbn.com

Basak Guler and Aylin Yener and Ebrahim Molavianjazi
The Pennsylvania State University

University Park, PA 16802
bxg215@psu.edu yener@ee.psu.edu eum20@psu.edu

Abstract—Semantic approaches are increasingly applied to
large-scale computing tasks. Nodes in such systems will need
to exchange large volumes of declarative information, including
ontologies and logical theories. In this paper, we describe our ini-
tial work on a system for compressed two-way communication of
simplified logical inferences. This new system simplifies protocols
for semantic data compression from our prior work, reducing
seemingly different operations to hypergraph partitioning. We
also present a new protocol that achieves significant speedup, at
the cost of reduced compression.

I. INTRODUCTION

Semantic approaches are increasingly applied to large-scale
computing tasks, including web services [1], the internet of
things [2], distributed databases [3], and data integration [4].
Nodes in such systems will need to exchange large volumes
of declarative information of increasing expressiveness. While
current computing relies on XML and other exchange lan-
guages, future systems may well exchange logical theories,
ontologies, inferences, and other semantic content. This in-
creasing prevalence of semantic data and communications
creates a need for novel compression techniques (analogous
to existing data and packet compression methods) that exploit
underlying semantic structure (i.e. meaning).

Prior work by some of us [5] applied information- and
graph-theoretic techniques to create communication protocols
for compressed two-way communication of simplified logical
inferences. This theoretical work also proved worst case upper
bounds for the number of bits required to communicate
semantic conclusions using the protocols.

The present paper describes four research accomplishments.
First, we simplify the compression methods of the original pro-
tocols, reducing these to hypergraph partitioning operations.
Second, we implement the revised protocols and evaluate
their runtime and compressive performance (our original paper
achieved purely proof-theoretic results). Third, we formulate
and implement a new protocol that has greatly improved
runtime efficiency. Finally, we analyze the QoI responsiveness
of our compression techniques, which balance competing
concerns of information quality and available resources.

II. THE SCENARIO: SEMANTIC COMMUNICATION OF
CONCLUSIONS

The present paper retains the basic communication scenario
of [5], as follows. Consider a network with two communicating
agents A and B, who have shared knowledge of a semantic
“theory” (set of statement) with a bipartite graph structure

x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

x9

x10

Fig. 1: Network model with 2 users and 10 facts for each
user. Each line between facts is a conclusion; for greater visual
clarity, these are unlabeled.

consisting of fact pairs linked to inferences, as depicted in
Figure 1. While our statements are similar to propositional
logic statements in form (x ∧ y → c, meaning “if x and
y are true, then so is c”), our theories do not implement
most of the semantics of propositional logic, such as inferring
contrapositives (as in “if c is false, then one of x or y must
also be false”).

More formally, the model contains two sets of facts,
X = {x1, . . . , x|X |} and Y = {y1, . . . , y|Y|}, and one set
of inferences or conclusions C = {c1, . . . , c|C|}. For our
simplified model, we will assume that X , Y , and C are all
disjoint. Each conclusion ck is implied by exactly one pair of
fact antecedents xi and yj drawn from X and Y , respectively;
we represent the inference relationship as xi ∧ yj → ck.

Our communication scenario is a semantic version of the
classical information theory problem of communication with
side information. We assume that the agents have shared
knowledge of the structure of the theory graph. One conclusion
c̊ ∈ C with associated antecedents x̊ ∈ X and ẙ ∈ Y is
chosen non-deterministically; agent A knows that x̊ is true,
while agent B knows that ẙ is true. Each agent wants to learn
c̊ and (equivalently) the other agent’s antecedent. To achieve
this shared understanding, the agents exchange communicated
bit strings using a pre-arranged coding scheme that, ideally,
minimizes the total bits sent.

Communication proceeds in rounds: in each round k, the

first agent communicates its bit string, φXk , which the second
agent may consider before replying with its bit string, φYk . A
naive solution to this problem would involve a simple one-
round exchange of binary codes representing the indices of
the two antecedents, resulting in bit string lengths |φXk | =
dlog(|X |)e and |φYk | = dlog(|Y|e), respectively1. Our system
uses a more subtle encoding scheme to achieve substantially
smaller bit string lengths.

III. ADDITIONAL DEFINITIONS: HYPERGRAPHS,
PARTITIONS AND COLORINGS

We first offer additional necessary concepts and definitions,
some borrowed from [5]. Given bipartite graph G = 〈X ,Y, C〉,
we define the ambiguity set AXi as the set of all possible facts
from the second person that lead to a conclusion with xi:

AXi = {yj : xi ∧ yj → ck, yj ∈ Y, ck ∈ C} (1)

Similarly, define the ambiguity set AYj for every fact yj as:

AYj = {xi : xi ∧ yj → ck, xi ∈ X , ck ∈ C} (2)

We can group all the ambiguity sets AXi into an ambiguity
collection AX ; AY is formed analogously.

Given bipartite graph G = 〈X ,Y, C〉, let HX
G = (V,E)

be the hypergraph having a vertex set V = X and an edge
set E that is precisely the ambiguity collection AY . In other
words, each y ∈ Y defines a hyperedge e ∈ E such that
e = {x : x ∧ y → c, x ∈ X , c ∈ C}. We define HY

G

analogously.
A hypergraph partitioning is a division of the hypergraph’s

vertex set into disjoint subsets. Formally, given hypergraph
HX
G = (X ,AY), we define a hypergraph partitioning PX

G =
{X1,X2, . . .Xn} of X , and call each Xi a partition. We define
a partitioning PY

G analogously. Sample partitionings PX
G and

PY
G are shown in Figure 2.
Typically, we will not compute a hypergraph partitioning

arbitrarily, but will instead choose a partition that has special
properties useful for compressed communication. Consider a
partitioning PX

G = {X1,X2, . . .Xn} of X having the property
|Xk ∩ e| ≤ o, for all 1 ≤ k ≤ n and e ∈ AY . We say that this
partitioning has a maximum overlap between any partition and
any hyperedge of o. If the maximum overlap o = 1, we say
that the partitioning PX

G is a coloring of HX
G , and we may

refer to a given partition Xk as a color, because the partitions
can be thought of as a mathematical coloring in which any
two members of a given AY must have different colors.

IV. SEMANTIC CODING VIA HYPERGRAPH PARTITIONING

In this section, we describe compressed communication
techniques that rely on hypergraph partitioning. In general,
our protocol uses hypergraph partitioning upon HX

G to divide
X into a small number of disjoint subsets. Then, instead

1Throughout the paper, we assume that agents can encode which member of
some n-ary set is present using a bit string of length log(n). Ideally, to avoid
ambiguity, a communication system would actually use a prefix coding system
such as Huffman coding. Here we opted for simplicity of both explanation
and implementation.

x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

x9

x10

Fig. 2: Partitionings PX
G and PY

G for the graph G from Figure
1. X is partitioned into two partitions, denoted here by the
red and blue boxes. Y is also partitioned into two partitions,
denoted here by the green and orange boxes. Note that despite
our use of colored boxes, neither partitioning is a coloring.
Each of the two partitions has a maximum overlap o = 2
with any ambiguity set, i.e. with the edges defined by any one
vertex on the other side of the graph.

x3

x4

x7

x8

y3

y4

y5

y8

y9

y10

x9

x10

Fig. 3: A restricted graph formed from the blue and orange
partitions from Figure 2.

of communicating which fact x ∈ X it posseses, an agent
communicates which partition x is in. Each agent can combine
the knowledge of its own fact and the received partition to
make further inferences, narrowing down the possibilities for
the other agent’s fact. After a finite number of rounds of this
kind of communication, each agent is able to infer the other’s
fact.

A. Candidate Reduction Using Hypergraph Partitioning

We already assume that both sides share knowledge of
the bipartite graph G; they therefore can both derive the
hypergraph HX

G = (X ,AY). Now, consider a partitioning
PX
G = {X1,X2, . . .Xn} of X having maximum overlap of o.

Suppose both sides use the same (pre-arranged) partitioning
algorithm to independently obtain PX

G . Now suppose A com-
municates to B that its fact is in partition Xk, using log(n)
bits. At this point, B, who knows its fact, ẙ, has index j, can
infer that A’s fact x̊ is one of the o facts in Xk ∩ AYj . In
the case that we computed the partition set so that o = 1, B

can infer A’s fact exactly. Even if o > 1, the partition step
and associated communication has enabled B to significantly
reduce the number of possibilities for A’s fact.

B. Restricted Graphs

If a partition has maximum overlap o > 1, it can still be
used to simplify the graph, as follows. Suppose the agents each
compute partitionings PX

G and PY
G , again using a prearranged

partitioning algorithm. The agents then exchange the respec-
tive partitions that each’s fact resides in; let these partition
indices be i and j, respectively. Now each agent knows that
x̊ and ẙ are restricted to the facts in the two partitions
Xi and Yj , respectively. The agents can then independently
construct a new graph which restricts the vertices to those
found in the partitions. Formally, the agents each construct
the restricted graph G′ = 〈X ′,Y ′, C′〉, where X ′ = {x ∈ Xi}
and Y ′ = {y ∈ Yj} and C′ = {c ∈ C : x ∈ X ′ and y ∈ Y ′

and x ∧ y → c}. We expect that the restricted graph will
be significantly smaller than the original graph, so it will be
easier to partition and also not require as many bits to encode.
The agents can therefore continue their communications over
further rounds, this time using the restricted graph for greater
efficiency.

C. Meta-graphs

A different formalism that supports successive rounds of
partitioning plus communication is a meta-graph. Given a
graph G, partitionings PX

G = {X1,X2, . . .Xm} and PY
G =

{Y1,Y2, . . .Yn}, we can define a meta-graph G′ in which
the partition indices themselves are the facts. Formally, G′ =
〈X ′,Y ′, C′〉, where X ′ = {1, 2, ...,m} and Y ′ = {1, 2, ..., n}.
We then define conclusions in the meta-graph as follows. For
each pairing of i ∈ X ′ and j ∈ Y ′, the conclusion 〈i, j〉 is in
C′ iff exists some x ∈ Xi, y ∈ Yj , c ∈ C such that x ∧ y → c.
Once the meta-graph G′ is constructed, it is of course possible
to construct HX

G′ and HY
G′ , and then partition these. Therefore,

meta-graphs make it possible to represent repeated partitioning
of the original graph. Note that unlike restricted graphs, the
construction of meta-graphs requires no exchange of partitions
or other information between the agents.

D. Existence of a Hypergraph Partitioning

It is not obvious that a partitioning as described above, with
its associated number of partitions n and maximum overlap o,
must exist for an arbitrary hypergraph. Our work is guided by
the following result, also used in [5]:

Lemma 1. [6] Let H = (V,E) be a hypergraph with a
vertex set V of size |V |. Hyperedges are given as Ei ⊆ V
for i = 1, 2, . . . , |E| and each hyperedge consists of at most
d elements, i.e., |Ei| ≤ d. Given ε > 0, there exists a constant
c(ε) such that ∀p ≥ (ln

√
|V ||E|)1+ε and p > 1, a partition-

ing V1, V2, . . . Vd d
p c(ε)e

of V can be found with the property
|Vk ∩ Ei| < p, for i = 1, . . . , |E| and k = 1, . . . , ddpc(ε)e.

Note that Lemma 1 provides an existence proof, showing
that a partitioning with the desired properties must exist,

rather than offering a tractable algorithm for finding it. Our
implementation of partitioning, described later, uses the lemma
primarily as a guide for reasonable parameters to attempt in
partitioning efforts, e.g. the number of partitions. Also note
that the lemma uses a non-inclusive bound p for the overlap,
so p = o + 1, where o is our term expressing the maximum
inclusive overlap.

V. COMMUNICATION PROTOCOLS

In this section, we describe three different communication
protocols between A and B; each uses one or more commu-
nication rounds interleaved with the graph construction and
partitioning operations described earlier. All graph construc-
tion and partitioning steps are performed independently but
identically by both A and B, who are assumed to use exactly
the same algorithms for construction and partitioning. Each
protocol attempts to minimize the code lengths (number of
bits required to be exchanged between A and B) while still
guaranteeing that A and B know each other’s fact by the
end of the protocol. In Section VII, we conduct empirical
tests of the code lengths and also of the runtime required by
each protocol’s associated graph construction and partitioning
operations.

Protocols 1 and 2 are adaptations of protocols from our
theoretical paper [5]; we simplify the original protocols by
reducing all their key operations to hypergraph partitioning.
Protocol 3 is new.

A. Protocol 1

In this protocol, A and B use hypergraph coloring operations
to reduce the number of bits required to infer each other’s fact.
Our theoretical paper proved ([5], Theorem 2) an upper bound
on code lengths for Protocol 1.

1) From the initial bipartite graph G1, construct hyper-
graphs HX

G1
and HY

G1
.

2) Color each of HX
G1

and HY
G1

(i.e., partition each with
maximum overlap o = 1). For each partitioning problem,
we use the equation from Lemma 1, with o fixed at 1, to
determine n, the number of partitions required. In other
words, if, e.g. HX

G1
’s largest hyperedge has size d, we

search for a partitioning PX
G having ddo c(ε)e partitions.

In this and other uses of Lemma 1, we use ε = .2 and
c(ε) = 1.2.

3) (Communication Round 1) A and B exchange codes
indicating the index of the partitions that their respective
facts are in. This requires no more than log(m)+log(n)
bits, where m and n are the number of partitions used
to partition HX

G1
and HY

G1
, respectively. We expect that

m and n will be much smaller than |X | and |Y|. Agent
A can use its x̊ fact and its knowlege of B’s partition to
infer ẙ. Agent B reasons analogously.

B. Protocol 2

In Protocol 1, the number of colors could still be very large
if the graphs are complex. Protocol 2 attempts to achieve
additional compression by creating a meta-graph from the

colors and partitioning it. The agents then exchange the codes
for this second partition. A restricted graph technique is used
to complete the inference chain, allowing each player to infer
the other’s color. Our theoretical paper proved ([5], Theorem
3) improved upper-bound code lengths over Protocol 1.

1) From the initial bipartite graph G1, construct hyper-
graphs HX

G1
and HY

G1
.

2) (Coloring) Using the hypergraphs, compute partitionings
PX
G1

and PY
G1

, with maximum overlap o = 1. 2

3) Construct a meta-graph G2 from the partitions PX
G1

and
PY
G1

.
4) From G2, construct hypergraphs HX

G2
and HY

G2
. 3 Par-

tition HX
G2

and HY
G2

with o and n from Lemma 1.
5) (Communication Round 1) A and B exchange codes

indicating the index of the partitions from PX
G2

and
PY
G2

, respectively, that their respective colors are in.
These codes use log(m) and log(n) bits, respectively.
Now each side knows the other’s meta-graph partition,
allowing each side to construct an identical restricted
graph in the next step.

6) Construct a restricted graph G3 from the two partitions
Xi and Yj .

7) From G3, construct hypergraphs HX
G3

and HY
G3

.
8) Partition HX

G3
and HY

G3
with o = 1, n from Lemma 1.

9) (Communication Round 2) A and B exchange partition
codes from G3. Knowing its own partition from G1,
and the other’s partition from G3, each side can infer
the other’s partition from G1.4

10) Using its fact and the other’s partition from G1, each
side can infer the other’s fact.

C. Protocol 3

We developed this protocol (inspired by a proof from [6])
because our testing indicated that finding a partition with a
small maximum overlap o requires significantly more runtime
than finding a partition with larger o. Protocols 1 and 2, which
both begin with a hypergraph coloring (i.e. o = 1) are therefore
very costly.

Protocol 3 pursues a more gradual approach, repeatedly
constructing restricted graphs in response to user code ex-
changes. Each iteration prunes away some portion of the
graph, until only x̊ and ẙ are left. Importantly, this protocol
can be parameterized to engage in more or less aggressive
partitioning by setting o. Setting o to higher values leads to
less aggressive partitioning over a greater number of rounds.
Because each round prunes away part of the graph, this
strategy can often prune away complex subgraph components
before they are ever partitioned with much rigor (i.e. using
lower o). We found that o could be usefully varied between
a low of oLemma1, the maximum overlap recommended by

2This step corresponds to the process detailed in our original paper [5] of
constructing a characteristic graph and coloring it.

3This step corresponds to [5]’s construction of hypergraphs upon the set of
colors.

4In [5], this step is broken into two steps, achieving a slightly better bound.
For presentation reasons, this paper’s version is simplified.

Lemma 1, and a high of oAX , the size of the largest hyperedge
in HX . We explored a range of values of a factor φ, where
o = oLemma1 + φ(oAX − oLemma1). We set the number of
partitions using o and Lemma 1.

1) Let G1 be the initial bipartite graph. While G1 contains
more than one x and y fact, iterate steps 2-5. After the
last iteration, G1 will contain only the two facts x̊ and
ẙ.

2) Construct hypergraphs HX
G1

and HY
G1

.
3) Using the hypergraphs, compute partitionings PX

G1
and

PY
G1

, with maximum overlap o.
4) (Communication Round) A and B exchange partition

codes from PX
G1

and PY
G1

, respectively, using log(m)
and log(n) bits, respectively. Now each side knows the
other’s partition (Xi and Yj , respectively), allowing each
side to construct an identical restricted graph in the next
step.

5) Construct a restricted graph G2 from the two partitions
Xi and Yj . Set G1 := G2.

VI. IMPLEMENTATION

This section discusses our implementation of the three
protocols and associated graph operations discussed above.
Our implementation uses the Python programming language
and associated packages. To build and manipulate graphs and
hypergraphs, we use the pygraph package. While space pre-
vents a detailed code presentation, we describe key functions
used in the protocols briefly in Table I.

A. Partitioning Using Mixed Integer Programming

To find hypergraph partitionings, we expressed the par-
titioning problem as a Mixed Integer Programming (MIP)
problem and solved them using the Python pulp-or package
[7], which serves as a wrapper for numerous Operations
Research packages implemented in other languages. We set
pulp-or to call the cbc mixed integer programming solver,
which supports a timeout function useful for our testing.

Mixed Integer Programming expresses optimization prob-
lems as sets of linear methematical formulas. Some of these
formulas are constraints upon valid variable solutions, while
others are objective functions that are maximized or minimized
to find the most desired solutions. For increased speed, our
MIP for finding a partition does not include an objective
function. Our MIP determines 0 / 1 values for variables avp
defined for each vertex v ∈ V and partition p ∈ P ; when
avp = 1, v is held to be a member of p.

Mixed Integer Program 1. partitioning(HX
G ,o,n): Given

hypergraph HX
G = (V,E), to discover a partitioning PX

G =
{X1,X2, . . .Xn} of X having maximum overlap o,

find avp, v ∈ V, p ∈ PX
G , each avp = 0 or 1

subject to
∑
v∈e

avp ≤ o , p ∈ PX
G , e ∈ E (constraint 1)∑

p∈PX
G

avp = 1, v ∈ V (constraint 2)

Function Name Description

buildGraph(numX,numY,numConc)
Builds bipartite graph having numX and numY vertices, respectively, using
Pygraph functions. A total of numConc conclusion edges are added randomly,
discarding duplicates.

buildAmbiguitySet(graph,vert) Builds an ambiguity set (i.e. a hyperedge) by finding y [x] neighbors of vert and
constructing a hyperedge (i.e. a set) containing them.

buildHypergraph(graph,vertSet) VertSet is either the X or Y set of vertices in graph. Builds a hypergraph by
calling buildAmbiguitySet(graph,v) for each vertex v in vertSet.

partitioning(hypergraph,o,n) Using MIP, finds a partitioning of hypergraph having max overlap o and number
of partitions n. Outputs a set of partitions (each is a set of vertices).

buildRestricted-
Graph(graph,partitionX,partitionY)

Constructs a new bipartite graph consisting of the vertices from partitionX and
partitionY. The original graph is scanned and any edges between the vertices are
added to the new graph. Any vertices not participating in an edge are deleted.

getPartition(othersCode,partitioning) The player uses othersCode as an index into the partitioning (set of partitions) to
retrieve a partition.

inferOthersVertex(graph,ownVertex,partition) The player scans partition to find the unique vertex linked to his own vertex in
graph.

TABLE I: Functions used in the implementation.

The above MIP assumes a pre-determined number of par-
titions n; we always use Lemma 1 to determine this number.
The MIP also assumes a maximum overlap o; we always either
fix o at 1 for coloring or compute it using Lemma 1 or φ.

VII. EVALUATION

We ran tests upon all three protocols that measured their
compressive power as well as the runtime required to achieve
that compression.

A. Test Methodology

Our tests perform runs of protocols over random graphs
generated using input numbers for |X |, |Y| and |C|. All our
tests use |X | = |Y|. The random graphs are constructed by
choosing pairs of x ∈ X , y ∈ Y randomly and adding
a conclusion 〈x, y〉 to the graph; duplicate conclusions are
discarded and another conclusion generated to replace the
duplicate.

We first investigated the scalability and compression of
each protocol when |X |, |Y| and |C| all increase at the same
rate. Next, we investigated scalability and compression holding
|X | and |Y| constant and increasing |C|. For each tested
combination of |X | and |Y| and |C|, we generate five random
graphs; for each of these, we perform five runs of the full
protocol, each time choosing c̊ randomly. We validate each
run by testing at the conclusion of the protocol that the agent’s
inferred fact actually matches the other agent’s fact.

B. Results

Our test results, in Table II, show that for relatively large
graph sizes, it is indeed possible to find a partition meeting
the constraints of Lemma 1. However, the complexity of
hypergraph partitioning is NP-hard [8], so we expect to see the
time necessary to find partitions would be exponential in the
number of hypergraph vertices and size of hypergraph edges.
Our results reflect this exponential relationship.

Our tests show that all three protocols provide significant
compression of the exchanged bits required to communicate
a conclusion. Interestingly, our results from [5] proving the

theoretical compressive superiority of Protocol 2 over Protocol
1 are not reflected in our tests. These empirical results do
not actually conflict with our theoretical findings, but instead
represent cases in which associated constants dominate the
bit length equations. As graph and conclusion sizes increase
further, we would expect to see the theoretical superiority of
Protocol 2 assert itself. Unfortunately, because the partitioning
operation is so expensive, we are unable to run tests of the
size required to demonstrate this.

We also tested Protocol 3, which tries to break up the
necessary partitioning needed to achieve compression into
multiple, less computationally intensive partitioning steps. Our
tests show that Protocol 3 is indeed far more scalable than
either Protocols 1 or 2, requiring orders of magnitude less
runtime to achieve nearly the same compression.

C. Results - QoI responsiveness

Interactive compression rates are directly related to Quality
of Information (QoI) characteristics of semantic communica-
tions. Although achieving higher compression rates is desir-
able for delivering the same level of semantics, they come at
the cost of higher runtime, and hence less QoI responsiveness.
We attempted to establish a controlled relationship between
the runtime devoted to the task and the resulting compression.
This is difficult to achieve, because these protocols operate
under stringent requirements. Aggressive partitioning in a
small number of rounds can achieve significant compression,
but also cause exponential runtime blowup. On the other hand,
more relaxed partitioning (in which the maximum overlap o
is high) can achieve little to no compression. Because each
round of partitioning plus code exchange typically involves
an exchange of 2-4 bits, multi-round schemes (like Protocol
3) have only a few rounds to prune the graph. Finally, often
the transitions between over-relaxed and over-aggressive are
abrupt.

We did achieve a measure of control by increasing the
number of rounds and maximum overlap o used by the
protocols. The columns of Table II show a general left-to-right

|X | / |Y| / |C| Naive Protocol 1 Protocol 2 Protocol 3, base Protocol 3, φ = 0.2 Protocol 3, φ = 0.4 Protocol 3, φ = 0.6
bits time bits time bits time bits time bits time bits time bits

10 / 10 / 20 8 0.13 4 1.09 4 0.22 5 0.2 5 0.18 4 0.3 5
20 / 20 / 40 10 0.28 5 0.46 5 0.27 5 0.27 4 0.32 5 0.3 6
40 / 40 / 80 12 0.65 5 1.04 5 0.43 5 0.43 7 0.45 5 0.61 7
80 / 80 / 160 14 1.68 5 1.91 6 0.75 5 0.8 7 0.83 7 0.78 7

160 / 160 / 320 16 4.11 6 4.36 6 2.15 6 1.35 7 1.2 7 1.13 7
320 / 320 / 640 18 11.27 6 11.52 6 5.22 6 4.29 7 5.13 7 4.5 7
640 / 640 / 1280 20 37.95 6 38.24 7 18.78 7 8.5 7 8.7 7 10.56 8
640 / 640 / 2560 20 809.55 7 810.15 8 17.26 8 8.87 10 12.47 10 16.06 10
640 / 640 / 5120 20 timeout timeout 32.04 9 11.09 11 8.82 10 13.29 12

640 / 640 / 10240 20 timeout timeout 778.64 10 48.6 13 15.19 14 12.09 12
640 / 640 / 20480 20 timeout timeout timeout 354.73 14 19.84 15 15.48 16

TABLE II: Test results for Protocols 1-3. All time results are in seconds. The timeout value signifies runtime > 2000 seconds.
The Naive Protocol simply encodes the exchanged facts using dlog(|X |)e + dlog(|Y|)e bits. The Protocol 3 base run allows
only one restricted graph iteration, after which the restricted graph is colored. The other runs of Protocol 3 iterate until they
naturally achieve a coloring.

decrease in runtime coupled with a decrease in compression
(i.e. the bits exchanged increase). This control is still irregular,
reflecting our limited understanding of the forces driving
partitioning complexity. In future work, we hope to leverage
more sophisticated partitioning algorithms that allow finer,
more accurate control over runtime.

VIII. CONCLUSIONS

This paper implemented and tested theoretical semantic
compression protocols from a prior paper [5]. In addition, it re-
formulated a variety of operations from that paper as variations
of repeated hypergraph partitioning. Finally, it offered a novel
protocol that achieves close to the same compression as the
earlier protocols in orders of magnitude less runtime. Another
prior paper by one of us [9] explored theoretical approaches
to the compression of propositional logic communication.
However, we are not aware of any prior work implementing
the semantic compression of communications in the presence
of shared knowledge.

We plan future work along several dimensions. In addition
to pursuing increased control over runtime (mentioned earler),
we also will pursue improved scalability. Our current MIP
implementation of partitioning is not particularly scalable,
handling hypergraphs of thousands of edges with difficulty.
We will adapt more mature implementations of hypergraph
partitioning, such as [10], known to find partitions over graphs
as large as millions of edges. We also plan to investigate alter-
native greedy methods for hypergraph coloring and methods
that produce balanced-size partitions.

Also, our current model of inferential conclusions is limited:
it does not reflect the true complexity of even propositional
logic, in which conclusions can themselves be antecedents.
In future work, we plan to extend our current methods and
protocols to operate over propositional logic itself. One an-
ticipated challenge of this extension is the requirement that
agents communicate not just one fact, but possibly several, in
order to enable a propositional inference. Another potential
extension of our protocol would be to communicate rules in
addition to facts.

REFERENCES

[1] D. Fensel, F. M. Facca, E. Simperl, and I. Toma,
Semantic web services. Springer, 2011.

[2] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin,
and V. Y. Terziyan, “Smart semantic middleware for the
internet of things.,” ICINCO-ICSO, vol. 8, pp. 169–178,
2008.

[3] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A
distributed graph engine for web scale rdf data,” in Pro-
ceedings of the VLDB Endowment, VLDB Endowment,
vol. 6, 2013, pp. 265–276.

[4] A. Cal`, D. Calvanese, G. De Giacomo, and M. Lenz-
erini, “Data integration under integrity constraints,” in
Seminal Contributions to Information Systems Engi-
neering, Springer, 2013, pp. 335–352.

[5] B. Guler, A. Yener, and P. Basu, “A study of semantic
data compression,” in Global Conference on Signal and
Information Processing (GlobalSIP), 2013 IEEE, IEEE,
2013, pp. 887–890.

[6] A. El Gamal and A. Orlitsky, “Interactive data compres-
sion,” in 2013 IEEE 54th Annual Symposium on Foun-
dations of Computer Science, IEEE, 1984, pp. 100–108.

[7] S. Mitchell, M. O’Sullivan, and I. Dunning, “Pulp:
a linear programming toolkit for python,” Sep-2011,
2011.

[8] M. R. Garey and D. S. Johnson, Computers and in-
tractibility, 1979.

[9] P. Basu, J. Bao, M. Dean, and J. Hendler, “Preserving
quality of information by using semantic relationships,”
Pervasive and Mobile Computing, vol. 11, pp. 188–202,
2014.

[10] C. M. Fiduccia and R. M. Mattheyses, “A linear-time
heuristic for improving network partitions,” in Design
Automation, 1982. 19th Conference on, IEEE, 1982,
pp. 175–181.

