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Başak Güler Aylin Yener

The Pennsylvania State University
University Park, PA

basak@psu.edu yener@ee.psu.edu

Ananthram Swami

Army Research Laboratory
Adelphi, MD

a.swami@ieee.org

ABSTRACT
We study causal influence structures between the patterns of a multi-
layer network. Multi-layer networks are networks in which different
types of activities between users represent different types of edges,
i.e., layers. We measure the causal influence between network pat-
terns via directed information, and investigate how to learn the influ-
ence patterns when users can engage in interactions in multiple con-
texts. We evaluate the proposed methods using both synthetic and
real-world datasets, and demonstrate that directed information mea-
sures can be utilized to identify the causal relations between network
structures.

1. INTRODUCTION

Modern networked systems, such as social networks, often allow
their users to engage in various types of interactions. For instance,
the widely used social networking application Twitter allows its
users to follow other users’ online posts, reply to them, and retweet
their posts, i.e., rebroadcast the message. As such, different types of
actions define different network structures.

Network patterns, often called network motifs, are graph struc-
tures that are observed frequently in a network [1, 2, 3, 4, 5, 6]. They
have been widely utilized to describe patterns in biological systems
[7, 8, 9]. Network patterns have also found applications in computer
science, such as categorizing network topologies [10]. In [11], pat-
tern evolution in the Google+ social networking application has been
studied by using frequency measures.

Directed information [12, 13] extends the conventional notion
of information that is symmetric taking into account the direction of
information flow, and is instrumental in quantifying the fundamental
limits of information transmission in communication networks with
feedback [13]. The applications where directed information emerges
as the key measure range from hypothesis testing to portfolio theory
[14] and from estimating neural signals [15] to influence propaga-
tion in recommender systems [16]. In [17], directed information has
been utilized to define directed information graphs, which is a graph-
ical representation of the causal dependence structures between ran-
dom processes, based on an extension of Granger causality [18, 19].
Transfer entropy is utilized in [20] for detecting the causal influences
between pairs of social media users. This work considers a different
application of directed information with the goal of identifying the
causal dependency structures between network patterns.

By understanding the causal dependencies between network pat-
terns, one can infer and predict the patterns that can occur in a net-
work, given the behavior of the network patterns in the past. In this
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Fig. 1. Non-isomorphic triangular motifs.

work, we propose a methodology to analyze the causality relations
between network motifs by using directed information. Our goal is
to quantify the causal influence of one network pattern on another,
across various action types that the users can take in a complex net-
work. Our work is focused on triangular patterns, i.e., network pat-
terns that occur between three users. Initially, we introduce a graph
mining algorithm to identify the graph patterns across different net-
work layers and time-instances in an evolving multi-layer network.
Then, we propose a methodology to identify the causal influence be-
tween network patterns, that is based on quantifying the causal influ-
ence between motifs that result from the interactions within the same
group of users across multiple time-instances. Our evaluations on a
synthetically created network and a real-world dataset from Twitter
indicate the effectiveness of the proposed measure, in that asymmet-
ric information measures such as directed information can be lever-
aged to infer the causal influences between network patterns.

2. PATTERN DISCOVERY IN EVOLVING MULTI-LAYER
NETWORKS

Our study is focused on identifying causal relationships between
non-isomorphic directed triangular motifs with no isolated vertices
in Fig. 1 in evolving multi-layer networks. A multi-layer graph is a
graph in which vertices can be connected by multiple edges, corre-
sponding to different types of relationships that may take place be-
tween them. We focus on networks that evolve over time, depending
on the different types of actions the users take. Fig. 2 illustrates an
example for a network of 5 people that can communicate with each
other through e-mail, phone, or social media. Each edge in the multi-
layer graph identifies who communicated with whom, through one
of the three communication types. Each action type, e-mail, phone,
or social media, specifies a distinct network layer. Fig. 2 illustrates
the network for two time instances, denoted by t = 1 and t = 2.

We consider a network of n nodes, with
(
n
3

)
possible user

triplets. The users may take actions from a finite set of actions L at
each time instance over a duration of T time instances. The rela-
tionships represented by each action type defines a distinct network
layer. We represent the multi-layer graph with |L| = L layers by
G = (V,Et) at time t = 1, . . . , T . The vertex set is given by V
whereas the edge set is given by Et = Et1,∪, · · · ,∪EtL such that
Etl corresponds to the set of edges from layer l ∈ L. The set of
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Fig. 2. Multi-layer graph example.

directed triangle motifs is given byM = {1, . . . , 13}. In order to
identify whether a certain network pattern, i.e., a motif, is observed
between a given triplet of users at a specific time instance, we define
the following function,

eit(v) = 1

if pattern i ∈ M is observed between user triplet v ∈ {1, . . . ,
(
n
3

)
}

at time t ∈ {1, . . . , T}, whereas

eit(v) = 0

if pattern i ∈ M is not observed between the user triplet v. Given a
motif i ∈M in layer l ∈ L and a motif j ∈M in layer k ∈ L, let

nlk
ij (x

T, yT )=

(n3)∑
v=1

1(eit(v) = xt ∧ ejt(v)=yt, t=1, . . . , T ) (1)

where xT = (x1, . . . , xT ) and yT = (y1, . . . , yT ) are binary se-
quences of length T , i.e., xT , yT ∈ {0, 1}T . 1(·) is an indicator
function such that 1(φ) = 1 if φ = 1 and 1(φ) = 0 if φ = 0. For
instance, if xT = yT = (1, 1, . . . , 1), then nlk

ij (x
T , yT ) specifies

the number of times pattern i is observed in layer l while pattern j is
observed in layer k between the same user triplet, at all time-instants.

We define the probability (the relative frequency) of x, y

plkij (x
T , yT ) =

nlk
ij (x

T , yT )(
n
3

) where xT , yT ∈ {0, 1}T (2)

for each ij ∈M and l, k ∈ L, noting that (2) corresponds to an em-
pirical distribution. It can be observed from (2) that, plkij (x

T , yT ) ≥
0 for all xT , yT ∈ {0, 1}T , and∑

xT ,yT∈{0,1}T
plkij (x

T , yT ) = 1. (3)

We determine the co-occurances of pairs of motifs in (1) across
different network layers and multiple time-instances via the pattern
mining algorithm in Algorithm 1.

3. IDENTIFYING CAUSAL RELATIONS BETWEEN
NETWORK MOTIFS

We explain in this section how directed information can be used to
detect the causal dependencies between network patterns. Suppose
we are given a pattern i ∈ M for layer l ∈ L, and a pattern j ∈ M
for layer k ∈ L. Then, we define the sequence of random variables
XT

il = (Xil,1, . . . , Xil,T ) and XT
jk = (Xjk,1, . . . , Xjk,T ) where

each element Xil,t, Xjk,t, t = 1, . . . , T is defined over a binary al-
phabet whose joint distribution is specified by (2). We then measure
the causal influence of pattern j at layer k on pattern i at layer l by
the directed information from XT

jk to XT
il ,

Algorithm 1 Pattern Mining for Evolving Multi-Layer Networks
1: procedure PATTERNDISCOVERY (i, j, k, l, T ) . Evaluate the

motif counts from (1) for motif i in layer l and motif j in layer k over a
duration of T time instances.

2: Construct a union graph H = (V,E) with the vertex set V and edge
set E = ∪Tt=1(Elt ∪ Ekt).

3: S = ∅ . Set of processed edges.
4: nlk

ij (x
T , yT ) = 0 for all i, j ∈M and xT , yT ∈ {0, 1}T .

Counts from (1) for motifs i and j in layers l and k, respectively.
5: for all (v, v′) in E do
6: S = S ∪ {(v, v′)}
7: U = {u : (v, u) ∈ E ∨ (u, v) ∈ E ∨ (v′, u) ∈ E ∨

(u, v′) ∈ E, u 6= v, v′} . Set of all predecessor/successors of nodes v
and v′

8: if U 6= ∅ then
9: for all u in U do

10: if (v, u) /∈ S ∧ (u, v) /∈ S ∧ (v′, u) /∈ S ∧
(u, v′) /∈ S ∧ (v′, v) /∈ S then

11: for all t ∈ {1, . . . , T} do
12: for all m is a permutation of (v, v′, u) do
13: if m is pattern of type i in layer l, time t then
14: M(i, t) = 1
15: break
16: else
17: M(i, t) = 0

18: for all t ∈ {1, . . . , T} do
19: for all m is a permutation of (v, v′, u) do
20: if m is pattern of type j in layer l, time t then
21: M(j, t) = 1
22: break
23: else
24: M(j, t) = 0

25: for all (xT , yT ) ∈ {0, 1}T × {0, 1}T do
26: if M(i, t) == xt ∧M(j, t) == yt ∀t then
27: nlk

ij (x
T , yT ) = nlk

ij (x
T , yT ) + 1

28: return nlk
ij (x

T , yT ) for all xT , yT ∈ {0, 1}T

I(XT
jk → XT

il )

:=

T∑
t=1

I(Xt−1
jk ;Xil,t|Xt−1

il ) (4)

=

T∑
t=1

∑
xt−1
jk
∈{0,1}t−1

xt
il∈{0,1}

t

p(xt−1
jk , xtil) log

p(xil,t|xt−1
jk , xt−1

il )

p(xil,t|xt−1
il )

(5)

Using (4), we can define a multi-layer directed information
graph for identifying the causal independency structures between a
group of network motifs as follows. For each network layer k ∈ L,
define a graph Gk = (M, Ek) with the vertex setM, and the edge
set Ek = Ek1∪ . . .∪EkL where an edge (j, i) ∈ Ekl for l ∈ L exists
if and only if

I(XT
jk → XT

il ||XT
M\{i}l, X

T
M\{j}k) > 0 (6)

where i, j ∈M, such that

I(XT
jk → XT

il ||XT
M\{i}l, X

T
M\{j}k)

:=

T∑
t=1

I(Xt−1
jk ;Xil,t|Xt−1

il , Xt−1
M\{i}l, X

t−1
M\{j}k) (7)

Here XT
M\{i}l = {XT

sl : s ∈ M, s 6= i} and similarly XT
M\{j}k =

{XT
sk : s ∈ M, s 6= j}. In particular, an edge (j, i) ∈ Ekl in

graph Gk means that patterns of type j in network layer k causally
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(a) Retweet network, α = 0.8
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(d) Reply network, β = 0.2

Fig. 3. Retweet and reply networks for n = 100 users. Edges cre-
ated at t = 1 and t = 2 are colored in blue and red, respectively.
Users posting a new message are represented by yellow nodes.

influence patterns of type i in layer l, when causally conditioned on
all the remaining patterns on both graphs. Since each network layer
corresponds to a specific type of action that may take place between
the users, the multi-layered structure of the influence graph identi-
fies what types of actions have the greatest impact on the network
patterns created by a specific type of action. Due to the computa-
tional complexity involved in identifying multiple patterns jointly
in a multi-layer setting to estimate the causally conditioned directed
information values in (6), we define a simpler influence graph by uti-
lizing the pairwise directed information measures between different
network patterns. To do so, we replace the edge test in (6) with the
pairwise directed information measure from (4), such that an edge
(j, i) ∈ Ekl for l ∈ L and j, i ∈M exists if and only if

I(Xjk → Xil) > 0. (8)

An early work on using pairwise information measures to create
a graphical representation of causal influences is [20], where transfer
entropy is utilized to detect causal influences between pairs of social
media users.

4. NUMERICAL RESULTS

4.1. Synthetic Network

We first provide numerical evaluations on a synthetic network of n
nodes. We consider networks with two layers, i.e., L = 2, corre-
sponding to two types of actions common in social network applica-
tions. The first action type corresponds to broadcasting a message
to a group of friends, such as posting a tweet or retweeting another
user’s post on Twitter. The second action corresponds to replying to

a message from another user. In the former case every user who fol-
lows the posts of the sender gets notified by the application, whereas
in the latter, only the target of the reply message gets notified. In
the following, we consider two message propagation models corre-
sponding to these two action types, inspired by the retweeting and
replying behavior on Twitter.

We define a directed graph G = (V,EG) with the vertex set
V = {1, . . . , n}. We consider for each v, v′ ∈ V , an edge (v, v′) ∈
EG exists with probability ρ. An edge (v, v′) ∈ EG means that
user v follows the messages posted by v′. We let N (v) = {v′ :
(v′, v) ∈ EG} denote the set of followers of node v ∈ V . We focus
on propagation of a single topic and assume that bλnc randomly se-
lected users post a new message about this topic at each time instant
t ∈ {1, . . . , T}, where 0 ≤ λ ≤ 1. Users who have already posted
a message do not post a new message again.

We then model the retweet behavior as follows. At time t + 1,
each message posted by one of the users at time t is retweeted by
a random α fraction of their followers. In particular, if a user v ∈
V shares a message at time t, either by posting a new message or
retweeting another user’s message, then, bα|N (v)|c of her friends
retweet the same message at time t + 1. In that sense, 0 ≤ α ≤ 1
specifies the propagation speed of the retweet behavior. Users who
have already posted or retweeted a message do not retweet again.

We next model the reply behavior. Each new message posted at
time t gets replied by a randomly selected β fraction of the neighbors
at time t + 1. That is, if v ∈ V posts a new message at time t, then
bβ|N (v)|c of her followers reply to her at time t+1. At time t+2,
the same user replies back to a β fraction of the followers who have
replied to her in the previous round, i.e., at time t+1. This iteration
continues until there are no users to reply to. In that sense, by varying
0 ≤ β ≤ 1, one can control the density of the reply behavior.

The retweet and reply processes are illustrated in Fig. 3 for a
network of n = 100 users, ρ = 0.1, and λ = 0.1, for α = β = 0.8
and α = β = 0.2, respectively. An edge from node v to node v′

with a label t = t′ in Fig. 3 implies that user v has retweeted/replied
to the post of user v′ at time t′.

In our analysis, we simulate a network of n = 1000 users and
determine the network patterns for two cases, a slow propagation
scheme where α = β = 0.2, and a fast propagation scheme where
α = β = 0.8, by letting T = 2, λ = 0.01, and ρ = 0.1. We
construct a multi-layer network with two layers corresponding to the
retweet and reply behaviour, i.e., |L| = 2, such that a directed edge
(v, v′) in the retweet layer implies that user v ∈ V has retweeted a
post from user v′ ∈ V , whereas an edge (v, v′) in the reply layer im-
plies that user v has replied to user v′. We then identify the directed
triangular patterns in Fig.1 via Algorithm 1.

Fig. 4 the provides graphical representations of causal influence
structures between graph motifs that we have obtained using the
edge test in (8). In Fig. 4 (a)-(f), each graph node corresponds to
a distinct motif inM, and we draw an edge from motif j ∈ M to
motif i ∈ M whenever I(XT

jk → XT
il ) > 0 for the given pair of

network layers k, l ∈ L. In that sense, each edge indicates that mo-
tif j from layer k causally influences motif i in layer l. Accordingly,
Fig. 4 (a)-(b) correspond to the case when k = retweet, l = reply,
whereas Fig. 4 (c)-(d) correspond to the case when k = reply, l =
retweet, and Fig. 4 (e)-(f) to the case when k = reply, l = reply.
In each graph, the edge (i∗, j∗) from node i∗ to node j∗ with

(i∗, j∗) = arg max
i,j∈M

I(XT
jk → XT

il ) (9)

is colored in red, representing the motif pair with the highest causal
influence level. We observe from Fig. 4 (a)-(b) that motif 3 in the
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Fig. 4. Causal influences between motifs, where an edge from node j
to node i implies that motif j in layer k causally influences motif i in
layer l. A red edge denotes the motif pair with the highest influence.

retweet network causally influences motif 3 and motif 1 in the re-
ply network. The intuition behind this is as follows. Motif 3 in the
retweet graph implies that a message that was posted by a person
at t = 0 is retweeted by her friends at time t = 1. This can be
observed from Fig. 1 by noting that the top node has two incoming
edges from the bottom nodes, indicating that the bottom left and bot-
tom right nodes have retweeted the post of the top node. In addition
to retweeting the post from t = 0, one can expect that those friends
may also have replied to it at time t = 1. The user will then reply
back to her friends from the previous round, leading to the pattern
illustrated by motif 1 in the reply graph at time t = 2. Hence, ob-
serving motif 3 in the retweet graph implies that it is likely that motif
1 will be observed between these users in the next time slot. Hence,
motif 3 in the retweet layer causally influences motif 1 in the reply
layer. In addition, we also observe that if motif 3 is observed in the
retweet graph at time t = 1, then it is unlikely that it will also be
observed in the reply graph at time t = 2, since the reply pattern
at time t = 2 will be motif 1. Hence, motif 3 in the retweet layer
causally influences motif 3 in the reply layer. We also point out that
the reason why the same reasoning cannot be made for the remaining
motifs in the reply graph, such as motif 13, is that their frequency is
very low whether or not motif 3 is observed in the retweet graph,
hence their absence is not due to the occurrence of motif 3 in the
retweet layer. Similarly, we observe from Fig. 4 (c)-(d) that motif
3 is causally influenced by motifs 1 and 3. We also observe from
Fig. 4 (e) that motif 3 has the highest causal influence on motif 1
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Fig. 5. Causal influences between the motifs in the Twitter network.
For each pattern i ∈ M, we show the patterns that receive positive
influence from i, with the highest one indicated by a red edge.

in the reply network, which results from the reciprocative nature of
the replying behavior that can be observed from Fig. (3). That is, at
one time instance friends reply to a message, and in the next time-
instance the owner of the post replies to the friends, which explains
the causal influence from motif 3 to motif 1 and from motif 1 to mo-
tif 3. We also observe that fewer causal influences are identified as
the network becomes more sparse, i.e., when α = β = 0.2 than the
case for α = β = 0.8.

4.2. Real-world Network
In order to study the causal network pattern dependencies in a real-
world network, we consider the Higgs Twitter dataset from [21] that
is a collection of messages related to the discovery of the Higgs bo-
son during the period between July 1, 2012 and July 7, 2012. The
dataset consists of n = 456, 631 nodes and 14, 855, 875 edges in
the follower network. The network also specifies retweet and reply
actions with respective message timings. In our analysis, we initially
divide the timeline into two time-slots with respect to the median of
the tweet timings. Then, we identify the motif patterns and influ-
ence structures using Algorithm 1 and (8), respectively. The results
are provided in Fig. 5, from which we observe that the results from
the real-world dataset are similar to the synthetic propagation mod-
els from Section 4.1. This also implies that judicious selection of
synthetic propagation schemes can be utilized to understand the be-
havior of real-world network patterns.

5. CONCLUSIONS
We have studied causal dependency structures between network pat-
terns in a multi-layer network, where each layer corresponds to a
different relationship type. We have proposed a method for identi-
fying causal motif relationships using directed information, and pro-
vided numerical evaluations using both a synthetic network and a
real-world dataset. Future directions include lower complexity pat-
tern analysis and directed information estimation. Our techniques
can also be extended to beyond triangular motifs to study causal de-
pendencies between subgraphs of different sizes.
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